Pattern-matching and Rewriting Rules
for Group Indexed Data Structures

Jean-Louis Giavitto
giavitto@Ilami.univ-evry.fr

Olivier Michel
michel@Ilami.univ-evry.fr

Julien Cohen
jcohen@lami.univ-evry.fr

LaMIl umr 8042 du CNRS, Université d’Evry Val d’Essone, GENOPOLE
Tour Evry-2, 523 Place des Terrasses de I'’Agora, 91000 Evry, France

Abstract

In this paper, we present a new framework for the defi-
nition of various data structures (including trees and ar-
rays) together with a generic language of filters enabling
a rule-based programming style for functions. This
framework is implemented in an experimental language
calledMGS The underlying notions funding our frame-

work have a topological nature and enable to extend
the case-based definition of functions found in modern
functional languages beyond algebraic data structures.

Categories and Subject Descriptors

D.3.3 [Programming Language$: Language Con-
structs and Features; E.Ddta Structures]; F.1.1
[Theory of Computation]: Models of Computa-
tions; F.4.2 Formal Languageg: Grammar and Other
Rewriting Systems

Keywords

and cellular automata [VN66]. Gamma, CHAM and
Paun systems are based on multiset rewriting and Lin-
denmayer systems on string rewriting. These kind
of data structures are qualified asonoidal [Man01,
GMO01b] and their rewriting theories are now mastered.
In this paper, we focus on non-monoidal data structures
and especially array-like data structures for which there
is no clear agreement on a rule-based rewriting mecha-
nism.

The rest of this paper is organized as follows. The next
section introduces a motivating example. Section 3 de-
tails the notion of group indexed data structure or GBF
(for group-based data fielflsSuch structures generalize
the notion of array. We give a geometric interpretation
of GBF in section 4. This interpretation underlies the
design of a generic pattern language described in sec-
tion 5. Some examples are worked out in section 6.
The corresponding pattern-matching algorithm is devel-
oped section 7, before reviewing some related and future
works.

group-based data fields, group indexed data structure, 2 A Motivating Example

path pattern, combinatorial matching, array pattern
matching, Cayley graphs, rule based array function.

1 Introduction

One of the achievements and successes of the current

functional languages is the ability to define functions by

cases using filters and pattern-matching. However, this

possibility is restricted to pattern-matching of algebraic
data types, which is now well understood. An example
of data structure beyond the current capability is for ex-
ample thearray data type it is not possible to define a
function by cases on arrays.

In this paper, we present a new framework for the def-
inition of various data structures, including trees and
arrays, together with a generic language of filters en-
abling a rule-based programming style for functions.
This framework is implemented in an experimental lan-
guage calledIGS

The underlying notions funding our framework have
a topological nature and unify several programming
paradigm like Gamma [BM86] and the CHAM [BB92],

This example is loosely inspired from lattice gas au-
tomata. In these kinds of cellular automata, rules of the
form B = f(B) are used to specify the local evolution
of a set of particles distributed on a regular subdivision
of the plan. The expressidhis a pattern that matches
a configuration (typically two particles in two neighbor
cells that would collide at the next time step) afi@)

is used to specify the evolution of the particles.

In our arbitrary example, we want to specify tBé°-
rotation of a cross in a square lattice (see the two dia-
grams on the left side of figure 1). An array-like data
structure can be used to record the lattice state and the
rule 3 = f(B) is used to specify the rotation of a single
cross. Notice that in this case, the pattBrioes not fil-

ter a sub-array but an arbitrary subset (a cross). This rule
must be applied to each occurrence of a cross in the data
structure. The result is an array function, called here a
transformation We write:

trans Turn = { B = f(B); }

The transformatioTurnis defined by cases (here there
is only one case corresponding to the single rule in the

Lindenmayer systems [RS92], Paun systems [Pau99] transformatiorfurn). The cas@ specifies a sub-domain

c] b]
[d|a]b] [clale]
e]
Aoty 1o =lo14]
14 | A\eeast 13

55

fooNe
516)

500

50
S
Do

VAP
VX

Figure 1. Application of the transformation Turnto an array on the left or to an hexagonal subdivision on the
right. In contrast with cellular automata, the evolution concerns a multi-cell domain.

which is replaced by (B). However, unlike case-based
function definitions acting on algebraic data types, the

admit a geometrical interpretation which is the basis of
the language of filters presented in section 5. As a mat-

cases do not correspond to constructors nor exhaust theter of fact, a collection type always admit a topological

data structure.

A transformation is a function taking eollection as
argument. A collection is an organized set of ele-
ments. TheMGSlanguage handles several kinds of col-
lections including sets, bags, sequences and array-like
data structures called GBF. A square lattice, as pictured
on the left of figure 1 is a special case of GBF.

It is usual for physicists to work with an hexagonal lat-
tice, because such a tiling of the plane respect more
symmetries in the expression of fundamental physical

laws than a square lattice. We can transpose our trans-

formation in such a tiling, cf. the two diagrams on the
right of figure 1. In this case, the pattefrinvolves a 7
cells sub-domain.

To turn the description of the transformatidarninto a

interpretation in terms of neighborhood (cf. [GMO02a,
GMO02b]) and the notions introduced in section 5 are
uniformly applicable to all collection types.

