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Abstract

In this paper novel approaches to change analysis of time series
of dynamic networks are investigated. Combinatorial, algebraic, and
topological techniques are proposed for measuring the distance between
weighted graphs and digraphs. Various approaches to detection of ab-
normal changes in time series of graphs are explored. Using simplicial
complexes as models, f-vectors, @)-analysis, A-theory, singular homol-
ogy, and Betti numbers of Stanley-Reisner rings in measuring graph
distance are considered.

1 Introduction

Abnormal change detection in a time series of dynamic communica-
tions or information networks is of great importance in network man-
agement and various other network analysis and control applications.
Known techniques comprise various pattern recognition approaches,
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spectral graph theory, string comparison, and mean/median graphs
applications [7, 18]. In this paper we present several new graph mea-
sures based on combinatorics, algebraic and combinatorial topology,
and abstract algebra. The key feature of our approach is to model
the network as a simplicial complex, with an emphasis on detecting
qualitative features of the network structure. There are several ways
of doing this, depending on which graph theoretic features one wishes
to focus on. Simplicial complexes are combinatorial versions of topo-
logical spaces and can be analyzed with combinatorial, topological, or
algebraic methods. This feature makes them particularly versatile as
models. We then use all three fields to associate numerical measures to
a simplicial complex, which, in turn, provide measures for the underly-
ing network. Applications of these measures to a real intranet network
will be addressed in [12].

The contents of the paper are as follows. Section 2 introduces sim-
plicial complexes, while in Section 3 several ways of constructing a sim-
plicial complex from a digraph are described, including the neighbor-
hood complex, the complete subgraph complex, containing as simplices
all sub-cliques, and other complexes obtained by using any monotone
graph property. Section 4 contains a description of several invariants
of simplicial complexes, namely its A-homotopy groups, @- and f-
vectors, and the Betti numbers of the Stanley-Reisner ring associated
to the complex. Sections 5 and 6 are devoted to the derivation of graph
distance measures, using those invariants. Section 7 contains the defi-
nition of a difference and order complexes and a description of several
possibilities of generalizing distance measures to time series of graphs.
Section 8 introduces thresholding as a possible approach to implemen-
tation of graph distances in measuring distances of weighted graphs.
Section 9 contains a detailed example of a time series of networks and
their associated measures.

2 Simplicial Complexes

In this section we summarize the basic definitions, examples, and facts
about simplicial complexes, in order to make the paper more self-
contained.

Definition. A simplicial complez A on a finite set V = {vy,... ,v,} of
vertices is a nonempty subset of the power set of V' with the property
that A is closed under the formation of subsets. That is, if 0 € A and
T C 0, then 7 € A. The elements of A are called simplices or faces.
The dimension of a simplex o is equal to one less than the number
of vertices defining it. The dimension of A is the maximum of the
dimensions of all simplices in A.



Example. Let V = {1,2,...,6}, and let A consist of the subsets
{2,3,4},{3,4,5,6},{1,5,6} and their subsets. Then A can be repre-
sented geometrically as in Figure 1.

Figure 1: Example of a simplicial complex.

Its dimension is 3, as there is a 3-dimensional simplex, in addition
to two 2-dimensional simplices attached to it.

This example shows that a simplicial complex, as defined here, is a
purely combinatorial object, which in addition has a representation as
a geometric object, and which can therefore be viewed as a topological
space. It is this versatility of simplicial complexes that makes them
extremely useful as models.

A convenient way to represent a simplicial complex, especially for
computations, is via an incidence matrix, whose columns are labeled by
its vertices, and the rows are labeled by the simplices. It is clearly suffi-
cient to represent only those rows corresponding to maximal simplices
(with respect to inclusion). For the complex in the above example an
incidence matrix is

_= o O
OO =
O = =
O = =
— - O
= - O

by using the column labels 1,2, ... ,6 from left to right.

3 Simplicial Complexes from Digraphs

In this section we associate several simplicial complexes to a directed
graph (digraph). Any undirected graph should be considered directed
by making each edge bidirectional. Later on we will consider digraphs



with weighted edges. Let G be a digraph with vertices v1,... ,v,. We
construct several simplicial complexes from G. The first one is the
so-called neighborhood complex M(G) of G. Its vertices are the vertices
of G. For each vertex v of G there is a simplex containing the vertex
v, together with all vertices w corresponding to directed edges v — w.
By including all faces of those simplices, we obtain the neighborhood
complex. Equivalently, 9(G) is generated by the simplices represented
as the rows of the adjacency matrix of G, augmented by 1’s in all
diagonal entries.

