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Les avancées du langage
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LE  PROBLÈME


•  Un jeu à trois

•  Aligner les lignes de temps: la synchronisation

•  Paver la ligne de temps: structure de contrôle et de données
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Le compositeur, le musicien et la machine


alignment 
with an 
event


alignment with 
an event + 

tempo


alignment with several�
events + several 

tempo

choosing an event
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Multiples timelines


alignment 
with an 
event


alignment with 
an event + 

tempo


alignment with several�
events + several 

tempo

choosing an event
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Aligner les timelines


alignment 
with an 
event


alignment with 
an event + 

tempo


alignment with several�
events + several 

tempo

choosing an event


sy
n

c
h

ro
n

isa
tio

n
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Construire la « timeline »


alignment 
with an 
event


alignment with 
an event + 

tempo


alignment with several�
events + several 

tempo

choosing an event
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Plan


1.  Temps multiples


2.  Repérage et coordination�
des repères temporels


3.  Constructions

a.  structures de contrôle

b.  structures de données
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1. TEMPS  MULTIPLES
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Du temps unique aux temps multiples

n  temps unique : une horloge externe objective


o  les événements arrivent dans le temps

o  temps newtonien, unités temporelles fongibles

o  un temps partagé prescriptif�

(qui n'est éventuellement que partiellement connu)


n  temps multiples : pluralités co-dépendantes

o  les événements définissent le temps�

(Bluedorn: epochal time is defined by events)


o  Temps leibnizien, relationnel

o  Exemples :


n  partition : couches temporelles

n  relation partition / performance

n  co-construction lors de la performance
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Pluralité des temps


-construction


co


événement  
+	


durée	
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Construire un temps partagé


?
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Construire un temps partagé
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tribu de la grande clepsydre
 tribu du sable qui coule
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Construire un temps partagé
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J'émettrai

un nuage rose 


2 litres 

après le nuage rouge


J'émettrai

un nuage vert 

750 grammes


avant le nuage rose


1


2   litres


750   grammes


3


2


3'
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Construire un temps partagé
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1


2   litres


750   grammes


2


3


4


5


1   litres


0,75   litres


0,75   litres


1


2


3


4


350   grammes


400   grammes


1100   grammes
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Aligner les repères temporels de chacun


Un repère temporel :

Ø  des événements partagés

Ø  une estimation du temps�

qui passe chez l'autre
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Exemple :"
La déformation de la partition à l'interprétation
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Qu'est ce qui reste invariant ? 

n  l'ordre des événements

n  leur durée relative

n  l'organisation concurrente des objets musicaux (accords, 

phrases…) est maintenu en respectant des points de 
synchronisation :

o  attaque/fin de note

o  début/fin de mesure

o  apogée d'une dynamique

o  changement de timbre 



i.e. événement partagés entre timelines


n  propriétés qualitative de premier ordre (plus court/plus long) �
mais aussi de second ordre (plus lent/plus vite)


n  souvent exprimable en terme de tempo relatif
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2. COORDINATION  DES  TIMELINES
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Un système de coordonnées hybrides


•  événement musical

•  tempo
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Stratégies de Synchronisation


20	
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3. CONSTRUIRE  UNE  TIMELINE
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Nachleben, Julia Blondeau (8'30)
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Construire une« timeline »

n  Passage d’une définition extensionelle (qui liste les événements  

et les actions) à une définition intensionelle (programmatique)

n  Structure de contrôle


o  Group

o  Loop (répétition)

o  Forall (répétition dépendant d’une structure de données)

o  If (déclenchement logique localisé temporellement)

o  Curve (action continue)

o  Processus

o  Whenever (déclenchement logique délocalisé temporellement)

o  Patterns (déclenchement logique complexe)


n  Structure de données

o  Données scalaires

o  Map (dictionnaire)

o  Tab (vecteur)

o  NIM (fonction interpolée)
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Extension vs. intension


Pourquoi passer d’une 
description extensionelle 

à une description intensionelle 
de la timeline ?


Séminaire recherche—création / novembre 2014


n  + concis

n  + expressif


o  réactif

o  paramétré par l’environnement extérieur


n  + générique (bibliothèque, module)

n  + idiosyncrasisme�

offrir à un compositeur la possibilité de définir un langage�
reflétant ses constructions temporelles propres (geste musical)


repeat( ) 
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STRUCTURES DE CONTRÔLE"
(CURVE, PROCESSUS, …, PATTERNS)
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Group


26


Note C3 1.0 
 Group G1 
 { 

 
 } 
 Group G2 
 { 

 
 } 
 0.5 Group G3 
 { 

 
 } 
 0.5 Group G4 
 { 

 
 } 

Note C4 1.5 
… 

G1 

G2 

G3 

G4 

G1 

G2 

G3 

G4 

0.5


1.0

C3
 C4
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Loop


27


Note C3  2/3 
 $periode := 1.0 
 Loop $periode 
 { 

 
 

 } 
Note C4 1.5 
… 

$periode := 0.5 
    … L … 

1.0

C3
 C4


L 

0.5
 0.5
 0.5


L’’’ 

L’ 

L’’ 

L’’’’ 
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ForAll


28


Note C3  2/3 
 ForAll $x in TAB[1, 2, 3] do 
 { 

 
 } 

Note C4 1.5 
… 

L 

1.0

C3
 C4


L 

L’ 

L’’ 
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Whenever


29


Note C3  2/3 
 Whenever ($X > 0) 
 { 

 
 } 

Note C4 1.5 
… 

L 

C3
 C4


$X	


L L L 

L 

L 

$X:=3	
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Curve


7.5.4 Interpolation Methods

The specification of the interpolation between two breakpoint is optional. By default, a linear
interpolation is used. Antescofo offers a rich set of interpolation methods:

: piecewise constant function

: linear interpolation

to be completed CHECK

Note that the interpolation can be different for each successive pair of breakpoints.
If one need an interpolation method not yet implemented, it is easy to program it. The

idea is to apply a user defined function to the value returned by a simple linear interpolation,
as follows:

@FUN_DEF @f($x) { ... }
...
curve C action := print @f($x), grain := 0.1
{

$x
{ { 0 } @linear

1s { 1 }
}

}

The curve C will interpolate function @f between 0 and 1 after its starts, during one second
and with a sampling rate of 0.1 beat.