An nx m arrayA associates a well defined value to an
index (i, j) for L<i<nandl< j<m Thus, an ar-
ray can be seen abstractly asotal functionfrom the

set of indexed = [1,n] x [1,m] to some set of values.
Thedata field approactextends this notion by consider-
ing the arrayA as apartial function with a finite support
from a larger set of indexes = Z x Z (the supportof

a partial function is the subset of its domain for which
the function takes a well defined value). This enables
the representation of “arrays with holes”, “triangular ar-
rays”, etc. The notion of data field appears in the devel-
opment of recurrence equations and goes back at least to
[KMW67]. The term itself seems to appear for the first
time in [YC92, CiCL91] and its investigation in a func-

real program, one must dispose of some new constructs tional and data parallel context has been mainly made

in a language in order to

1. define the type of a data structure representing a
2D array (or better, some generalization like an
hexagonal tiling),

define a patterfy that matches an arbitrary sub-
domain in an array,

specify a function using rules likg = f(p) that
specify the substitution of non-intersecting occur-
rences of subdomains matched ¥y a replace-
ment computed by ().

Such devices are available MGS an experimental
declarative language. One of the objectives of NS
project is to investigate the use of a rule-based approach
for the simulation of dynamical systems (this explains
the choice of our examples). In [GMO01c] we have
shown howMGSunifies multiset and string based rewrit-
ing paradigms. In this paper, we extend further this uni-
fication towards array-like data structure. In section 3
we show how to describe such data structures. The prob-
lem of specifying a patterfd in this kind of data struc-
ture is examined in section 4 and 5.

3 Group Indexed Data Structures

In this section, we introduce the concept of GBF which

generalizes the concept of array. These data structures

by Lisper [Lis96] (see also [GDVS98]).

Our starting point to extend further the notion of data
field, is the remark that the set of indexésis pro-
vided with some operations. The standard example of
index algebra is integer tuples with linear mappings.
For instance, more tha@%% of array references are
affine functions of array indexes in scientific programs
[GG95]. As a consequence, we have proposed to pro-
vide the set of indexes withgroup structurdGMS96].
Such a data structure, a partial function with a finite sup-
port from a group to a set of values, is called>BF

for group-based data field. The basic example is the
data fields themselves, where the group of indexes is
the group(Z",+). The advantage of providing the set
of indexes with a group structure and several examples
of GBF are detailed in [GMO01a].

GBF are introduced in th&IGSlanguage using a type
declaration specifying the underlying group of indexes.
The definition of the group is given using a finite pre-
sentation listing a set of generata;sfor the group and

a set of equatione, = €, where theg are formal sums
of theg; :

gof G = < gy, ..,
er=e, .

On;
ep =€, >

A formal sum of the generators is simply a linear com-

—b- 0
PR S S Y Wrucanis i G Y
- - 0--0--0-—-0— - - - ——(:P = -
w=atb+a Q
--®--0--¢6 d--0--0¢ 2 3--0--0%

a w+a+a
-9 >0 --0--6-- -—-0--0--[0--0-

a a

E ek R R ==

Figure 2. Graphical representation of the relationships between Cayley graphs and group theory. A vertex is
a group element. An edge labelea is a generatora of the group. A word (a formal sum of generators and of
inverses of generators) is a path. Path composition corresponds to group addition. A closed path (a cycle) is a
word equal to 0 (the identity of the group operation). An equationv = w can be rewritten v—w = 0 and then
corresponds to a cycle in the graph. There are two kinds of cycles in the graph: the cycles that are present in all
Cayley graphs and corresponding to group laws (intuitively: a backtracking path likeb+a—a—b) and closed
paths specific to the own group equations (e.ga— b —a+ b for Abelian groups). The graph connectivity, i.e.
there is always a path going fromP to Q, is equivalent to say that there is always a solution to the equation

P+x=Q.

bination as for example:

391 + 2093 - (5 94 + O5)

We use the following typographical conventionsGifs

a GBF, we writeG (a finite group presentation) for its
type andg (the group of indexes dB) for its domain.
Beware that a group admits various presentations, so a
GBF type contains more information than just the group
structure. The set of values of a GBHs not mentioned

in the type declaration fo& becauséMGSis a dynami-
cally typed language and heterogeneous values can be
recorded in a GBF.

In this paper we deal only with Abelian groups and we
use an additive notation for the group operation. By
convention a finite presentation starting witk” “and
ending with " introduces an Abelian group, that is:
the set of equations is completed implicitly with the
equations specifying the commutation of the generators

gi+9j =9j + 4.

Examples of GBF Types
The two examples of figure 1 correspond to the two GBF
types:

ghf G2
gbf H2

< north, east >
<X, Y, Z; X+Z=Y >

The typeH2 defines an hexagonal lattice that tiles the
plane. This geometrical interpretation of the presenta-
tion relies on the notion ofayley graph

4 Group of Indexes and Topological

Representation

A Cayley graph is a graph representation of the presen-
tationG of a groupG: each vertex in the Cayley graph is
an element of the groug and vertexx andy are linked

if there is a generatar in the presentatio® such that
X+u =Y. See figure 2. This representation supports the
following topological interpretatiorof a GBF:

o The group of indexeg of a GBF typeG is the set
of positionsof a discrete space.

e A GBF G associates a value to some positions. As
a partial function with finite supporG can be seen
as afinite set of pairgppsition, valug An element
aof G, writtena € G, is such a pair and we use the
sentences “position @’ and “value ofa” to speak
about the first and the second elements of this pair.

e A generatorg of the group presentatioB is also
anelementary translatiofwe use equivalently the
words move shift or direction) from a positionp
to a positionp+g.

e More generally, an elemerk G can be seen both
as a position and as a translation (technically, we
consider the left-action of; on itself).

e The set of elementary translations provideeigh-
borhood relationshigo the set of positionsy is
g-neighbor ofx iff x+g=y. Two elementsi and
v are said neighbors, and we write, V" if there is
a generatog such thau is ag-neighbor ofv or v
is ag-neighbor ofu.

e A pathis a sequence of positions It starts at the
positionug and ends at the positian,. Usuallyy;

andui 1 are neighbors, but we do not enforce this empty element: the symbol<undef> matches an ele-

constraint. Paths can be translated by a translation
t simply by adding to eachy;.