The second complex associated to G which we want to consider has
as simplices the complete subgraphs of G. Here we may consider G
as undirected, if convenient. To be precise, the complex €(G) has as
vertices again the vertices of G. The maximal simplices are given by
the collections of vertices that make up maximal (un)directed complete
subgraphs, or cliques of G. Note that if a vertex of a complete subgraph
is deleted then we again obtain a complete subgraph. For an example
of both these constructions see the digraphs in Figure 6 and their
associated complexes in Figure 7.

Note that, more generally, we could use any property of the graph
G that is monotone, in the sense that it is preserved under deletion
of vertices (or edges). For example, we could construct a simplicial
complex whose simplices consist of all subgraphs of G without (directed
or undirected) cycles. (This leads to graph matroids.) See [6] for
details.

4 Invariants of Simplicial Complexes

We now describe a number of measures of simplicial complexes from
several different points of view. Firstly, one can view a simplicial com-
plex as a combinatorial model of a topological space and can then
consider a variety of algebraic topological measures, such as homotopy
and homology groups. Secondly, one can view the complex simply as
a combinatorial object and consider several numerical invariants asso-
ciated to it, such as its dimension, or its so-called f-vector, a more
subtle invariant which counts the number of simplices in different di-
mensions. Finally, we can consider an algebraic model of the complex,
its so-called Stanley-Reisner ring, the quotient of a polynomial ring on
variables corresponding to the vertices of the complex, divided by the
ideal generated by the non-faces of the complex. Each point of view
provides very different measures of the complex (and, by extension, of
the digraph that produced the complex).

First we describe a family of invariants that arise from (J-analysis
and its extensions. @Q-analysis, developed by R. Atkin in [2, 3], has
been applied to various aspects of connectivity characterizations in



social science [1, 4, 14], and transport networks [15]. In recent work
by X. Kramer, and R. Laubenbacher, an extension of ()-analysis has
been developed [16, 17] and, in work with M. Coombs and A. Taha,
applied to detection and evaluation of IO in C*I networks [11]. Possible
applications to time series analysis of influence structures in decision
networks are outlined in [10]. A detailed version of this extension of
Q-analysis, termed A-theory, can be found in [5]. A-theory generates
a family of groups associated to a simplicial complex, similar to the
homotopy groups of a topological space.

To be precise, let A be a simplicial complex of dimension d, 0 <
q < d an integer, and ¢ a maximal simplex of A of dimension greater
than or equal to gq. There are groups

A%(A,0), 1<n,

which are analogous to the homotopy groups of a topological space.
The problem with classical homotopy of spaces applied to simplicial
complexes is the insensitivity to the combinatorial structure of the
complex. For instance, a hollow tetrahedron and a triangulated 2-
sphere made up of a large number of 2-dimensional simplices (triangles)
both look like a 2-sphere from the point of view of homotopy. In
situations where the combinatorial information is important to retain,
this is less than useful. Nonetheless, from the point of view of network
analysis, homotopy-like measures are of great interest, because they
can be used to detect essential network features that may be present
under a variety of graph configurations. One can view A-theory as
a version of homotopy which is sensitive to the combinatorics of the
configuration, but nonetheless gives qualitative information about the
network topology.

One disadvantage of A-theory, as of homotopy theory, is that it
is hard to compute. At present the only existing (and implemented)
algorithm computes the abelianization of the first group A?. (In anal-
ogy to classical topology, the A;-groups are in general nonabelian.) It
has been successfully applied to the detection of interesting features in
decision networks (see [9]). In Section 6 we will explain how to obtain
measures of graph distance based on A-theory.

While invariants from classical topology applied to simplicial com-
plexes have the drawback of not being very sensitive to the combina-
torics, as explained above, they can still lead to useful measures. In
the next section we will describe a graph measure based on the singular
homology groups

H,(Ak), n >0,k a field,

of the complex viewed as a topological space. For a definition see, e.g.,

[6].



If we view the complex A as a combinatorial object there are several
numerical invariants attached to it that lead to potentially interesting
graph measures. First of all, there is of course the dimension of the
complex. More subtly, we can consider its f-vector. It is an integer
vector with dim(A) + 1 entries, with the i-th one being equal to the
number of i-dimensional simplices in A. The f-vector is a much studied
invariant which plays an important role in network reliability [8].

