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Abstract

In this paper, we present a new framework for the defi-
nition of various data structures (including trees and ar-
rays) together with a generic language of filters enabling
a rule-based programming style for functions. This
framework is implemented in an experimental language
calledMGS. The underlying notions funding our frame-
work have a topological nature and enable to extend
the case-based definition of functions found in modern
functional languages beyond algebraic data structures.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Con-
structs and Features; E.1 [Data Structures]; F.1.1
[Theory of Computation]: Models of Computa-
tions; F.4.2 [Formal Languages]: Grammar and Other
Rewriting Systems
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1 Introduction

One of the achievements and successes of the current
functional languages is the ability to define functions by
cases using filters and pattern-matching. However, this
possibility is restricted to pattern-matching of algebraic
data types, which is now well understood. An example
of data structure beyond the current capability is for ex-
ample thearray data type: it is not possible to define a
function by cases on arrays.

In this paper, we present a new framework for the def-
inition of various data structures, including trees and
arrays, together with a generic language of filters en-
abling a rule-based programming style for functions.
This framework is implemented in an experimental lan-
guage calledMGS.

The underlying notions funding our framework have
a topological nature and unify several programming
paradigm like Gamma [BM86] and the CHAM [BB92],
Lindenmayer systems [RS92], Paun systems [Pau99]

and cellular automata [VN66]. Gamma, CHAM and
Paun systems are based on multiset rewriting and Lin-
denmayer systems on string rewriting. These kind
of data structures are qualified asmonoidal [Man01,
GM01b] and their rewriting theories are now mastered.
In this paper, we focus on non-monoidal data structures
and especially array-like data structures for which there
is no clear agreement on a rule-based rewriting mecha-
nism.

The rest of this paper is organized as follows. The next
section introduces a motivating example. Section 3 de-
tails the notion of group indexed data structure or GBF
(for group-based data fields). Such structures generalize
the notion of array. We give a geometric interpretation
of GBF in section 4. This interpretation underlies the
design of a generic pattern language described in sec-
tion 5. Some examples are worked out in section 6.
The corresponding pattern-matching algorithm is devel-
oped section 7, before reviewing some related and future
works.

2 A Motivating Example

This example is loosely inspired from lattice gas au-
tomata. In these kinds of cellular automata, rules of the
form β ⇒ f (β) are used to specify the local evolution
of a set of particles distributed on a regular subdivision
of the plan. The expressionβ is a pattern that matches
a configuration (typically two particles in two neighbor
cells that would collide at the next time step) andf (β)
is used to specify the evolution of the particles.

In our arbitrary example, we want to specify the90◦-
rotation of a cross in a square lattice (see the two dia-
grams on the left side of figure 1). An array-like data
structure can be used to record the lattice state and the
rule β⇒ f (β) is used to specify the rotation of a single
cross. Notice that in this case, the patternβ does not fil-
ter a sub-array but an arbitrary subset (a cross). This rule
must be applied to each occurrence of a cross in the data
structure. The result is an array function, called here a
transformation. We write:

trans Turn = { β ⇒ f (β); }
The transformationTurn is defined by cases (here there
is only one case corresponding to the single rule in the
transformationTurn). The caseβ specifies a sub-domain
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Figure 1. Application of the transformation Turn to an array on the left or to an hexagonal subdivision on the
right. In contrast with cellular automata, the evolution concerns a multi-cell domain.

which is replaced byf (β). However, unlike case-based
function definitions acting on algebraic data types, the
cases do not correspond to constructors nor exhaust the
data structure.

A transformation is a function taking acollection as
argument. A collection is an organized set of ele-
ments. TheMGSlanguage handles several kinds of col-
lections including sets, bags, sequences and array-like
data structures called GBF. A square lattice, as pictured
on the left of figure 1 is a special case of GBF.

It is usual for physicists to work with an hexagonal lat-
tice, because such a tiling of the plane respect more
symmetries in the expression of fundamental physical
laws than a square lattice. We can transpose our trans-
formation in such a tiling, cf. the two diagrams on the
right of figure 1. In this case, the patternβ involves a 7
cells sub-domain.

To turn the description of the transformationTurn into a
real program, one must dispose of some new constructs
in a language in order to

1. define the type of a data structure representing a
2D array (or better, some generalization like an
hexagonal tiling),

2. define a patternβ that matches an arbitrary sub-
domain in an array,

3. specify a function using rules likeβ ⇒ f (β) that
specify the substitution of non-intersecting occur-
rences of subdomains matched byβ by a replace-
ment computed byf (β).