A relative pathis a sequencs of positions. A rel-
ative path is a path but it is intended to be applied
to a base position. The application of a relative
pathr; to a positionpg gives an actual path; de-
fined aspj+1 = pi +ri.

The graphical representations®® andH2 in figure 1
can be enlightened from this topological point of view.
In these diagrams, a vertex of the Cayley graph is pic-
tured as a polygonal cell and two neighbors share an
edge in this representation. FG2, each position (i.e.
cell) has 4 neighbors corresponding to tieeth and
east directions and their inverses. IH2, each cell
has six neighbors (following the three generators and
their inverses). The equatioh + Z = Y specifies that

a move followingY is the same has a move following
the X direction followed by a move following th2 di-
rection (or equivalently, the translations corresponding
to the relative path¥ andX,Z are the same).

The spaces that can be described by a finite presentation
areuniformin the sense that each position has the same

number of neighbors reachable by the set of elementary

moves. Spaces that can be described as GBF include:

e n-ary treesas the Cayley graph of a presentation
of afree groupwith n generators [Ser77];

e n-dimensional gridss the Cayley graph of a pre-
sentation of dree Abelian groupwith n genera-
tors;

e grids with circular dimensiorand screwed grids
corresponding té\belian groups

e archimedian partitions of the plarf€ha95].

5 A Generic Filter Language for Path
Patterns

In a rulep = f(B), the expressiof is a pattern used

to select a “part of a GBF”. We call the part that can
be matched and replacedsab-collection Our idea is

to specify this pattern asath patternthat matchen
some orderthe elements of the sub-collection. A path
is a sequence of elements and thus, a path pafatrn

is a sequence or a repetiti®epof basic filters Bfilt A
basic filter matches one element in a GBF. The grammar
of path patterns reflects this decomposition:

Pat = Rep| Rep Dir Pat| Patasid | (Paf)
Rep := Bfilt | id/ exp| Bfilt Dir+ | Bfilt Dir*
Bfilt = cte |id]| -| <undef>

Dir == , |Jug, ., U p>

wherecte is a literal valuejd ranges over the pattern
variables.expis a boolean expression, andis a com-
bination of generators. The following explanations give
a systematic interpretation for these patterns.

literal: aliteral valuecte matches an element with the
same value. For exampl&23matches an element
in a GBF with valuel23

ment with an undefined value, that is, an element
whose position does not belong to the support of
the GBF. The use of this basic filter is subject to
some restriction: it can occur only as the neighbor
of a defined element.

variable: a pattern variablea matches exactly one el-

ement with a well defined value. The varialde
can then occur elsewhere in the rest of the rule and
denotes the value of the matched element.

If the pattern variable is not used in the rest of
the rule, one can spare the effort of giving a fresh
name using the anonymous filtethat matches
any element with a defined value. The position
of ais accessible through the expressjuga).

neighbor: bdir pis a pattern that matches a path with
its first element matched dyand continuing as a
path matched by whitch first elemenpyg is such
thatpg is neighbor ob following thedir direction.
The specificationlir of a direction is interpreted as
follows:

— the comma;
neighbors;

— |u> means thapg must be ai-neighbor of

means thapy andb must be

— thedirectionu 1, ..., u > means thapg
must be alg-neighboror aus-neighboror ...
or aup-neighbor ofb.

For examplex,y matches two connected elements
(i.e.,x must be a neighbor of). The pattern

1 |east> _ |north east> 2

matches three elements. The first must have the
valuel and the third the valu2. The second is at
the east of the first and the last is at the nantlat

the east of the second.

guard: p/expmatches a path matched pyif boolean
expressiorexpevaluates to true. For instance,
y/ y>x matches two neighbor elementsandy
such thaty is greater tham.

repetition: patternb dirx matches a possibly empty
path b dir b dir...dir b. If the basic filterb is a
variable, then its value refers to the sequence of
matched elements and not to one of the individ-
ual values. The repetitiob dir+ is similar but
enforces a non-empty path. The pattatnis an
abbreviation for X ,+ ”.

naming: a sub-pattern can be named usingabeon-
struct. For example, in the expressigh x
[north>+ |, 3) as P, the variableP is binded to
the path matched by, x |north>+, 3

Elements matched by basic filters in a rule are distinct.
So amatched path is without self-intersection. The iden-
tifier of a pattern variable can be used only once in the
position of a filter. That s, the path pattetnis forbid-
den. However, this pattern can be rewritten for instance
as:x, y'y=x

Suppose that the pattefat as P is used to match a
path in a GBFG. The value of a pattern variabbe

used as a basic filter iRat denotes a value found i@.
The position of the matched value is denoteddmg x)
which is an ad-hoc syntactic construct and not the call
of a function pos The value of the pattern variable
P denotes the entire path matched Pgt. The value

of P is a GBF of the same type @ containing only
the matched elements. Thus, the constpayP) de-
notes a GBF with the same domainRsind such that

if (p,v) € P, then(p, p) € pogP). The elements i
have been matched following some order induced by
the pattern expressioRat. The construcseqP) can

be used to access to the sequence of the matched value

andseqpo$éP) to the sequence of the positions of the
matched elements.

6 Examples

We give immediately some examples of path patterns
and completdiGSprograms. The syntax and some spe-
cific features oMGSare sketched and explained through

these examples.