7.5.5 Managing Multiple Curves Simultaneously

To make easier the simultaneous sampling of several curves, it is possible to define multiples
parameters together in the same clause:

curve C
{

$x , $y , $z
{

{ 0, 1, -1 } @linear
4 { 2, 1, 0 } @linear
4 { -1, 2, 1 }

}
}

time 

$x, $y, $z 
2 
1 

4 

8 

4 

-1 

0 

Note that with the previous syntax it is not possible to define simultaneous curves with
breakpoint at different time. This is possible using multiple parameter clauses, as in:

41

curve C
{

$x
{

{ 0 } @constant
2 { 1 } @linear
3 { -1 }

}
$y
{

{ 1 } @linear
3 { 2 }

}
}

time 

$x, $y 
2 
1 

2 

5 

3 
-1 

0 

3 

In this example, the parameters $x and $y have not their breakpoints at the same time.
The first two breakpoints for $x defines a constant function. And the second and the last
breakpoints define a linear function. Incidentally note that the result is not a continuous
function on . The parameter $y is defined by only one pair of breakpoints. The last
breakpoint has its time coordinate equal to , which ends the function before the end of $x.
In this case, the last value of the function is used to extend the parameters “by continuity”.

7.6 Reacting to logical events: Whenever

The whenever statement allows the launching of actions conditionally on the occurrence of a
logical condition:WHY: pas

d’ident op-
tionnel comme
un group

whenever (boolean_expression 1)
{

actions_list

} until (boolean_expression 2)

The behavior of this construction is the following: The whenever is active from its firing until
boolean_expression 2 evaluates to false. . After the firing of the whenever, each time theCHECK

WHY: la
clause du
until n’est pas
evalué chaque
fois qu’une
variable de
cette clause
est mise à jour
mais quand la
condition du
whenever est
active !!!

variables of the boolean_expression 1 are updated, boolean_expression 1 is re-evaluated.
We stress the fact that only the variables that appear explicitly in the boolean condition are
tracked. If the condition evaluates to true, the body of the whenever is launched.

Note that the boolean condition is not evaluated when the whenever is fired: only when
one of the variables that appears in the Boolean expression is updated by an assignment
elsewhere.

Notice also the difference with a conditional action (section 7.2): a conditional action is
evaluated when the flow of control reaches the condition while the whenever is evaluated as
many time as needed, from its firing, to track the changes of the variables appearing in the
condition.

The whenever is a way to reduce and simplify the specification of the score particularly when
actions have to be executed each time some condition is satisfied. It also escapes the sequential
nature of traditional scores. Resulting actions of a whenever statement are not statically
associated to an event of the performer but dynamically satisfying some predicate, triggered

42

même durée, mêmes breakpoints


même durée, différents breakpoints
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NIM: type d'interpolation


Séminaire recherche—création / novembre 2014


Figure 5.5 Various interpolation type available in an Antescofo Curve and NIM. The label xxx[0] corresponds to the ease “in”,
that is to the type "xxx_in" or equivalently "xxx"; the xxx[1] corresponds to the ease “out”, i.e. type "xxx_out"; and the label xxx[2]
corresponds to the ease “in_out”, i.e. type "xxx_in_out";.
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Figure 5.6 (cont.) Various interpolation type available in an Antescofo Curve and NIM. The label xxx[0] corresponds to the ease
“in”, that is to the type "xxx_in" or equivalently "xxx"; the xxx[1] corresponds to the ease “out” and the label xxx[2] corresponds to
the ease “in_out”.
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Arrêter une action composée

n  until / while


o  Loop { … } until ($x > 33)


n  duration

o  Loop { .. } during [3#]

o  Loop { .. } during [3s]

o  Loop { .. } during [3]


n  abort

o  par nom ou par instance

o  récursif ou non


n  @abort

Séminaire recherche—création / novembre 2014
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Exemple : le fade d'un processus contrôlé par une curve


Loop L 10 
{ 

 Curve  
 @action = csound $x 
 @abort =  

    {  
   Curve 
   @action csound $y 



                  { $y {  { $x } 0.5 { 0 } } }


    

          } 
    { 
     $x { {0} 5 {1} 5 {0} } 
    } 

}
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Exemple : le fade d'un processus contrôlé par une curve


Loop L 10 
{ 

 Curve  
 @action = csound $x 
 @abort =  

    {  
   Curve 
   @action csound $y 



                  { $y {  { $x } 0.5 "linear" { 0 } } }


    

         } 
    { 
     $x { {0} 5 {1} 5 {0} } 
    } 

}


Séminaire recherche—création / novembre 2014
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Exemple : le fade d'un processus contrôlé par une curve


Loop L 10 
{ 

 Curve  
 @action = csound $x 
 @abort =  

    {  
   Curve 
   @action csound $y 



                  { $y {  { $x } 0.5 { 0 } } }


    

         } 
    { 
     $x { {0} 5 {1} 5 {0} } 
    } 

} 

Séminaire recherche—création / novembre 2014
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Exemple : le fade d'un processus contrôlé par une curve


Loop L 10 
{ 

 Curve  
 @action = csound $x 
 @abort =  

    {  
   Curve 
   @action csound $y 



                  { $y {  { $x } 0.5 { 0 } } }


    

         } 
    { 
     $x { {0} 5 {1} 5 {0} } 
    } 

} 
abort L 
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abort + 1
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Processus 


1.  ce sont des valeurs (comme les fonctions)

2.  qu’on peut appeler et le résultat est la création d’une 

instance de groupe

3.  l’appel est soit une expression, soit une action

4.  les processus peuvent être récursifs

5.  et d’ordre sup


ces points distinguent un processus d’une macro
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Processus


the expression that are arguments of a call are computed only once at call time, and
call time is when the application is fired (not when the file is read);

the actions that are launched consequently to the firing of a process application are
computed when the process is applied,

process can be recursive;

process are higher-order values: a process ::P can be used as the value of the argument
of a function or a process call. This enable the parameterization of process, an expressive
and powerful construction to describe complex compositional schemes.