Another integer vector associated to A is provided by Q-analysis.
Fix an integer ¢, with 0 < ¢ < dim(A). Call two simplices o and 7
g-connected if there is a sequence of simplices

0,01y.-.,0n,T

in A such that any two consecutive ones share a g-dimensional face. It
is straightforward to see that g-connectivity is an equivalence relation.
We associate to A its Q-vector, an integer vector of the same length as
the f-vector, whose i-th entry is equal to the number of i-connectivity
classes. It too can be used as a graph measure, as we will see later.

Finally, we consider an invariant of A that comes from abstract
algebra. Let z1,...,z, be the vertices of A, and let k£ be a field,
for instance the field R of real numbers. We consider the polynomial
ring k[x1,... ,zn] = k[x], containing all polynomials in the variables
Z1,-.. ,ZTpn, with addition and multiplication of polynomials as the ring
operations. Note that each simplex {z;,,...,z;.} of A corresponds to
a unique (square-free) monomial in k[x], namely z;, ---z; . Now let
I C k[x] be the ideal generated by all square-free monomials that
correspond to non-faces in A, that is, collections of vertices that do
not represent simplices in A. The Stanley-Reisner ring of A is the
quotient ring

Ra = k[x]/I.

It should be viewed as an algebraic model of A, and many combina-
torial properties of A are reincarnated as algebraic properties of RA.
One can associate to Ra its Betti numbers, a sequence of non-negative
integers that provide a subtle measure of the relationships among the
monomials that generate the ideal I, hence among the non-faces of the
complex A. They are defined using homological algebra. It is known
that each module over k[x] has a minimal free resolution, in particular
so does Ra. That is, there exists an exact sequence

0 — k[x]" — k[x]" — -+ — k[x]" — k[x]' — Ra — 0,
where k[x]% stands for the Cartesian product
k%] x --- x k[x]

with b; factors, a free k[x]-module of rank b;. The image of each
module homomorphism in the sequence is equal to the kernel of the



subsequent homomorphism. The sequence is of minimal length, and
the b; are minimal. Such a minimal free resolution is unique up to
isomorphism. The numbers {by = 1,b1,... ,b.} are the Betti numbers
of Ra. It is also known that r is at most equal to n, the number of
variables, that is, the number of vertices of A. For details see [19]. In
the next section we will develop a graph measure based on the Betti
numbers.

5 Graph Measures from Invariants of Sim-
plicial Complexes

In this section we derive graph measures as well as measures of graph
distance from the list of invariants of simplicial complexes that we
described in the previous section. The graph measures will all consist
of vectors with non-negative integer entries. Let A be a simplicial
complex of dimension d, which we may think of as obtained from a
digraph as outlined in Section 3.

5.1 The f-vector and the ()-vector

In the previous section we have defined the f-vector (fo,..., fs) and
the @-vector (Qo, - .. ,Qq) of A. They are straightforward to compute,
and several implementations are available. If so desired, one can con-
vert both vector-valued measures into numerical measures by taking
the (possibly weighted) sum of the entries.

5.2 A-theory

As mentioned earlier, the A-groups A%(A, o) of A based at a simplex
o € A are at present only computable for n = 1. Even in this case,
it is generally impossible to compute the group itself, and one has to
be satisfied with its abelianization. Thus, we get a sequence of finitely
generated abelian groups

Al o), AT(A, 0),

for each choice of base simplex ¢. For the following it is important that
we elaborate on the role of this base simplex. It is shown in [5] that, for
a given ¢, the group A(A, o) does not change (up to isomorphism), if
we replace o by a simplex in the same g-connected component. It can,
however, change dramatically if we change g-connected components.
Thus, A-theory can be viewed as a measure of a complex that refines
the calculation of the g-connected components. Thus, we obtain one
Al-group for each g-connected component of A.



Now observe that any finitely generated abelian group can be writ-
ten as a direct sum of a torsion group and a free abelian group, which
is isomorphic to Z" for some nonnegative integer r. The integer r is
called its free rank. Applying this to the abelianized A;-groups we can
associate a numerical measure to each group, which in turn leads to a
vector-valued measure of A based on the A-groups.

Define the A-vector

(A0, AL, ..., A

of A as follows. Let A? be the sum of the free ranks of all the groups
Al(A, o), where o varies over all the g-connected components of A.

5.3 Singular Homology

Viewing A as a topological space rather than a combinatorial object
one can compute its singular homology with coefficients in a field k,
such as Q or R. Heuristically speaking, the singular homology groups
of a topological space measure the existence of “holes” of various di-
mensions in the space. They are defined and computed algebraically,
via a sequence of k-vector spaces and linear transformations. For de-
tails see, e.g., [20]. We obtain a sequence of k-vector spaces

Ho(Ak), Hi(Ak),..., Hqy(Ak).