Such devices are available inMGS, an experimental
declarative language. One of the objectives of theMGS
project is to investigate the use of a rule-based approach
for the simulation of dynamical systems (this explains
the choice of our examples). In [GM01c] we have
shown howMGSunifies multiset and string based rewrit-
ing paradigms. In this paper, we extend further this uni-
fication towards array-like data structure. In section 3
we show how to describe such data structures. The prob-
lem of specifying a patternβ in this kind of data struc-
ture is examined in section 4 and 5.

3 Group Indexed Data Structures

In this section, we introduce the concept of GBF which
generalizes the concept of array. These data structures

admit a geometrical interpretation which is the basis of
the language of filters presented in section 5. As a mat-
ter of fact, a collection type always admit a topological
interpretation in terms of neighborhood (cf. [GM02a,
GM02b]) and the notions introduced in section 5 are
uniformly applicable to all collection types.

An n×m arrayA associates a well defined value to an
index (i, j) for 1≤ i ≤ n and1≤ j ≤ m. Thus, an ar-
ray can be seen abstractly as atotal functionfrom the
set of indexesI = [1,n]× [1,m] to some set of values.
Thedata field approachextends this notion by consider-
ing the arrayA as apartial function with a finite support
from a larger set of indexesI = Z×Z (the supportof
a partial function is the subset of its domain for which
the function takes a well defined value). This enables
the representation of “arrays with holes”, “triangular ar-
rays”, etc. The notion of data field appears in the devel-
opment of recurrence equations and goes back at least to
[KMW67]. The term itself seems to appear for the first
time in [YC92, CiCL91] and its investigation in a func-
tional and data parallel context has been mainly made
by Lisper [Lis96] (see also [GDVS98]).

Our starting point to extend further the notion of data
field, is the remark that the set of indexesI is pro-
vided with some operations. The standard example of
index algebra is integer tuples with linear mappings.
For instance, more than99% of array references are
affine functions of array indexes in scientific programs
[GG95]. As a consequence, we have proposed to pro-
vide the set of indexes with agroup structure[GMS96].
Such a data structure, a partial function with a finite sup-
port from a group to a set of values, is called aGBF
for group-based data field. The basic example is the
data fields themselves, where the group of indexes is
the group(Zn,+). The advantage of providing the set
of indexes with a group structure and several examples
of GBF are detailed in [GM01a].

GBF are introduced in theMGSlanguage using a type
declaration specifying the underlying group of indexes.
The definition of the group is given using a finite pre-
sentation listing a set of generatorsgi for the group and
a set of equationsek = e′k where theek are formal sums
of thegi :

gbf G = < g1, ..., gn;
e1 = e′1, ..., ep = e′p >

A formal sum of the generators is simply a linear com-



b+b+a−a−b−b

w=a+b+a

a−b−a+b

P

Q
w+a+a

b
a

bb0

a

a

0

Figure 2. Graphical representation of the relationships between Cayley graphs and group theory. A vertex is
a group element. An edge labeleda is a generatora of the group. A word (a formal sum of generators and of
inverses of generators) is a path. Path composition corresponds to group addition. A closed path (a cycle) is a
word equal to 0 (the identity of the group operation). An equation v = w can be rewritten v−w = 0 and then
corresponds to a cycle in the graph. There are two kinds of cycles in the graph: the cycles that are present in all
Cayley graphs and corresponding to group laws (intuitively: a backtracking path likeb+a−a−b) and closed
paths specific to the own group equations (e.g.:a−b−a+ b for Abelian groups). The graph connectivity, i.e.
there is always a path going fromP to Q, is equivalent to say that there is always a solution to the equation
P+x = Q.

bination as for example:

3g1 + 2g3 - (5 g4 + g5)

We use the following typographical conventions: ifG is
a GBF, we writeG (a finite group presentation) for its
type andG (the group of indexes ofG) for its domain.
Beware that a group admits various presentations, so a
GBF type contains more information than just the group
structure. The set of values of a GBFG is not mentioned
in the type declaration forG becauseMGSis a dynami-
cally typed language and heterogeneous values can be
recorded in a GBF.

In this paper we deal only with Abelian groups and we
use an additive notation for the group operation. By
convention a finite presentation starting with “<” and
ending with “>” introduces an Abelian group, that is:
the set of equations is completed implicitly with the
equations specifying the commutation of the generators
gi +g j = g j +gi .