Let give some examples of higher order recursive processes.

9.2 Recursive Process

A infinite loop

Loop L 10
{

... action ...
}

is equivalent to a call of the recursive process ::L defined by:

@proc_def ::L()
{

Group repet {
10 ::L()

}
... action ...

}

The group repet is used to launch recursively the process without disturbing the timing of
the actions in the loop body. In this example, the process has no parameters.

9.3 Process as Values

A process can be the argument of another process. For example:

@Proc_def ::Tic($x) {
$x print TIC

}
@proc_def ::Toc($x) {

$x print TOC
}
@proc_def ::Clock($p, $q) {

:: $p(1)
:: $q(2)
3 :: Clock($q, $p)

}

50

A call to Clock(::Tic, ::Toc) will print TIC one beat after the call, then TOC two beats latter,
and then TIC again at date 4, TOC at date 6, etc.

In the previous code a :: is used in the first two lines of the ::Clock process to tell
Antescofo that the value of arguments $p and $q must be processes and that this is a process
call and not a function call. This indication is mandatory because in this case, there is no
way to know for sure that $p(1) is a function call or a process call.

51

passage en paramètre 
(un proc est une valeur 
comme les autres)


appel récursif (avec 
une fonction ça 
bouclerait)


appel calculé

(décision, 

contrôle 
dynamique)


généricité: on peut 
abstraire sur toute 
expression
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Processus comme agent 

@global $incremente, $decremente  ; canaux de communication 
 
@Proc_def ::P($id) 
{ 

 @local $state 
 

 whenever ($incremente = $id) 
 { 
  $state := $state + 1 
 } 

 
 whenever ($decremente = $id) 
 { 
  $state ;: $state - 1 
 } 

} 

… 
$Jose := ::P("José")  ; instanciation de l’agent "José" 
…   
$s := $Jose.$state    ; accès à la variable locale de l'instance

  
$incremente := "José" ; envoi du message « incrémente » à José 
$decremente := "José" ; envoi du message « decrémente » à José 
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Processus comme agent: Boids 


@global $go 
 
@Proc_def ::Boids($id) 
{ 

 @local $pos,  
 

 whenever ($go) 
 { 
  @local $sum, $n 
  forall $p in ::Boids {  
   $sum := $p.$pos  
   $n := $n+1 
  } 
  … 
 } 
 … 

} 
 
$go := true 



Je
an

-L
ou

is 
Gi

av
itto

 / 
IR

CA
M

 U
M

R 
99

12
 S

TM
S 

– 
CN

RS
 –

 IN
RI

A 
éq

uip
e 

M
UT

AN
T


Processus et tempo

n  Un processus hérite du tempo de l'endroit où il est 

appelé


 Group G1 @tempo := 60 
 { Clock(::Tic, ::Toc) } 

 

 Group G2 @tempo := 120 
 { Clock(::Tic, ::Toc) }  

Séminaire recherche—création / novembre 2014
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Exemple d'empilement de tempi

@proc_def ::Trace() 
{ 

  @local $x 
     $x := 0 
     Loop L 0.5 
     { 
          $x := $x + 0.1 

    plot $NOW " " $x "\n" 
     } during [15] 
} 
 
$trace1 := ::Trace() 
 
Curve C1 @grain 0.05s 
{  $t1 { {60} 5 {180} 5 {60} } } 
 
Group G1 @tempo := $t1 
{ 

 $trace2 := ::Trace() 
 

 Curve C2 @grain 0.05s 
 { $t2 {  {60} 3 {180} 3 {60} 3 {180}  

           3 {60} 3 {180} 3 {60} } 
    } 
 

 Group G3 @tempo := $t2 
 { 

     $trace3 := ::Trace() 
 } 

} 
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PATTERN
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Neume


machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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Matching a temporal pattern


machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2
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4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .
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Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .
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Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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THE PATTERN LANGUAGE: "
STATE & EVENT
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NOTE: checking an instantaneous property on $PITCH


Pattern P  
{ 

@local $x , $y , $z 
NOTE $x 
NOTE $y where $x < $y  
NOTE $z where ($y > $z) & ($z > $x) 

}  
… 
whenever P  
{ print  "I just saw a P" } 
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Event: checking an instantaneous property

Pattern P  
{ 

@local $x , $y , $z 
Event $PITCH value $x 
Event $PITCH value $y where $x < $y  
Event $PITCH value $z where ($y > $z) & ($z > $x) 

}  
… 
whenever P  
{ print  "I just saw a P" } 
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clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y, $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used freely in the pattern clauses. The first
time the variable is met, the pattern-matcher stores the correspond-
ing value into the variable; next time, the value stored is used in the
expression where the variable appears. For example:

@pattern P {
@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
(unknown) value $x. When the first event is matched, a value is
given to the pattern variable $x. When the second event is matched,
this value is used to constrain the match. However, we stress again
that the matching is causal. A pattern like

@local $x
Event $PITCH value ($x + 1)
Event $PITCH value $x

is rejected by the system because the matching of the first event
must be determined without any assumption on the future. The
record-then-match behavior is just the operational explanation of
the existential quantification in logic formula, when there is no
unification, only matching.

Pattern variables can be used in the action triggered by a pattern,
as ordinary variable. For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at" $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variable is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking to match the pattern Event $X, the
variable $X is tracked right after the match of the previous pattern.
Then, at the first value change of $X, Antescofo check the various

constraints of the pattern. If the constraints are not meet, the match-
ing fails. The before clause can be used to shrink or to extend the
temporal interval on which the pattern is matched beyond the first
value change. For instance, the pattern

@pattern twice
{

@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $x

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match, $V
must be updated for the same value before 3 beats have elapsed
from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the
next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@Local $start , $stop
Event $X value v at $start
Event $X value v at $stop

where ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats but it would not match three consecutive updates of $X
for the same value v, one at each beat, a configuration that should
be recognized.