Sequences

The sequence is a predefined collection typ@scor-
responding to thdist algebraic data type iML How-
ever, we can specify as an exercise a similar collection
type using the following GBF declaration:

ghf L = < right >

This example shows also the difference between the
term rewriting approach of the algebraic data types and
the path rewriting approach developedM@S A value

of typeL can be built using an enumeration: expression

L = 1 |right> 2 |right> 3 |right> 4

creates a new GBF of tyde (the type is inferred from
the generators used in the enumeration) with vdlue
2, 3 and4. The valuel is at the positiorQ|right>

The value? is at the right of the valud and then is

at the positionl|right> The value4 is at position

3right> . We can picture this GBF by:

[1][2][3][4]

(the right direction extents to the horizontal right of the
page; there is an infinite number of undefined elements

that are not represented to the left of the elend
to the right of the eleme).

|right>

—

The main difference between &nand a value of the al-
gebraic data typést is that anL is a partial data struc-
ture. One can then define a list “with holes”:

L’ = 1]right> 2 |right> <undef> [right> 4
is pictured as:

[1]2] 4]

The<undef> keyword is used to specify that the corre-
sponding position must be left empty and an empty box
D is used in the picture (the empty boxes correspond-

ing to the infinite number of undefined elements at the
right and at the left are not represented).

Transformations can be used to program the usual func-
tions on lists. For the head functidmd that takes the
head of a list ilML, we can write:

hd = {
<undef> |right>

trans

}

The statementturn indicates that if the left hand side
?I.h.s) matches, then the argumentreturn must be
evaluated and returned as the global result of the entire
transformation (instead of inserting the result in the col-
lection and looking for others applications of the rule).
The pattern<undef> [right> x matches an elemeRrt
with an undefined neighbor at its left. Applied to a se-
quence without holes, there is only one such element
that can be matched. However, if the data structure has
holes, likel’, then every element at the right of an un-
defined element can match the rule. The result of the
application ofhd on such a structure is then one of these
elements chosen in a non-deterministic manner. That is,
hd(L’) returns eithet or 4.

X = return(X);

The code of thdast function is very simple to specify
because the last element in a sequence is “the element
without a right neighbor”:

trans last = {

X |right> <undef> = return(X);

The definition of themapfunction is also very simple
because it is enough to replace each valirethe GBF

by f(x):

trans mapf = { x = f(x); }

In this example, there is neturn statement in the right
hand side (r.h.s.) of the unique rule of the transforma-
tion. Then, the strategy for the transformation applica-
tion is to apply in parallel as many occurrences of the
rule as possible to the collection, provided that the sub-
collection matched by an occurrence does not intersect
a sub-collection matched by another occurrence. In this
case, it means that every elemanh the collection is
replaced byf (x).

We need a way to parameterize the transformation with
the functionf to be applied. This is easily done using
an additional argument:

trans mag f) = { x = f(X);

}

This transformation takes an additional argumérih
addition to the collection. The resuttapis a curryfied
function and

map (\x x+1) L'

computes the GBR|[3][|[5].

Thefold operator is written in the same way:

X
y VAIRS

X |north> y X |east> 'y X |-north> 'y X |-east> 'y

i X
0 00 008 0000

Xy _ |east>+

L HE HEE EEEE
o BEE BEEE

(- |east>+) |north> y Z |north> (_ |east>+) |north> y

Figure 3. Several patterns and the corresponding path shapes in G2. For example, filteg y matches four
possible configurations as indicated.

trans fold(op) = { the optional named parameters in the brackets are used
X |right> vy |right> <undef> to tune the application strategy of a transformation. The
= op(X,Y),<undef><undef>; iter parameter controls the iteration of a transforma-

tion [GMOLc]: fixpoint indicates the iteration of the
)) transformation until a fixed point is reacheftule
The transformatiorfold just replaces the last two ele- specifies the same behavior but the fixed point is de-
mentsx andy of the sequence bgp(x,y). Indeed, in tected when no rule applies; an integestands fom
a rulep = sexp where the expressicsexpcomputes a jterations; etc. The result of the previous expression is

built-in sequence of elements, the sequensis used to :
replacepoint-wisé the elements matched tpy In addi- (2 GBF of typel. with only one element).

tion, the comma operator in an expression Coesponds e consfunction used to add an elememin front of a
to the built-in sequence constructor. Thus, the comma sequencé can be defined as the transformation:
denotes ambiguously the neighborhood relationships in '

the L.h.s. of a rule and the building of a sequence in the trans conga) = {
r.h.s. (The two interpretations agree because two ele- <undef> |right> X = a X
ments in a built-in sequence are neighbors if they are }

arguments of the comma constructor).
This transformation works as follow: all the elements

Thus fold (\x,y. x+y) L' evaluates tg (the without a left neighbor gain a new elemenlocated at
element4 cannot be matched by the rule because it is their left. So, cons 9 L evaluates td9][1][2][9][4].
an isolated element). The expressifoid (\x,y. X*y) L

evaluates t91][2][12] To obtain the full reduction, the Path Patterns in a NEWS Grid
transformation must be iterated until a fixed point is

reached. This is provided in théGSlanguage using a

special syntax for the iteration: We assume working i2. Then, the pattern

fold[iter=fixpoint] (\XY. X*y) L X [north> vy

n] matches two elementsandy with y at the north of the

If the r.h.s. computes a GBE§;, then the GBF is elemeni. Using the convention used in the left diagram
inserted in place of the sub-collection matchedpbyf in figure 1, this filter can be represented as a vertical
the “borders” ofp andg agree, else it is an error. The domino. Figure 3 depicts several other filters3a. In
notion of “border” is induced by the neighborhood re- s figure, a bo@ indicates a matched element in a

lationship of the collection. This strategy agrees with sE which is not binded to a pattern variable
the standard behavior of a rule in term rewriting where '

atermis replaced by another term.