Examples of GBF Types

The two examples of figure 1 correspond to the two GBF
types:

gbf G2 = < north, east >
gbf H2 = < X, Y, Z; X+Z = Y >

The typeH2 defines an hexagonal lattice that tiles the
plane. This geometrical interpretation of the presenta-
tion relies on the notion ofCayley graph.

4 Group of Indexes and Topological
Representation

A Cayley graph is a graph representation of the presen-
tationG of a groupG : each vertex in the Cayley graph is
an element of the groupG and vertexx andy are linked
if there is a generatoru in the presentationG such that
x+u = y. See figure 2. This representation supports the
following topological interpretationof a GBF:

• The group of indexesG of a GBF typeG is the set
of positionsof a discrete space.

• A GBF G associates a value to some positions. As
a partial function with finite support,G can be seen
as a finite set of pairs (position, value). An element
a of G, writtena∈G, is such a pair and we use the
sentences “position ofa” and “value ofa” to speak
about the first and the second elements of this pair.

• A generatorg of the group presentationG is also
anelementary translation(we use equivalently the
wordsmove, shift or direction) from a positionp
to a positionp+g.

• More generally, an elementx∈G can be seen both
as a position and as a translation (technically, we
consider the left-action ofG on itself).

• The set of elementary translations provide aneigh-
borhood relationshipto the set of positions:y is
g-neighbor ofx iff x+g = y. Two elementsu and
v are said neighbors, and we write “u,v” if there is
a generatorg such thatu is ag-neighbor ofv or v
is ag-neighbor ofu.

• A pathis a sequence of positionsui . It starts at the
positionu0 and ends at the positionun. Usuallyui



andui+1 are neighbors, but we do not enforce this
constraint. Paths can be translated by a translation
t simply by addingt to eachui .

• A relative pathis a sequencer i of positions. A rel-
ative path is a path but it is intended to be applied
to a base position. The application of a relative
pathr i to a positionp0 gives an actual pathpi de-
fined aspi+1 = pi + r i .

The graphical representations ofG2 andH2 in figure 1
can be enlightened from this topological point of view.
In these diagrams, a vertex of the Cayley graph is pic-
tured as a polygonal cell and two neighbors share an
edge in this representation. ForG2, each position (i.e.
cell) has 4 neighbors corresponding to thenorth and
east directions and their inverses. InH2, each cell
has six neighbors (following the three generators and
their inverses). The equationX + Z = Y specifies that
a move followingY is the same has a move following
the X direction followed by a move following theZ di-
rection (or equivalently, the translations corresponding
to the relative pathsY andX,Z are the same).

The spaces that can be described by a finite presentation
areuniform in the sense that each position has the same
number of neighbors reachable by the set of elementary
moves. Spaces that can be described as GBF include:

• n-ary treesas the Cayley graph of a presentation
of a free groupwith n generators [Ser77];

• n-dimensional gridsas the Cayley graph of a pre-
sentation of afree Abelian groupwith n genera-
tors;

• grids with circular dimensionand screwed grids
corresponding toAbelian groups;

• archimedian partitions of the plane[Cha95].

5 A Generic Filter Language for Path
Patterns

In a ruleβ ⇒ f (β), the expressionβ is a pattern used
to select a “part of a GBF”. We call the part that can
be matched and replaced asub-collection. Our idea is
to specify this pattern as apath patternthat matchesin
some orderthe elements of the sub-collection. A path
is a sequence of elements and thus, a path patternPat
is a sequence or a repetitionRepof basic filters Bfilt. A
basic filter matches one element in a GBF. The grammar
of path patterns reflects this decomposition:

Pat ::= Rep| Rep Dir Pat| Patas id | ( Pat)

Rep ::= Bfilt | id/ exp | Bfilt Dir + | Bfilt Dir *

Bfilt ::= cte | id | | <undef>

Dir ::= , | |u 1, ..., u n>

wherecte is a literal value,id ranges over the pattern
variables,expis a boolean expression, andui is a com-
bination of generators. The following explanations give
a systematic interpretation for these patterns.

literal: a literal valuecte matches an element with the
same value. For example,123matches an element
in a GBF with value123.

empty element: the symbol<undef> matches an ele-
ment with an undefined value, that is, an element
whose position does not belong to the support of
the GBF. The use of this basic filter is subject to
some restriction: it can occur only as the neighbor
of a defined element.

variable: a pattern variablea matches exactly one el-
ement with a well defined value. The variablea
can then occur elsewhere in the rest of the rule and
denotes the value of the matched element.