It is not an easy task to translate the specification of a state that
lasts over an interval into a sequence of instantaneous events. Using
a State pattern, the specification of the previous pattern is easy:

State $X where ($X == v) during 2

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
before and where clauses constrain the matching as described for
event pattern. The at clause is replaced by the two clauses start

and stop to record or constrain the date at which the matching of
the pattern has started and the date at which the matching stops.
There is no value clause because the value of the tracked variable
may change during the matching of the pattern, for instance when
the state is defined as “being above some threshold”. The where

clause may refer to a pattern variable set in the start clause, but
not to the value of a stop clause because the date at which the
pattern ends is known only in the future.

The during clause can be used to specify the duration of the
state, i.e. the time interval on which the various constraints of the
pattern must hold. If the specified constraints are not satisfied, the
matching fails but, if there is a before clause, a new attempt is
launched at each update of the tracked variable, until the expiration
of the before clause.
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"temporal scope": specifying the succesion

Pattern P  
{ 

@local $x , $y , $z 
Event $PITCH value $x 
Event $PITCH value $y where $x < $y  
Event $PITCH value $z where ($y > $z) & ($z > $x) 

}  
… 
whenever P  
{ print  "I just saw a P" } 

before [3#] 
before [3s] 
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State: a property that lasts

variable $X takes the value v at least for 2 beats


clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y , $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used freely in the pattern clauses. The first
time the variable is met, the pattern-matcher stores the correspond-
ing value into the variable; next time, the value stored is used in the
expression where the variable appears. For example:

@pattern P {
@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
(unknown) value $x. When the first event is matched, a value is
given to the pattern variable $x. When the second event is matched,
this value is used to constrain the match. However, we stress again
that the matching is causal. A pattern like

@local $x
Event $PITCH value ($x + 1)
Event $PITCH value $x

is rejected by the system because the matching of the first event
must be determined without any assumption on the future. The
record-then-match behavior is just the operational explanation of
the existential quantification in logic formula, when there is no
unification, only matching.

Pattern variables can be used in the action triggered by a pattern,
as ordinary variable. For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at" $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variable is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking to match the pattern Event $X, the
variable $X is tracked right after the match of the previous pattern.
Then, at the first value change of $X, Antescofo check the various

constraints of the pattern. If the constraints are not meet, the match-
ing fails. The before clause can be used to shrink or to extend the
temporal interval on which the pattern is matched beyond the first
value change. For instance, the pattern

@pattern twice
{

@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $x

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match, $V
must be updated for the same value before 3 beats have elapsed
from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the
next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@Local $start , $stop
Event $X value v at $start
Event $X value v at $stop

where ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats but it would not match three consecutive updates of $X
for the same value v, one at each beat, a configuration that should
be recognized.

It is not an easy task to translate the specification of a state that
lasts over an interval into a sequence of instantaneous events. Using
a State pattern, the specification of the previous pattern is easy:

State $X where ($X == v) during 2

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
before and where clauses constrain the matching as described for
event pattern. The at clause is replaced by the two clauses start

and stop to record or constrain the date at which the matching of
the pattern has started and the date at which the matching stops.
There is no value clause because the value of the tracked variable
may change during the matching of the pattern, for instance when
the state is defined as “being above some threshold”. The where

clause may refer to a pattern variable set in the start clause, but
not to the value of a stop clause because the date at which the
pattern ends is known only in the future.

The during clause can be used to specify the duration of the
state, i.e. the time interval on which the various constraints of the
pattern must hold. If the specified constraints are not satisfied, the
matching fails but, if there is a before clause, a new attempt is
launched at each update of the tracked variable, until the expiration
of the before clause.
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Problem: 
they can be an unbounded number of events in the interval 


@local $start, $stop, $w 
P: Event $PITCH value  v    at $start 
Q: Event $PITCH value $w at $stop where ($stop - $start) ≥ 2 

next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q

ok

but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat

P

ok
Q

fail

P

ok
Q

fail

It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
3 beats

s

0

P

start
P

end ,Qok
1.5 beats

Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

time

$X

b

d

A T

a c r

Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.
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Lasting properties do not start everywhere


next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q

ok

but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat

P

ok
Q

fail

P

ok
Q

fail

It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
3 beats

s

0

P

start
P

end ,Qok
1.5 beats

Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

time

$X

b

d

A T

a c r

Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.

next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q

ok

but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat

P

ok
Q

fail

P

ok
Q

fail

It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
3 beats

s

0

P

start
P

end ,Qok
1.5 beats

Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

time

$X

b

d
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Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.

n  Continuous time but only a discrete number of events


n  Implementation require either

o  a sampling of continuous time (and the start of a�

potential match at each sampled instant)

o  or the access of all past states (i.e. an unbounded memory)
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Which match ?


n  Refractory period


@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iteration operators r

⇤ or
r

+ available for a regular expression r. The reason is that ATP
matching must be done in real time and must be causal: the decision
that a pattern matches must be done with the last atomic event
matched by the pattern, as soon as it occurs. This is not the case for
example with r

+ which need to look one token ahead to determine
the subsequence matched.

There are two kinds of atomic patterns: Event that corresponds
to a property satisfied on a time point and State for a property
satisfied on a time interval.

4.1 Event Patterns
A pattern Event $X matches an update of the variable $X. This
variable is said tracked by the pattern. Three optional clauses can
be used to constraint the matching: value, where and at. The value

clause constrains the value of the tracked variable. For example:
Event $PITCH value G4

matches only when $PITCH is assigned to G4. The value clause can
be an Antescofo expression and may refer to arbitrary variables.
The where clause is used to specify a guard with an arbitrary
boolean expression: the guard is evaluated at matching time and
the matching fails if it evaluates to false. The at clause is used to
constraint the date of matching.

Pattern Variables. Pattern variables can be used to match and to
record some parameters of the matching. Pattern variables are de-
clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y, $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used in any pattern clauses. For example:
@pattern Twice {

@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
unknown value referred by $x: local variables appear as con-
straints linking the patterns.

However, not every constraints are allowed: only syntactic
matching as time progress is used to resolve the constraints ex-
pressed through the pattern variables. This restriction ensures that
the matching is causal. For example, a pattern like

@local $x, $y
Event $PITCH value ($x + $y)
Event $PITCH value ($x + 2*$y)

is rejected at parsing time by Antescofo because the constraint
between the values of the first and second event is an equation that
cannot be solved by syntactic substitutions as the time progresses
(in the example, we have to wait the second update of $PITCH to
decide if the first pattern has matched the first update).