The substitution behavior sketched in the text coexists Finding One’s Way in a Labyrinth
gracefully with the standard one. Both are meaningful
because a pattern specifies both a path, i.e. a sequenceConsider a labyrinth represented as a GBF where the
of elements, and a sub-collection. In this paper, we use value 1 denotes the entry doors, the valReodes the
only the substitution strategy presented in the text where corridors and the valu@d the exit doors. Then finding
the r.h.s. evaluates to a sequence of elements. a path between the entry and the exit doors is simply

specified as:

this pattern matches a path beginning wiitand ending
with 3 after a sequence @ This path can be used in a
transformation

trans FindPath = {

(1,2%,3) as P = return(seqpos(P));

The statementturn indicates that the transformation

We assume that the boolean vatue is used to rep-
resent an occupied cell, other cells are simply left un-
defined. The special symbeiindef> is used to match

an undefined value. Then the previous rule can be read:
an occupied element and an undefined neighbor are
transformed into two occupied elements. The transfor-
mationEdendefines a function that can then be applied
to compute the evolution of some initial state. See the
first evolution steps in figure 4.

One of the advantages of tiM&GSapproach, is that this
transformation can be applied indifferently on grid or

must stop and return the argument value as soon as thishexagonal lattices, @nyother collection kind (this also
rule matches. The returned value is the sequence of the holds for the transformatioRindPatf).

positions of the patP matched by the |.h.s.

Rotation of the Cross

The transformatiofurnon the square lattic62 in sec-
tion 2 can be specified as:

trans Turn = {
aleast> b
[north - east> c
|-east - north> d
|east - north> e
= aebecd ;

}

The sequencecomputed in the r.h.s. of the rule is used
to replacepoint-wisethe elements matched by the |.h.s.
Then, the first elemerd of the sequencs replace the
element namea in the pattern. The second element,
which is e, replace the element namédetc. The net
result is a@90°-rotation of the cross matched in the l.h.s.
of the rule, leaving the centarunmodified.

The specification of the rotation is also straightforward
in H2:

trans Turnh = {
a|X> b
|z> ¢
[-x> d
[-Y> e
[-z> f
x> g
= agbcdef; }

Eden Growing Process

o
o
olalo|o|o]o

ololo|alo|o|a]o
ololo|olo]|o|alo
ololo|o|o]o]a
ololo|o|o]o
o

Figure 4. Eden’s model on a grid and on an hexago-
nal mesh (initial state, and states after 2 and 6 time
steps). Exactly the samé/GSransformation is used
for both cases. An empty cell has an undefined value
and only a part of the infinite domain is figured.

7 A Generic Pattern-Matching Algo-
rithm

We present in this section a simplified pattern-matching
algorithm for GBF path patterns. This algorithm is in-
spired from the approach taken by J. A. Brzozowski for
the computation of thelerivatives of regular expres-
sions[Brz64]. We recall in the next paragraph the notion
of derivative of a regular expression. Then we restrict
the language of pattern expression to its fundamental
core and we introduce the notations used before defin-
ing the derivative of a path pattern. This section ends by
a very simple but complete example of path computa-

We consider a simple model of growth sometimes called tjons.

the Eden model (a type B Eden model [YPQ58] to be

more precise). The model has been used since the 60's
as a model for things such as tumor growth and growth

of cities. In this model, a 2D space is partitioned into
empty and occupied cells (we use the vatue for an

occupied cell and left undefined the unoccupied cells).
We start with only one occupied cell. At each step, occu-
pied cells with an empty neighbor are selected, and the
corresponding empty cell is made occupied. The Eden’s
aggregation process is simply described as the following

MGSglobal transformation:

trans Eden = { x,<undef> = xtrue ; }

The Derivatives of a regular Expression

Let R be a regular expression ahg the language rec-
ognized byR. For any lettera € A the derivative ofR
with respect t@ is denoted byR/da and is

O0R

— = {msuch thaBme Lr}

oa
The idea of derivative with respect to a letter can be de-
fined generally for a sét but it turns out that the deriva-
tive of a regular expression can be defined by a regular

expression. For example,

da.(a+b)*
— < —t+
da

In words: ifamis a word recognized ba.(a+ b)* then
mis either empty or recognized ljg+ b)*. The deriva-
tive of a regular expressidr is another regular expres-
sion that can be derived using simple rule on the struc-
ture ofR. These symbolic rules formally mimic the clas-
sical rules of the derivation of real functions, hence the
name.

(a+b)*

The notion of derivative has been used in word recog-
nition because ifm = mymy...m,, thenm € LR iff
mp...my € 0R/0my. By iteration, the membership
problem is then reduced to the membership of the empty
word € to the language recognized by a regular expres-
sion.

The annulatofR] of a regular expression is defined by:

[R]:{ 0ifedLr

{e}lif e€Lr
and can also be computed by symbolic rules on the
structure ofR. This gives a canonical decomposition
of the words ofLg:

R
Lr=[R U Ua@%
acA

wherea®@ L = {amwhereme L}. Remark thaa@ 0 =
0 and thatla® {€} = {a}.

We want to adapt these ideas to our case: a path pat-
tern will play a role similar to a regular expression and
the GBF will correspond to the vocabulafy Several
differences have to be taken into account:

e The notion of derivative of a regular expression is
traditionally used to check if a word belongs to a
language defined by a regular expression. In our
case, we want to enumerate the paths matched by
a path pattern in a GBF.

e A path and a path pattern exhibit both a canoni-
cal order over their elements. However, there is
no such canonical order between the elements of a
GBF.

There is only one possible letter following another
letter in a word. There are several possible neigh-
bor of a given element in a GBF.

Path patterns include logical expressions involv-
ing the value of the matched elements through the
binding of some variables.