If the pattern variablea is not used in the rest of
the rule, one can spare the effort of giving a fresh
name using the anonymous filterthat matches
any element with a defined value. The position
of a is accessible through the expressionpos(a).

neighbor: b dir p is a pattern that matches a path with
its first element matched byb and continuing as a
path matched byp whitch first elementp0 is such
thatp0 is neighbor ofb following thedir direction.
The specificationdir of a direction is interpreted as
follows:

— the comma “, ” means thatp0 andb must be
neighbors;

— |u> means thatp0 must be au-neighbor of
b;

— the direction|u 1, ..., u n> means thatp0
must be au0-neighboror au1-neighboror ...
or a un-neighbor ofb.

For example,x,y matches two connected elements
(i.e.,x must be a neighbor ofy). The pattern

1 |east> |north ,east> 2

matches three elements. The first must have the
value1 and the third the value2. The second is at
the east of the first and the last is at the northor at
the east of the second.

guard: p/expmatches a path matched byp if boolean
expressionexpevaluates to true. For instance,x,
y / y> x matches two neighbor elementsx and y
such thaty is greater thanx.

repetition: patternb dir∗ matches a possibly empty
path b dir b dir...dir b. If the basic filterb is a
variable, then its value refers to the sequence of
matched elements and not to one of the individ-
ual values. The repetitionb dir+ is similar but
enforces a non-empty path. The patternx+ is an
abbreviation for “x ,+ ”.

naming: a sub-pattern can be named using theas con-
struct. For example, in the expression(1, x
|north>+ , 3) as P , the variableP is binded to
the path matched by1, x |north>+, 3 .

Elements matched by basic filters in a rule are distinct.
So a matched path is without self-intersection. The iden-
tifier of a pattern variable can be used only once in the
position of a filter. That is, the path patternx, x is forbid-
den. However, this pattern can be rewritten for instance
as:x, y/ y = x.

Suppose that the patternPat as P is used to match a
path in a GBFG. The value of a pattern variablex



used as a basic filter inPat denotes a value found inG.
The position of the matched value is denoted bypos(x)
which is an ad-hoc syntactic construct and not the call
of a function pos. The value of the pattern variable
P denotes the entire path matched byPat. The value
of P is a GBF of the same type ofG containing only
the matched elements. Thus, the constructpos(P) de-
notes a GBF with the same domain asP and such that
if (p,v) ∈ P, then(p, p) ∈ pos(P). The elements inP
have been matched following some order induced by
the pattern expressionPat. The constructseq(P) can
be used to access to the sequence of the matched values
andseqpos(P) to the sequence of the positions of the
matched elements.

6 Examples

We give immediately some examples of path patterns
and completeMGSprograms. The syntax and some spe-
cific features ofMGSare sketched and explained through
these examples.

Sequences

The sequence is a predefined collection type inMGScor-
responding to thelist algebraic data type inML. How-
ever, we can specify as an exercise a similar collection
type using the following GBF declaration:

gbf L = < right >

This example shows also the difference between the
term rewriting approach of the algebraic data types and
the path rewriting approach developed inMGS. A value
of typeL can be built using an enumeration: expression

L = 1 |right> 2 |right> 3 |right> 4

creates a new GBF of typeL (the type is inferred from
the generators used in the enumeration) with value1,
2, 3 and 4. The value1 is at the position0|right> .
The value2 is at the right of the value1 and then is
at the position1|right> . The value4 is at position
3|right> . We can picture this GBF by:

1 2 3 4 |right> −→
(the right direction extents to the horizontal right of the
page; there is an infinite number of undefined elements
that are not represented to the left of the element1 and

to the right of the element4 ).

The main difference between anL and a value of the al-
gebraic data typelist is that anL is a partial data struc-
ture. One can then define a list “with holes”:

L′ = 1 |right> 2 |right> <undef> |right> 4

is pictured as:

1 2 4

The<undef> keyword is used to specify that the corre-
sponding position must be left empty and an empty box

is used in the picture (the empty boxes correspond-

ing to the infinite number of undefined elements at the
right and at the left are not represented).