The constraint accepted in ATP have a simple operational inter-
pretation. Consider pattern Twice: when the first event is matched,
a value is given to the pattern variable $x. When the second event
is matched, this value is used to constrain the match. This record-
then-match behavior is just the operational explanation of the ex-
istential quantification in logic formula when no unification nor
solver are available, only matching following the patterns order,
as in ML-like pattern-matching [22].

The scope of the pattern variables extends to the actions trig-
gered by the pattern, when they can be used as ordinary variables.
For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at " $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variables is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
Before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking for the match of the pattern Event

$X, the variable $X is tracked right after the match of the previous
pattern. Then, at the first value change of $X, Antescofo checks the
various constraints of the pattern. If the constraints are not met,
the matching fails. This behavior corresponds to the next operator
in temporal logic. The Before clause can be used to shrink or
to extend the temporal interval on which the pattern is matched
beyond the first value change. For instance, the pattern

@pattern TwiceIn3B {
@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $v

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match,
variable $V must be updated for the same value before 3 beats have
elapsed from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the

v	
 v	
 v	
1 beat
 1 beat
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Composing and Chaining Patterns

The diagram assumes that variable $X is sampling at a rate �

the underlying continuous evolution of a signal f . The first State
pattern is looking for an interval of length a where constantly
variable $X is greater than b. The first possible interval starts at
date A and is figured by the two white circles on the time axis.
The second State pattern must start to match before c beats have
elapsed since the end of the previous pattern. The match starts as
soon as $X is greater than d. There is no specification of a duration
for the second state, so it finishes its matching at time T , as soon
as $X becomes smaller than d. The matched interval is marked with
the two dark circles on the time line.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instant. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Earliest Match” Property. A regular expression may match
several prefixes of the same string. For example, a.b⇤ matches the
three prefixes a, ab, abb of the word abb. Usually, a pattern matcher
reports only one match, characterized by an additional property,
e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the ab-
sence of iteration operators: several distinct occurrences of the
same pattern starting at the same date but ending a different date
may exists. Such alternative solutions may appear when the tem-
poral scope of a pattern is extended beyond the first value change:
then, distinct matches within the temporal scope may satisfy the
various constraints of the pattern2. For instance, consider the pat-
tern TwiceIn3B in paragraph 4.2. If the variable $V takes the same
value three times within 3 seconds, say at the dates t1 < t2 < t3,
then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and (t2, t3).

To ensure the real-time decidability of the matching, the occur-
rence (t1, t2) of the match must be reported because at t2 there is
no information about a possible further match. So the question is to
decide if further matches have to be reported or not. We adopted the
common behavior of reporting only one match (this is for instance
the behavior of lex or grep).

In other word, the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the earliest match property.
In the previous example, with this property, only the two matches
(t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the
same time point. For instance, the curve sketched in Fig. 4 presents
many other possible occurrences of the pattern that finish at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long as
f(A+ n� + x) > b for x 2 [0, a].

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @local clause. If there is no refractory period specified,
all feasible paths trigger the action.

2 If there is no Before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q

a variable which is then tracked by P . For instance, suppose that
patterns G1, . . . , G4 match some basic gestures reported through
the updates of some variables. Then, the recognition of a sequence
Gseq of gestures G1 · (G2|G3) ·G4, i.e., G1 followed either by G2

or G3 followed by G4, is easily specified as:

$g := 0
whenever pattern ::G1 { $g := 1 }
whenever pattern ::G2 { $g := 2 }
whenever pattern ::G3 { $g := 3 }
whenever pattern ::G4 { $g := 4 }

@pattern Gseq {
Event $g value 1
Event $g where ($g==2) || ($g==3)
Event $g value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
one after the other. It is very convenient to have events and actions
that can happen at the same metric time instant, but in some well
definite order. For example, on some event, an audio filter must
be turned on and then it must receive some control parameters.
Obviously, the control parameters must be sent only when the filter
is on, but it is pointless to explicitly wait some arbitrary small delay
between the two actions.

We formalize time-event sequences as follows. We represent
the time passage by an element of R+. The elements of U , the
set of events, are the updates of the variables: an element of U is
a term x := v where x 2 I is an Antescofo variable and v 2 V
an Antescofo value. We look at these sets as flat domains U? and
R+

? with the same minimal element ?: all elements except ? are
incomparable [24] for the ordering � (this order is the domain order
and should not be confused with the numerical order  on R+). So,
a time-event sequence is an element of the monoid

S = (U? [ R+
?)

⇤
/ ⇠

where the monoid operation is denoted by · and where ⇠ is the
congruence relation defined by:

d · d0 ⇠ d+ d

0
, 0 · s ⇠ s, s · 0 ⇠ s

for d, d

0 2 R+ and s 2 S. The congruence relation is used to
aggregate consecutive time passages and to throw away useless

G1 

G3 

G2 

G4 
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STRUCTURES DE DONNÉES"
(MAP, TAB, NIM)
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donnée temporelles àdonnées en mémoire�
 données en mémoire à calcul à données en mémoire �

données en mémoire à données temporelles


Séminaire recherche—création / novembre 2014


•  données temporelles "
= une suite dans le temps de données "instantanées"


•  donnée en mémoire "
= structure de données


•  recorder : donnée temporelles àdonnées en mémoire

•  interpreter : données en mémoire à données en mémoire 

•  player : données en mémoire à données temporelles


data-ification
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n  Curve / Nim
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Exemple : les nim
NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆

79

Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.

x 

y 

0 
x0 

y0 

y1 

d0 

t0 

t1 

x 

y 

0 

x0 

y0 

Y0 

d0 

t0 

t1 

d1 d1 

y1 

Y1 

where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)

80

NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆

79

Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.
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where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)

80
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n  Une NIM est une fonction comme une autre

n  Calculer avec les nim:


o  demander la valeur de la NIM en un point donné

o  rajouter un breakpoint en tête

o  rajouter un breakpoint à la fin

o  "jouer" la NIM dans le temps
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NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆

79

Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.
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where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)

80

NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆
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Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.
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where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)

80



Je
an

-L
ou

is 
Gi

av
itto

 / 
IR

CA
M

 U
M

R 
99

12
 S

TM
S 

– 
CN

RS
 –

 IN
RI

A 
éq

uip
e 

M
UT

AN
T


Séminaire recherche—création / novembre 2014


NIM vectorielle


NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆

79

NIM interpolated Map. A NIM is an aggregate data structure that defines an interpolated
function: the data represent the breakpoints of the piecewise interpolation (as in a curve)
and a NIM can be applied to a numerical value to returns the corresponding image.