(It is known that these groups vanish in all dimensions above the di-
mension d of the complex.) Assembling their vector space dimensions
H; into the H-vector, we obtain another vector-valued measure

(Ho, ... ,Hy)

associated to A.

To illustrate the significance of the H-vector, consider the following
example. Let A be the complex given by a hollow tetrahedron, with a
one-cycle graph attached to it at one of its vertices. Then the H-vector
of A'is

Ha = (1,1,1).

Here, the first 1 indicates that the complex is connected, that is, has
a single connected component, whereas the second 1 measures the at-
tached graph, which topologically looks like a one-dimensional sphere.
Finally, the third 1 measures the 2-dimensional hole inside the hollow
tetrahedron.

5.4 The Betti Numbers

Finally, we derive another vector-valued measure from the Betti num-
bers of the Stanley-Reisner ring attached to A, by assembling the Betti



numbers by = 1,... , b, into the B-vector
BA = (b07b1; tee 5b7‘)‘

In order to give the reader a feeling for the B-vector we compute it for
a simple example. Let A be the complex on the vertex set {1,...,4},
with simplices {1,2, 3}, {3,4}, and their faces. The missing simplices
in A are {1,4} and {2,4}. Hence the ideal In C k[z1,...,z4] is
generated by the monomials x4 and z2x4. We construct a minimal
free resolution for A as

0 — k[x] — k[x]? — k[x] — Ra — 0.

Hence
Ba =(1,2,1).

To see this, observe that the kernel of the projection k[x] — RAa is
equal to Ia, which is generated minimally by z; x4 and z224, that is, no
fewer than two generators will generate Ia. Consider the composition
of the two k[x]-module homomorphisms

ls:[x]2 — In — k[x],

where the first map sends the first canonical basis element (1,0) of
k[x]? to z1z4, and the second to z2x4. The second map is simply the
inclusion. The composition is a map ¢ : k[x]? — k[x] whose image is
precisely Ia, the kernel of the map k[x] — Ra.

Now observe that the element (z3, —x1) lies in the kernel of ¢ since
x2(z124) — 21 (2224) = 0. In fact, one can show that it generates the
kernel. We now add the map

k[x] — k[x]?

to the sequence which sends 1 to the element (z2, —z1) € k[x]?. This
map is one-to-one, and we have constructed a free resolution. It is not
hard to show that this is indeed the minimal one.

In summary, we have described several ways of generating an in-
teger vector associated to a simplicial complex, namely the f-, Q-,A-,
H-, and B-vectors. Combined with any encoding of a directed graph
into a simplicial complex this provides many ways of obtaining vector-
valued graph measures. Two of these encodings were described earlier,
the neighborhood complex and the complete subgraph complex. In the
next section we describe how to obtain graph distance measures from
these.



6 Graph Distance Measures

Let G and G’ be two digraphs. Assume that we have chosen a method
of associating simplicial complexes A(G) and A(G") to them, and that
we have chosen a vector-valued measure M on simplicial complexes.
Let M(G) = (myg,-..,m,;) and M(G") = (m{,...,m}). Adding zero
entries on the right, if necessary, we may assume that r = s, that is,
the vectors have the same length.

Definition. Define the M-distance of G and G’ to be
m(G,G") = Z|mz mi|?.

That is, dm(G,G") is the Euclidean distance of the M-vectors of G
and G'.

Proposition. M-distance is symmetric and satisfies the triangle in-
equality.

Proof. This proposition follows immediately from the correspond-
ing properties of Euclidean distance.

It is worth observing that the definition of M-distance can be gen-
eralized, if necessary, by assigning weights to the different dimensions
of the vector. That is, given a sequence W of weights

Wo,W1,--- ,Wp,---

consisting of real numbers, we can define the weighted M -distance of
G and G’ to be

dy (G, G") Zw,|mZ mi|?.

What prevents M-distance from being an actual metric on the space
of digraphs and digraph morphisms is that non-isomorphic graphs may
have M-distance zero for any of the measures and encodings defined.
This simply reflects the fact that these measures detect qualitative
differences in networks, for which graph isomorphism is too strong a
condition. It remains an open problem to identify a suitable notion
of digraph equivalence which has the property that two graphs are
equivalent precisely if their M-distance is zero.