Transformations can be used to program the usual func-
tions on lists. For the head functionhd that takes the
head of a list inML, we can write:

trans hd = {
<undef> |right> x ⇒ return( x);

}
The statementreturn indicates that if the left hand side
(l.h.s) matches, then the argument ofreturn must be
evaluated and returned as the global result of the entire
transformation (instead of inserting the result in the col-
lection and looking for others applications of the rule).
The pattern<undef> |right> x matches an elementx
with an undefined neighbor at its left. Applied to a se-
quence without holes, there is only one such elementx
that can be matched. However, if the data structure has
holes, likeL′, then every element at the right of an un-
defined element can match the rule. The result of the
application ofhdon such a structure is then one of these
elements chosen in a non-deterministic manner. That is,
hd( L′) returns either1 or 4.

The code of thelast function is very simple to specify
because the last element in a sequence is “the element
without a right neighbor”:

trans last = {
x |right> <undef> ⇒ return( x);

}
The definition of themap function is also very simple
because it is enough to replace each valuex in the GBF
by f (x):

trans mapf = { x ⇒ f ( x); }
In this example, there is noreturn statement in the right
hand side (r.h.s.) of the unique rule of the transforma-
tion. Then, the strategy for the transformation applica-
tion is to apply in parallel as many occurrences of the
rule as possible to the collection, provided that the sub-
collection matched by an occurrence does not intersect
a sub-collection matched by another occurrence. In this
case, it means that every elementx in the collection is
replaced byf (x).

We need a way to parameterize the transformation with
the function f to be applied. This is easily done using
an additional argument:

trans map( f ) = { x ⇒ f ( x); }
This transformation takes an additional argumentf in
addition to the collection. The resultmapis a curryfied
function and

map (\x. x+1) L′

computes the GBF2 3 5 .

Thefold operator is written in the same way:
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trans fold( op) = {
x |right> y |right> <undef>
⇒ op( x,y),<undef>,<undef>;

}
The transformationfold just replaces the last two ele-
mentsx andy of the sequence byop(x,y). Indeed, in
a rulep⇒ sexp, where the expressionsexpcomputes a
built-in sequencesof elements, the sequences is used to
replacepoint-wise1 the elements matched byp. In addi-
tion, the comma operator in an expression corresponds
to the built-in sequence constructor. Thus, the comma
denotes ambiguously the neighborhood relationships in
the l.h.s. of a rule and the building of a sequence in the
r.h.s. (The two interpretations agree because two ele-
ments in a built-in sequence are neighbors if they are
arguments of the comma constructor).

Thus fold ( \x,y. x+y) L′ evaluates to3 4 (the
element4 cannot be matched by the rule because it is
an isolated element). The expressionfold ( \x,y. x* y) L
evaluates to1 2 12 . To obtain the full reduction, the
transformation must be iterated until a fixed point is
reached. This is provided in theMGSlanguage using a
special syntax for the iteration:

fold[iter=fixpoint] ( \x,y. x* y) L

1If the r.h.s. computes a GBFg, then the GBF is
inserted in place of the sub-collection matched byp if
the “borders” ofp andg agree, else it is an error. The
notion of “border” is induced by the neighborhood re-
lationship of the collection. This strategy agrees with
the standard behavior of a rule in term rewriting where
a term is replaced by another term.

The substitution behavior sketched in the text coexists
gracefully with the standard one. Both are meaningful
because a pattern specifies both a path, i.e. a sequence
of elements, and a sub-collection. In this paper, we use
only the substitution strategy presented in the text where
the r.h.s. evaluates to a sequence of elements.

the optional named parameters in the brackets are used
to tune the application strategy of a transformation. The
iter parameter controls the iteration of a transforma-
tion [GM01c]: fixpoint indicates the iteration of the
transformation until a fixed point is reached;fixrule
specifies the same behavior but the fixed point is de-
tected when no rule applies; an integern stands forn
iterations; etc. The result of the previous expression is
24 (a GBF of typeL with only one element).

Theconsfunction used to add an elementa in front of a
sequencel can be defined as the transformation:

trans cons( a) = {
<undef> |right> x ⇒ a, x;

}
This transformation works as follow: all the elements
without a left neighbor gain a new elementa located at
their left. So, cons 9 L evaluates to 9 1 2 9 4 .