NIM can be used as an argument of the Curve construct which allows to build dynamically
the breakpoints as the result of a computation. See section 5.4.6.

There are two ways of defining a NIM. Continuous NIM are defined by an expression of the
form:

NIM { x0 y0, d1 y1 "cubic"
, d2 y2 // no type = "linear"
, d3 y3 "bounce"
, ...
, dn yn "typen"

}

which specifies a piecewise function f : between x

i

and x

i+1 = x

i

+ d

i+1, function f is an
interpolation of type type

i+1 from y

i

to y

i+1. See an illustration at the left of Fig. 8.1.
The function f is extended outside [x0, xn] such that

f(x) =

(
y0 for x  x0

y

n

for x � x

n

= x0 +
P

n

i=0 di

The type of the interpolation is either a constant string or an expression. But in this case,
the expression must be enclosed in parenthesis. The names of the allowed interpolation types
are the same as for curve and the interpolation types are illustrated on figures 5.5 and 5.6
pp 52.

Note that the previous definition specifies a continuous function because the value of f at
the beginning of [x

i

, x

i+1] is also the value of f at the end of the previous interval.
The second syntax to define a NIM allows to define a discontinuous function by specifying

a different y value for the end of an interval and the beginning of the next one:

NIM { x0, y0 d0 Y0 "cubic"
, y1 d1 Y1

, y2 d2 Y2 "bounce"
, ...

}

The definition is similar to the previous form except that on the interval [x
i

, x

i+1] the function
is an interpolation between y

i

and Y

i

. See illustration at the right of Fig. 8.1.

Vectorized NIM. the NIM construct admits tab as arguments: in this case, the result is a
vectorial function. For example:

NIM{ [-1, 0] [0, 10], [2, 3] [1, 20] ["cubic", "linear"] }

defines a vectorial NIM of two variables:

~

f

✓
x1

x2

◆
=

✓
f1(x1)
f2(x2)

◆

79

Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.
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where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)
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Figure 8.1 The two forms a NIM definition. The diagram in the left illustrate the spec-
ification of a continuous NIM{x0 y0, d0 y1 t0, d1 y1 t1} while the diagram in the right
illustrates the specification of a discontinuous NIM{x0, y0 d0 Y0 t0, y1 d1 Y1 t1}.
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where f1 is a cubic interpolation between 0 and 1 for x1 going from �1 to 1 and f2 is a linear
interpolation between 10 and 20 for x2 going from 0 to 3.

The arguments of a vectorized NIM may includes scalar s: in this case, the scalar is extended
implicitly into a vector of the correct size whose elements are all equal to s. This is the case
even for the specification of the interpolation type. The specification of the interpolation
type can be omitted: in this case, teh interpolation type is linear. For example:

NIM{ 0, 0, [1, 2] 10 }

defines the function

~

f =

✓
f1

f2

◆
where f1(x) =

8
><

>:

0, if x < 0

10, if x > 1

10x, elsewhere
and f2(x) =

8
><

>:

0, if x < 0

10, if x > 2

5x, elsewhere
.

A vectorized NIM is listable : it can be applied to a scalar argument. In this case, the
scalar argument x is implicitly extended to a vector of the correct dimension:

~

f(x) = ~

f

0

@
x

. . .

x

1

A

The function @size returns the dimension of the image of a NIM, that is, 1 for a scalar
NIM and n for a vectorized NIM, where n is the number of elements of the tab returned by
the application of the NIM.

Extending a NIM. The function @push_back can be used to add a new breakpoints to an
existing NIM (the NIM argument is modified):

@push_back(nim , d, y1)
@push_back(nim , d, y1 , type)
@push_back(nim , y0, d, y1)
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NIM: type d'interpolation
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Figure 5.5 Various interpolation type available in an Antescofo Curve and NIM. The label xxx[0] corresponds to the ease “in”,
that is to the type "xxx_in" or equivalently "xxx"; the xxx[1] corresponds to the ease “out”, i.e. type "xxx_out"; and the label xxx[2]
corresponds to the ease “in_out”, i.e. type "xxx_in_out";.
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Figure 5.6 (cont.) Various interpolation type available in an Antescofo Curve and NIM. The label xxx[0] corresponds to the ease
“in”, that is to the type "xxx_in" or equivalently "xxx"; the xxx[1] corresponds to the ease “out” and the label xxx[2] corresponds to
the ease “in_out”.
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Interpolation d'un mouvement
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$gesture0 := NIM { 0 [-0.5, 0.5], 1 TAB[0.5, 0.5]

                               

 
       , 1 TAB[0.5, -0.5]

                                

 

       , 1 TAB[-0.5, -0.5]

                                 
       , 1 TAB[-0.5, 0.5] }


$gesture1 := NIM { 0 [-1, 0], 1 TAB[0, 1]

                                 


 , 1 TAB[1, 0]

                            

 
 , 1 TAB[0, -1]

                            
 
 , 1 TAB[-1, 0] }


@fun_def @combine($t, $p) {


   (1 - $p) * $gesture0($t) 


    +           $p * $gesture1($t)

}


Curve 

@grain = 0.01

@action = { 

    $tmp := @combine($pos % 4, $pos/24)

    $x := $tmp[0]

    $y := $tmp[1]