The Pattern Expressions

For the sake of the simplicity, we restrict the grammar
of path patterns to the following abstract syntax:

Pattern ::= Atom| Atom Dir Pattern
Atom := id/ exp]| Dir x
Dir = |ug, ., U p>

Notice that a literal patterote can be rewrittera/ a =
ctewherea is a fresh variable. A variable is system-
atically guarded but one can use the patt@ftrue if
there is no check to do. The neighborhood relati@an

be recovered as the directifiy,..., § n, - 1,

-g n> where theg; are the generators of the GBF type.
There is no naming in a repetition pattern to simplify
the handling of the variable bindings. The unnamed fil-
ter “_” in the previous syntax can be coded alsue
whereais a fresh variable and.“|u 1,..,.u p>*"inthe
old syntax is coded a 1,...,u p>* in the new syn-
tax.The non-empty repetition can be recovered using
* e.g.p dir +can be rewritten as

p dir dir *

using fresh variables where needed. The handling of the
naming of a sub-pattern presents no special difficulties
but would burden a lot the presentation. For the same
rer%son, we drop the handling of tkendef> basic fil-
ter.

For example, the path pattern

X (- |north>+) |east> y

in G2 can be rewritten in the new syntax:

(xftrue)
[north,east,-north,-east>
(ultrue)

[north>

(Jnorth>*)

|east>

(yftrue)

Notations

We use brackets to enumerate the elements in a set and
for set comprehension. The symbls for the empty
set. The expressioB— e denotes the se without the
elemene. [] is the empty list/@¢’ is the concatenation
of lists £ and ¢’. The distribution e® S of an expres-
sion e over the elements of a s&of lists is defined
by {[g@I,l € S}. An environmentis a partial func-
tion defined for a set of identifielig, ...,in with values
Vi,...,Vn, and elsewhere undefine& ranges over the
environments; the@ugmentationof an environment&
with identifierin 1 and values, 1 is a new environment
E' =E+[int1 — Vnta], such tha€’(in 1) = Vny1 and
VK ik 7é iﬂ+17 E/(Ik) = E(Ik)

2The handling okundef> is complicated and would
burden a lot our exposition. We sketch two examples to
show the difficulties. A rule likecundef> =1 is for-
bidden inMGSbecause it implies the replacement of all
undefined elements by laand there is possibly an in-
finite number of such elements. Other example: in the
processing of a rule likeundef>, x=-1, x we cannot
start by looking for an undefined element (because there
could be an infinite number of such elements) but rather
we have to look for a defined elementhat has an un-
defined neighbor.

odirx

Tp(G’E’o) = {H} 1)
oP . .
a—p(G,E,(i)) = 0 provided thaP = dir * 2
did/ expr . .
T(G,E,I’I) = if eval(E+[id — p],G,expn) then {[p]} else 0 (3)
agl: (GEN) = {[}uU 0 (|d/truea pdlr dirs) (G,E,M) whereid is a fresh variablé4)
9id/ expr dir F e;';rd” PGEN) = 1letE—E+fd—p and M=M—p)
in if eval(E’,G,expn
then p® < U g(e, E’,I'I/)>
p'Eneighbor (M, dir, p) P
else 0
adirx dir’ P P - .
T(G,E,ﬂ) = U —,(G,E,H)) whereid is a fresh variable (6)

o (id/true

p €neighbor(M,dir’, p)
dir dir* dir’ P)

ap

(G,E, M)

Figure 5. Specification of the derivatives of a path pattern. We suppose thdl # 0 in the equations.

Derivativesof a Path Pattern

A pattern-matching expression is an elemeriattern
Thederivativeof a pattern-matching expressiénwith
respect to a positiop, given a set of pairs(position,
value)(i.e., a GBF), an environmeftand a set of avail-
able positions1 is written

oP

ap GEMN
and representthe set of paths in a GBE starting at
positionp and matched by the path patteP The envi-
ronmentE is an additional argument used to record the
variable bindings used in the evaluation of guards in a
pattern. The result dP/0 p(G,E, M) is a set of listy
of positions. Such a list records the sequence of the
elements of the GBF that match the path pattrn

Let € be the empty environment, addm(G) the set of

positions which have a value G then all the occur-

rences of a path pattefhin a GBFG are computed by:
U oP

7(G,8,dOIT(G)) (7)
pedom(G)

The derivatives of a path pattern is a 5-ary function
0-/0-(-,-,-) defined by induction on the path pattePn
and the GBFG. The specification is given in figure 5
and use two additional functioneval(E,C,expr) is a

predicate that holds when the expresséamprevaluates
to the boolean true value in the environmé&ntvith re-
spect toG; neighbor(M1,dir, p) is a function that com-
putes, given a set of positiofit and a list of directions
, the neighbor positions of a positignin M:

n>7p)
={p+ui|1<i<nandp+ui €N}

neighbor(M,|u 1, .., U

The equations in figure 5 can be intuitively explained as
follow:

1. There is only one empty path in an empty GBF.
2. There is no non-empty path in an empty GBF.

3. A path reduced to only one element matches an
element at positiomp if the conditionexpris met.
In this case, there is only one possible path with
only one element at positiop. If the condition is
not met, there is no singleton path startingat

4. A path specified bylirx starting at positiorp is
either empty or begins with the value at position
and continues following the directiadir as a path
specified bydirx.

5. The paths starting at positigrand beginning with
an elementd satisfying conditionexp and then
following directiondir to continue as a path can
exist only if the condition is satisfied. This con-
dition is checked byeval(E’,G,expn using the

augmented environme&t: E’ contains the previ-
ous bindings together with the binding iof with
the positionp.