In summary, we have developed the following procedure to generate
digraph metrics:

digraph — simplicial complex — M-vector

The M-distance of two digraphs is then measured as the distance,
possibly weighted, of their M-vectors.

10



7 Measures for Time Series of Graphs
In this section we consider a time series of digraphs
Gl: ERE) Gn7

and develop some distance measures on it. With any graph distance
measure d(—,—) one can derive from this time series a sequence of
successive distance measurements:

d(Gl, Gz), d(Gz, G3), e ,d(Gn_l, Gn),

|d(G1; G2) - d(G27 G3)|7 teey |d(Gn—23 Gn—l) - d(Gn—la GTL)|7

With graph measures via simplicial complexes several more sophis-
ticated approaches become possible. Most importantly, “differences”
can be taken at the simplicial complex level. Let A and A’ be two com-
plexes, represented by incidence matrices M and M’'. We will assume
that both complexes have the same vertex set. This is a reasonable
assumption, since the digraphs in the time series frequently have the
same set of nodes. We construct the difference complex [A, A'] as fol-
lows. Its incidence matrix is given by all rows from M, that do not
represent a simplex which is a subsimplex of a simplex from a row of
M’ and vice versa.

To illustrate this construction consider the following example. Let
A; and A be given by the matrices M; and Ma, respectively:

0 00 10O 0 00 01
Mi=111100]}, M2=1111200
01 101 01110
Then the complex [A1, As] is given by the incidence matrix
01 110
0110 1)
We now apply this construction to distance measures on time series
of graphs. Let Ay,...,A, be the simplicial complexes associated to

the time series G1,...,G, by some method. We form the series of
consecutive differences

Arg = [A1,A9], Agg = [Ag, As], .., Ap_1n = [Ap—1, Ay,
Aq2z = [A12,As], ...,

A123...n-

11



One can now apply the various vector valued graph measures to
these difference complexes. It is interesting to compare the differ-
ence between the M-distance of two successive complexes and the M-
measure of the difference complex.

A somewhat different approach one can take to a time series of
digraphs is to view it not as a sequence of independent digraphs, but
rather as a transformation of a digraph in time. If one adopts this point
of view, then one is led to the notion of composition of digraphs in a
time series. To explain this concept it is most convenient to represent
a digraph in a different way.

Instead of the usual representation of a digraph G with n vertices
we use the following diagram. We arrange two rows of n vertices, one
above the other, and labeled as in G. Then we connect a top vertex v
with a bottom vertex u by an edge if and only if there is a directed edge
in G from v to u. The resulting structure can be interpreted as the
Hasse diagram of a partially ordered set (poset). This representation
is suggestive of interpreting a directed graph as a flow in time among
nodes. This should not be confused with the flow in a network, as
indicated by weights attached to the edges. Consequently, we want to
refer to this partially ordered set as a flow. A flow can of course be
represented by a binary adjacency matrix.

It is clear that from a flow we can reconstruct the digraph that gave
rise to it. Thus, there is a one-to-one correspondence between digraphs
and flows. The new represenation has several advantages, aside from
being more suggestive. It allows for several forms of composition of
flows. For instance, we can simply “stack up” two flows, one on top
of the other to obtain a flow of length two. More generally, we can
stack up any finite number of flows. Given a time series of digraphs of
length n, we obtain a “stacked” flow of height n.

a, b, C d,
G, 2 < 2

a, b, c d,
: W

a, b, c, d,

Figure 2: Stacked flow.

Associated to such a stacked flow is another simplicial complex that
is potentially of great interest in network analysis. We can interpret

12



a stacked flow S as a poset, whose elements are the nodes at each
level, and whose partial order relation is given by the edges between
levels. Then we associate to S its order complex. It has as vertices the
elements of S, and the simplices are given by all totally ordered chains
of S. This construction has been studied extensively. For details see,
e.g., [6]. We illustrate it with an example. Consider the stack in Figure
2, constructed from the two digraphs in Figure 3.

@
© g @A@

G, G,

Figure 3: Time series of digraphs.
Its order complex is given in Figure 4.

a

c, a
d,
b,
b
o 4,
d, €1

a, d,

a, b,

3

Figure 4: Order complex of stacked flow.

One can now apply various graph measures to the order complex.
Stacked flows provide a combinatorial approach to the analysis of the
flow of interactions in decision networks [10].

Alternatively, we can compose two flows to obtain another flow
by multiplying the corresponding incidence matrices. This amounts
to composing two flows by composing all individual components that
make up the flow. Composing flows is conceptually easier than com-
posing two directed graphs to obtain a third one. For the stack in
Figure 2, the composed flow is given in Figure 5.