}

{  $pos {    {0} 10 {24} } }
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Fonction, dictionnaire et fonctions interpolées


n  @fun_def fact($x) {�




       ($x == 0 ? 0 : $x * @fact($x – 1))�
}�
@fact(3)�



n  $dico := MAP { (clé, valeur) }�
$dico("José")�



n  $courbe := NIM { … }�
$courbe(1.0)
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Fonctions prédéfinies et utilisateurs @fun_def

n  Valeur de premier ordre �

@fun_def apply($f, $x) { $f($x) }


n  Curryfiée�
@fun_def plus($a, $b) { $a + $b }�
$incr := @plus(1)


n  Récursive


n  Dynamiquement typées


n  Librairie de ~160 fonctions prédéfinies


n  Pas d’argument optionnels �
ou de nombre d’arguments variables
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Librairie

approx, asin, atan, 
between, 
bounded_integrate_inv, 
bounded_integrate, car, 
cdr, ceil, clear, concat, 
cons, copy, cosh, cos, 
count, dim, domain, 
empty, exp, explode, find, 
flatten, floor, gnuplot, 
gshift_map, history_map, 
history_tab, 
history_map_date, 
history_tab_date, insert, 
insert, integrate, iota, 
is_bool, is_defined, is_fct, 
is_float, is_function, 
is_integer_indexed, 
is_interpolatedmap, is_int, 

is_list, is_map, is_numeric, 
is_prefix, is_string, 
is_subsequence, 
is_subsequence, is_suffix, 
is_symbol, is_undef, 
is_vector, lace, listify, 
log10, log2, log, 
make_duration_map, 
make_score_map, map, 
map_compose, 
map_concat, 
map_normalize, 
map_reverse, mapval, 
max_key, max_val, max, 
member, merge, min_key, 
min_val, min, normalize, 
occurs, permute, plot, 
pow, push_back, 

push_front, rand_int, 
random, rand, reduce, 
range, remove, 
remove_duplicate, replace, 
reshape, resize, reverse, 
rnd_bernouilli, 
rnd_binomial, 
rnd_exponential, 
rnd_gamma, 
rnd_geometric, 
rnd_normal, 
rnd_uniform_int, 
rnd_uniform_float, rotate, 
round, rplot, scan, 
scramble, select_map, 
shape, shift_map, sinh, 
sin, size, sort, sort, sputter, 
sqrt, stutter, system, tan
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VECTEUR"
(TAB)
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Tableau

n  Vecteur indexé de 0 à n


n  Vecteur hétérogène:�


[0, true, [3.14159, “une chaîne”, @fact], ::Trace()]


n  Définition en compréhension (APL, Mathematica, series in CL)�

[ exp | $it in source, cond ]�
[ @rand_int(1) | (10) ]�
[ 2*$it | $it in $tab ]�
[ $A[$i] + $B[$i] | $i in @size($A), $A[i] > 0 ]


n  Extension implicite�
“quand il faut et que ce n’est pas ambigu”:�
$A + 1, 2*$A, $A + $B, …


Séminaire recherche—création / novembre 2014




Je
an

-L
ou

is 
Gi

av
itto

 / 
IR

CA
M

 U
M

R 
99

12
 S

TM
S 

– 
CN

RS
 –

 IN
RI

A 
éq

uip
e 

M
UT

AN
T


Vecteur de vecteurs
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If the specification of the step is not given, it value is +1 or �1 following the sign of (stop
- start ). The specification of start is also optional: in this case, the variable will start
from 0. For example:

[ @sin($t) | $t in -3.14 .. 3.14 : 0.1 ]

generates a tab of 62 elements.
In addition, a predicate can be given to filter the members of the input set:

[$u | $u in 10, $x % 3 == 0] �! [0, 3, 6, 9]

filters the multiple of 3 in the interval [0, 10). The expression used as a predicate is given
after a comma, at the end of the comprehension.

Tab comprehensions are ordinary expressions. So they can be nested and this can be used
to manipulate tab of tabs. Such data structure can be used to make matrices:

[ [$x + $y | $x in 1 .. 3] | $y in [10, 20, 30] ]
�! [ [11, 12], [21, 22], [31, 32] ]

Here are some additional examples of tab comprehensions showing the syntax:

[ 0 | (100) ] ; builds a vector of 100 elements , all zeros
[ @random () | (10) ] ; build a vector of ten random numbers
[ $i | $i in 40, $i % 2 == 0 ] ; lists the even numbers from 0 to 40
[ $i | $i in 40 : 2] ; same as previous
[ 2*$i | $i in (20) ] ; same as previous

; equivalent to ($s + $t) assuming arguments of the same size
[ $s[$i] + $t[$i] | $i in @size($t) ]

; transpose of a matrix $m
[ [$m[$j , $i] | $j in @size($m)] | $i in @size($m [0])]

; scalar product of two vectors $s and $t
@reduce(@+, $s * $t)

; matrice*vector product
[ @reduce(@+, $m[$i] * $v) | $i in @size($m) ]

; squaring a matrix $m , i.e. $m * $m
[ [ @reduce(@+, $m[$i] * $m[$j]) | $i in @size($m[$j]) ]
| $j in @size($m) ]

Changing an element in a Tab. A tab is a mutable data structure : one can changes an
element within this data structure. Although a similar syntax is used, changing one element
in a tab is an atomic action different from the assignment of a variable. For example

let $t[0] := 33
$t[0] := 33 ; the ‘‘let ’’ is optionnal

changes the value of the first element of the tab referred by $t for the value 33. But this is
not a variable assignment: the variable $t has not been “touched”: it is the value referred by

83
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Fonctions prédéfinies sur les tableaux

n  ~50 fonctions dans la bibliothèque


o  @permute

o  @sort

o  @lace, @stutter, @sputter … à la SuperCollider

o  Operateur: @map, @reduce (fold), @scan, etc.
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Un exemple: Processus Markoviens

// On définit autant de processus que d'action à lancer, 

// autrement dit, que de sommet dans le graphe.

// 

// Les arguments du processus sont 

//  $x : le numéro de l'étape (le i-ème processus visité). 

//  $d : la durée de la visite



@proc_def ::A($x, $d) {

    Loop 1.0 { print "step" $x "visit A at" $NOW "for" $d "beats" }

}



@proc_def ::B($x, $d) {

    Loop 1.0 { print "step" $x "visit B at" $NOW "for" $d "beats" }

}



@proc_def ::C($x, $d) {

    Loop 1.0 { print "step" $x "visit C at" $NOW "for" $d "beats" }

}



@proc_def ::D($x, $d) {

    Loop 1.0 { print "step" $x "visit D at" $NOW "for" $d "beats" }

}












// On donne pour chaque sommet, les proba de transitions vers 

// chaque autre sommet (y compris soit-même). 