If the condition is satisfied, then such a path can
be obtained by computing the paths starting from
a dir-neighborp’ of p and matching? and then
adding the positiom in front of these paths thanks
to the® operator.

. The last rule decomposes into two sets the paths
starting at positiorp beginning with a repetition
dirx and continuing following directiomlir’ by a
path matched byp.

The first set corresponds to an empty repetition.
So, we want to match the paths specified by
starting from adir’-neighbor ofP.

The second set corresponds to a non empty-
repetition and we just unfold the repetition one
time.

Example of Derivative Computation

To make these definitions more concrete, we compute
the path matching the pattern “1 |north> X". This
pattern is first transformed into

P = ultrue
[north,east,-north,-east>
Q

Q= V1
[north>
xltrue

(for convenience, we introduce a meta-varialeto
name a sub-pattern). We look for some paths in the GBF
G of type G2

which is represented as the set of pagsgtion, valug.
To spare the notation, we write a coutee) for a po-
sition “njnorth> + eleast> ”

G= { ((070)71)7 ((071)70)7 ((150)2) }

We have arbitrarily fixed the valud at position
(0,0). There is only one path matchinB in G:
[(0,1);(0,0); (1,0)]. Indeed(0,0) is a neighbor of0, 1)
and its value isl. Moreover, at north of0,0), i.e. at
position(1,0), there is a value.

[=][~]

The domain ofG is calledIT :

N =domG) = {(0,0), (0.1), (1,0)}
All the paths matched bl are computed using the def-
inition (7):

P
W(G,s,ﬂ) U

P
3(0,1)

oP
a(1,0)

(G,e,M U

(Ge,1T) (8)

Then we have:

P
0(0,0)

(GeM=(0.0®
pe{(10).(0.0)

0Q /
}W(G [UH(0,0)LH)

where’ = {(0,1),(1,0)}. The union is composed of
two terms. The first one evaluatesfio

0Q N axitrue
peo
where the union is made on an empty set of indexes, so:
0 n_ B
9Q N
The second termm(a [u— (0,0)],N") gives a
similar result and then:

P
3(0,0)

(G,e,M) = (0,0)®0=0

. . P
This result is also true f 10 (G,e,).

There is a difference in the computation of:

oP

30.1) (G,e,M) =

U $2@u— 0.

pe{(0,0)}
where” = {(0,0),(1,0)}. The union term does not
reduce to the empty set:

0,1)®

aQ " o__
0(0,0) (G7 [u—>(0,1)],|'|)_
0 xltrue "
(0,0)® 3(L0) (G,[u— (0,1),v— (0,0)],N")
whereM” =N" — (0,0) = {(1,0)}. Because
dxltrue my
we have then that
® = ©Oy2(00a{(Lo]})

{1(0,1);(0,0);(1,0)]}

which is what was expected.

8 Conclusions

The array data structure is not smoothly handled in func-
tional languages because it cannot be described convinc-
ingly as instances of an algebraic data type. Therefore,
there are no means to specify by cases a function on an
array. This annoying situation is summarized by Wadge:
“We spent a great deal of efforts trying to find a simple
algebra of arrays (...) with little success” [WA85].

In this work, we have presented a framework, the group-
based data fields, that allows a uniform description of

trees and arrays in the same framework [GM01a]. The Acknowledgments

GBF approach puts the emphasis on the logical neigh-

borhood of the data structure elements [GM02a]. This The authors would like to thanks the members of
topological point of view allows the definition of path the “Simulation and Epigenesis” group at Genopole
patterns used to match a sub-collection in an array or for stimulating discussions and biological motivations.
a tree. A first algorithm to enumerate all the paths They are also grateful to P. Prusinkiewicz and F. De-
matched by a pattern is given, inspired by the notion of laplace for numerous questions, encouragements and

derivative developed for the recognition of regular ex-

thoughtful remarks. This research is supported in part

pressions on sequences. This algorithm has been ex-by the CNRS, the GDR ALP and IMPG, the University
tended to handle a more complete pattern language andof Evry and GENOPOLE-Evry.

is used in the current version of t&Snterpreter (see
the web home pagaéttp:/mgs.lami.univ-evry).

This interpreter handles the examples proposed in sec-9 References

tion 6 as well as more intricate ones like:

x (y+ 1 x> Sun@) [Bak78]

that looks for a path beginning with arthat is greater
than the sum of the rest of the matched elements (the
function Sumis an auxiliary function that computes the
sum of all elements in an collection of numbers). A re-
markable feature is that the same algorithm sketched
here is used to find the occurrences of a pattern in a [Bir77]
set, a multiset, a sequence or a GBF. We think that this
demonstrates the usefulness and the unifying nature of

our topological framework.

[BB92]

[BM86]
Several other examples of the programming style al-
lowed byMGSules on GBF are developed in [GGMP02]
in the context of biological simulations. Many mathe-
matical models of objects and processes are based ON[Brz64]
a notion of state that specifies the object or the process
by assigning some data to each point of a physical or
abstract space. The goal BfGSis to support this ap-
proach by offering several mechanisms to build complex [Cha95]
and evolving spaces and handling the mappings between
these spaces and the data in a functional framework. In
this context, GBF are used to model the uniform and
regular discretization of spaces. [CiCL91]
Pattern matching in arrays has been considered in the
functional languages community from [Bir77, Bak78]
and more recently in [Jeu92] but the problem is then
restricted to determine an occurrence of a rectangular
sub-array. For example, i is ap x q rectangular two-
dimensional array (a pattern of literals), a@ds an x m
array, the problem handled is to find a péirj) such
that for allk andl such thatl <k < pand1<I| <q, we
haveG[i — p+k, j —q+1] =Pk1].