Composition of flows or equivalently, digraphs, provides us with yet
another measure attached to a time series of digraphs. It will not be a
difference measure, but rather a measure of aggregation. Nonetheless,

13



[ Xo!

Figure 5: Composed flow.

it might provide a useful global measure of network transformation
over time.

8 Measures for Weighted Digraphs

In order to apply our measures to digraphs with weights attached to
the edges, we represent a weighted digraph as a sequence of unweighted
digraphs as follows. Let G be a weighted digraph with vertices 1, ... ,n,
and weight w;; € R>¢ attached to directed edge (¢, 7). Choose a thresh-
old unit ¢ > 0 in R If w is the largest weight that occurs, then we
generate a sequence of unweighted digraphs by taking G'1 to be the sub-
graph of G whose edges correspond to those edges of G whose weight
v is such that
0<v<e

Next, define G5 to have edges corresponding to those edges with weight
between ¢ and 2¢. The last graph G,. has edges with weight v such that

re<v <w.
In this way we associate to a weighted digraph G a sequence
(Go,---,Gr)

of unweighted digraphs. We can now apply the measures for un-
weighted digraphs developed earlier to each of the graphs in the se-
quence. In order to obtain a single vector-valued graph measure, one
can aggregate the measures for the sequence of graphs by summing,
possibly using a weighted sum, if appropriate. In this way one can
directly apply M-distance as a graph distance measure to weighted
digraphs. That is, if W = {wq,w1,...} is a sequence of weights, we
define

MY(@) = MY (G, ... ,G,) = iwiM(Gi)-
=0

14



9 An Example

In this section we carry out the calculation of all the measures defined
so far on the time series of the two digraphs given in Figure 6, in order
to illustrate the various concepts we have introduced, their similarities
and differences.

Figure 6: Time series of digraphs.

First we disregard the weights on the first digraph. Their neighbor-
hood complexes and complete subgraph complexes are given in Figure

7.
2
6 3 6
Lo
5 4

N (G) NGy

€ (G) € G)

Figure 7: Neighborhood and complete subgraph complexes.

15



We compute the vector-valued measures for 9(G;) as follows:

f1=1(6,10,5), fo = (6,10,4);
Ql - (15175)5 Q2 = (172a4)7
A= (07]-;0)7 Ay = (07070)7
Hy = (17070)7 H, = (1a170);
B, =(1,5,5,1), By =(1,6,8,4,1)

The computations of the f- and Q-vector are straightforward. To
compute the A-vector, observe that the 1-loop given by the sequence
of 2-simplices

M=2)=06-4-=06—->0

generates a nontrivial element of A1(9M(G1), (1)). Now, as a topological
space, 9(G1) is a disk, hence contractible to a point. On the other
hand, 91(G>) is homotopic to a circle, so that its first homology group
is isomorphic to Z. Finally, the B-vector was computed using the
computer algebra system Macoulay2 [13].

The complexes €(G;) are substantially less interesting, and the
computation of the vector-valued invariants is left to the reader as
an exercise.

We now compute the following graph distance measures:

df(G1,G2) =1, do(G1,G2) = 2, da(G1,G2) =1, dy(G1,G2) =1,
(G, Ga) = 20.

Finally, consider G; as a weighted graph, as in Figure 6. Using a
threshold unit of 5, we obtain the sequence of digraphs given in Figure
8. The first graph reflects edges with weights 0 < w < 5, the second
one weights 0 < w < 10, and, finally, the third one which contains all
edges, reflects all weights.

Figure 8: Representation of weighted digraph.

As before, one can now apply the above graph measures to this
sequence of unweighted graphs.

16



10 Conclusion

In this paper a number of novel approaches to change detection of
time series of communications networks are described. They com-
prise combinatorial and algebraic invariants viewed as distance (simi-
larity /disimilarity) measures between weighted and unweighted graphs
and digraphs. Various ways of assignment of simplicial complexes to
graphs (and time series of digraphs) are explored. Their combinatorial,
topological, and algebraic properties are used to characterize the time
series behavior of the networks.

While a full investigation of these measures in experiments is still
pending, it is clear that our approach opens up several rich mathemati-
cal areas as a source of graph distance measures and measures on time
series. These measures focus primarily on the qualitative properties
of the graphs rather than on their combinatorial differences. We are
optimistic that our approach will lead to a fruitful new area of network
analysis.
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