// On suppose que A correspond à l'index 0, B à 1, etc. 

//  La somme des éléments de chaque vecteur doit faire 1.0



$proba_A := tab[ 0.0,  0.2,  0.4,  0.4 ]

$proba_B := tab[ 0.3,  0.1,  0.4,  0.3 ]

$proba_C := tab[ 0.8,  0.2,  0.1,  0.1 ]

$proba_D := tab[ 0.0,  0.5,  0.2,  0.3 ]



// Le temps où l'on reste dans un sommet dépend du prochain 

// sommet qui sera visité. Ainsi, quand on est dans A, 

//  - on reste 5 temps dans A si on visite B ensuite

//  - on reste 3 temps dans A si on visite C ensuite

//  - on reste 4 temps dans A si on visite D ensuite

// etc.



$waitingA := tab[ 0,  5,  3,  4 ]

$waitingB := tab[ 5,  3,  4,  2 ]

$waitingC := tab[ 3,  4,  2,  2 ]

$waitingD := tab[ 0,  2,  3,  4 ]


Séminaire recherche—création / novembre 2014




Je
an

-L
ou

is 
Gi

av
itto

 / 
IR

CA
M

 U
M

R 
99

12
 S

TM
S 

– 
CN

RS
 –

 IN
RI

A 
éq

uip
e 

M
UT

AN
T


Partie générique

// A chaque instant, l'état de la navigation

// dans  le graphe est décrite par les valeurs

// de 3 variables :

// -  $proc

//    processus courant en cours d'exécution

// -  $proc_index

//    son index dans le tableau $actions

// -  $step�
//    nème étape de la navigation



@global $proc, $proc_index, $step



// On calcule $pX comme la proba cumulée des 

// transition sortant de X parce que cela permet 

// simplement de déterminer quelle transition

// prendre en tirant un nombre entre 0 et 1.



$pA := @scan(@+, $proba_A);


$pB := @scan(@+, $proba_B);

$pC := @scan(@+, $proba_C);

$pD := @scan(@+, $proba_D);



// La matrice des transitions cumulées du graphe

$proba := tab[$pA, $pB, $pC, $pD]



// La matrice des temps à passer dans chaque 

// sommet en fonction du prochain sommet à 

// visiter

$waiting := tab[$waitingA, $waitingB, $waitingC, 
$waitingD]



// Un vecteur qui relie un index et une action

$actions := tab[::A, ::B, ::C, ::D]
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Partie générique (2)

@fun_def @sup($cmp, $x) { $x > $cmp }



// Le processus qui navigue dans le graphe

//

// c’est juste un processus récursif. 

// Il met à jour l’état de la visite, tue l’action 

// courante du sommet visité et lance l’action du 

// prochain sommet visité. 

// L'argument $id est juste le numéro de l'étape 



@proc_def ::run($id)

{

  @local $next_index, $delay



  $step := $step + 1  

  $cmp := @random()

  $next_index := @find_index($proba[$proc_index], 

                                            @sup($cmp))

  $delay := $waiting[$proc_index, $next_index]



  // On récupère le proc à lancer à partir de son index

  $P := $actions[$next_index]



  // On tue le processus courant

  abort $proc


  print "   "



  // On lance le prochain processus

  $proc_index := $next_index

  $proc := $P($step, $delay)

  

  // Et on se relance après une attente de $delay

  $delay ::run($id + 1)

}



// --- Lancement --------------



// il faut amorcer la pompe.

// On le fait en lançant le processus A

$proc_index := 0

$proc := ::A(0, 0)

$step := 1



::run(1)  // lance la navigation dans le graphe
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Une trace

antescofo~ - Score loaded succesfully with 0 
events and 20 actions.

antescofo~ - Sequence playback... .

print: step 0 visit A at 0. for 0 beats

print:     

print: step 2 visit D at 0. for 4 beats

print: step 2 visit D at 1. for 4 beats

print: step 2 visit D at 2. for 4 beats

print: step 2 visit D at 3. for 4 beats

print:     

print: step 3 visit C at 4. for 3 beats

print: step 3 visit C at 5. for 3 beats

print: step 3 visit C at 6. for 3 beats

print:     

print: step 4 visit B at 7. for 4 beats

print: step 4 visit B at 8. for 4 beats

print: step 4 visit B at 9. for 4 beats

print: step 4 visit B at 10. for 4 beats

print:     

print: step 5 visit D at 11. for 2 beats


print: step 5 visit D at 12. for 2 beats

print:     

print: step 6 visit B at 13. for 2 beats

print: step 6 visit B at 14. for 2 beats

print:     

print: step 7 visit D at 15. for 2 beats

print: step 7 visit D at 16. for 2 beats

print:     

print: step 8 visit B at 17. for 2 beats

print: step 8 visit B at 18. for 2 beats

print:     

print: step 9 visit A at 19. for 5 beats

print: step 9 visit A at 20. for 5 beats

print: step 9 visit A at 21. for 5 beats

print: step 9 visit A at 22. for 5 beats

print: step 9 visit A at 23. for 5 beats

print:     

print: step 10 visit C at 24. for 3 beats

print: step 10 visit C at 25. for 3 beats

antescofo~ - Stopped!
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LA SUITE ? 
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Directions de travail (on a besoin de vous)

n  Documentation (tutorial, ref, how-to, FAQ, partitions en vraie grandeur…)

n  Bétonner et simplifier la syntaxe

n  Notation et mécanismes expressifs et lisibles�

(comment simplifier les grandes partitions)

o  Référer symboliquement aux événements partagés entre deux cadres temporels

o  Permettre les tableaux dans les Curves (comme pour les NIM)

o  Dictionnaire en compréhension

o  D’autres fonctions d’estimation de tempo (et sur tout type d’événement)

o  Tempo symbolique

o  …


n  Librairies spécialisées, plugin

n  Nouvelles structure de données (ex.: buffer audio)


n  Standalone

n  Marier pattern et machine d’écoute

n  …
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