Compared to these previous works, our algorithm is

more general in two directions: it handles group-

indexed data structures and it allows a more expressive [GG95]
pattern language. Obviously, there is a large room for
optimizations. For instance, we do not compute all paths
before applying a rule but we stop the search as soon as
one matching path has been found. By specifying an
order over the unions appearing in the definition of the
derivative Fig. 5, we can parameterize a strategy for the
enumeration of paths. We are currently developing a
pattern compiler foMGSbased on pattern transforma-
tions.

[GMO014a]

[GDVS98]

[GGMPO02]

Theodore P. Baker. A technique for extend-
ing rapid exact-match string matching to
arrays of more than one dimensio8IAM

J. Comput,. 7(4):533-541, 1978.

Geérard Berry and @rard Boudol. The
chemical abstract machine.Theoretical
Computer Scienc®6:217-248, 1992.

R. S. Bird. Two dimensional pattern
matching. Information Processing Letters
6(5):168-170, October 1977.

J. P. Baidtre and Daniel Le Mtayer. A new
computational model and its discipline of
programming. Technical Report RR-0566,
Inria, 1986.

Janusz A. Brzozowski. Derivatives of reg-
ular expressions.JACM, 11(4):481-494,
1964.

Thomas Chaboud. About planar cayley
graphs. InFundamentals of Computation
Theory (FCT '95) volume 965 ofLNCS
pages 137-142, 1995.

Marina Chen, Young il Choo, and Jingke
Li. Crystal: Theory and Pragmatics of
Generating Efficient Parallel Code. In
Boleslaw K. Szymanski, editorParal-

lel Functional Languages and Compilers
Frontier Series, chapter 7, pages 255-308.
ACM Press, New York, 1991.

J.-L. Giavitto, D. De Vito, and J.-P. San-
sonnet. A data parallel Java client-server
architecture for data field computations
overZ". In EuroPar'98 Parallel Process-
ing, volume 1470 oLNCS pages 742-??,
September 1998.

D. Gautier and C. Germain. A static ap-
proach for compiling communications in
parallel scientific programsScientific Pro-
gramming 4:291-305, 1995.

J.-L. Giavitto, C. Godin, O. Michel, and
P. Prusinkiewicz. Biological Modeling in
the Genomic Contexchapter “Computa-
tional Models for Integrative and Develop-
mental Biology”. Hermes, July 2002. (to
appear).

J.-L. Giavitto and O. Michel. Declara-
tive definition of group indexed data struc-

[GMO1b]

[GMO1c]

[GM02a]

[GMO02b]

[GMS96]

[Jeu9?2]

[KMW67]

[Lis96]

[Man01]

[Pau99]

[RS92]

[Ser77]

tures and approximation of their domains.
In Proceedings of the 3nd Imternational
ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming
(PPDP-01) ACM Press, September 2001.

J.-L. Giavitto and O. Michel.MGS a pro-
gramming language for the transformations
of topological collections. Technical Re-
port 61-2001, LaMI — Universit d’Evry
Val d’Essonne, May 2001.

J.-L. Giavitto and O. Michel. MGS: a rule-
based programming language for complex
objects and collections. In Mark van den
Brand and Rakesh Verma, editoiS|ec-
tronic Notes in Theoretical Computer Sci-
ence volume 59. Elsevier Science Publish-
ers, 2001.

J.-L. Giavitto and O. Michel. The topo-
logical structures of membrane comput-
ing. Fundamenta Informaticae49:107—
129, 2002.

J.-L. Giavitto and O. Michel. Data
Structure as Topological Spaces. In
3th Int. Conf. on Unconventional Mod-
els of ComputationFundamenta Informat-
icae Himeji, Japan. To be published in the
LNCS serie. Spinger, 2002.

J.-L. Giavitto, O. Michel, and J. Sanson-
net. Group-based fields. Parallel Sym-
bolic Languages and Systems (Int. Work-
shop PSLS’95)volume LNCS 1068, pages
209-215. Springer, 1996.

J. Jeuring. The derivation of a hierarchy of
algorithms for pattern matching on arrays.
In G. Hains and L. M. R. Mullin, editors,
Proceedings ATABLE-92, Second interna-
tional workshop on array structure4992.

[VN66]

[WA8S]

[YC92]

[YPQ58]

Richard M. Karp, Raymond E. Miller, and
Shmuel Winograd. The organization of
computations for uniform recurrence equa-
tions. Journal of the ACM14(3):563-590,
July 1967.

B. Lisper. Data parallelism and functional
programming. InProc. ParaDigme Spring
School on Data Parallelism Springer-

Verlag, March 1996. Les Khuires,

France.

Vincenzo Manca. Logical string rewriting.
Theoretical Computer Scienc264(1):25—
51, August 2001.

G. Paun. Computing with membranes:
An introduction. Bulletin of the European
Association for Theoretical Computer Sci-
ence 67:139-152, February 1999.

G. Rozenberg and A. Salomad.inden-
mayer SystemsSpringer, Berlin, 1992.

J.-P. Serre. Arbres, AmalgamesSLy.
Number 46 in Adtrisque. Soéte
Mathematique de France, 1977.

J. Von Neumann. Theory of Self-
Reproducing Automata Univ. of lllinois
Press, 1966.

W. W. Wadge and E. A. Ashcroft. Lu-
cid, the Data flow programming language
Academic Press U. K., 1985.

J. Allan Yang and Young-il Choo. Data
fields as parallel programs. IRroceed-
ings of the Second International Workshop
on Array Structure Montreal, Canada,
June/July 1992.

Hubert P. Yockey, Robert P. Platzman, and
Henry Quastler, editorsSymposium on In-
formation Theory in Biology Pergamon
Press, New York, London, 1958.