Path Patterns in a NEWS Grid

We assume working inG2. Then, the pattern

x |north> y

matches two elementsx andy with y at the north of the
elementx. Using the convention used in the left diagram
in figure 1, this filter can be represented as a vertical
domino. Figure 3 depicts several other filters inG2. In
this figure, a box indicates a matched element in a
GBF which is not binded to a pattern variable.

Finding One’s Way in a Labyrinth

Consider a labyrinth represented as a GBF where the
value1 denotes the entry doors, the value2 codes the
corridors and the value3 the exit doors. Then finding
a path between the entry and the exit doors is simply



specified as:

(1, (2 ,*), 3)

this pattern matches a path beginning with1 and ending
with 3 after a sequence of2. This path can be used in a
transformation

trans FindPath = {
(1,(2 ,*),3) as P ⇒ return(seqpos( P));

}
The statementreturn indicates that the transformation
must stop and return the argument value as soon as this
rule matches. The returned value is the sequence of the
positions of the pathP matched by the l.h.s.

Rotation of the Cross

The transformationTurnon the square latticeG2 in sec-
tion 2 can be specified as:

trans Turn = {
a |east> b

|north - east> c
|-east - north> d
|east - north> e

⇒ a, e, b, c, d ;
}

The sequencescomputed in the r.h.s. of the rule is used
to replacepoint-wisethe elements matched by the l.h.s.
Then, the first elementa of the sequences replace the
element nameda in the pattern. The second element,
which is e, replace the element namedb, etc. The net
result is a90◦-rotation of the cross matched in the l.h.s.
of the rule, leaving the centera unmodified.

The specification of the rotation is also straightforward
in H2:

trans Turn h = {
a |X> b

|Z> c
|-X> d
|-Y> e
|-Z> f
|X> g

⇒ a, g, b, c, d, e, f ; }

Eden Growing Process

We consider a simple model of growth sometimes called
the Eden model (a type B Eden model [YPQ58] to be
more precise). The model has been used since the 60’s
as a model for things such as tumor growth and growth
of cities. In this model, a 2D space is partitioned into
empty and occupied cells (we use the valuetrue for an
occupied cell and left undefined the unoccupied cells).
We start with only one occupied cell. At each step, occu-
pied cells with an empty neighbor are selected, and the
corresponding empty cell is made occupied. The Eden’s
aggregation process is simply described as the following
MGSglobal transformation:

trans Eden = { x,<undef> ⇒ x, true ; }

We assume that the boolean valuetrue is used to rep-
resent an occupied cell, other cells are simply left un-
defined. The special symbol<undef> is used to match
an undefined value. Then the previous rule can be read:
an occupied elementx and an undefined neighbor are
transformed into two occupied elements. The transfor-
mationEdendefines a function that can then be applied
to compute the evolution of some initial state. See the
first evolution steps in figure 4.

One of the advantages of theMGSapproach, is that this
transformation can be applied indifferently on grid or
hexagonal lattices, oranyother collection kind (this also
holds for the transformationFindPath).
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Figure 4. Eden’s model on a grid and on an hexago-
nal mesh (initial state, and states after 2 and 6 time
steps). Exactly the sameMGStransformation is used
for both cases. An empty cell has an undefined value
and only a part of the infinite domain is figured.

7 A Generic Pattern-Matching Algo-
rithm

We present in this section a simplified pattern-matching
algorithm for GBF path patterns. This algorithm is in-
spired from the approach taken by J. A. Brzozowski for
the computation of thederivatives of regular expres-
sions[Brz64]. We recall in the next paragraph the notion
of derivative of a regular expression. Then we restrict
the language of pattern expression to its fundamental
core and we introduce the notations used before defin-
ing the derivative of a path pattern. This section ends by
a very simple but complete example of path computa-
tions.

The Derivatives of a regular Expression

Let R be a regular expression andLR the language rec-
ognized byR. For any lettera ∈ A the derivative ofR
with respect toa is denoted by∂R/∂a and is

∂R
∂a

= {m such thatam∈ LR}

The idea of derivative with respect to a letter can be de-
fined generally for a setL but it turns out that the deriva-
tive of a regular expression can be defined by a regular



expression. For example,

∂a.(a+b)∗

∂a
= ε+(a+b)∗

In words: if am is a word recognized bya.(a+b)∗ then
m is either empty or recognized by(a+b)∗. The deriva-
tive of a regular expressionR is another regular expres-
sion that can be derived using simple rule on the struc-
ture ofR. These symbolic rules formally mimic the clas-
sical rules of the derivation of real functions, hence the
name.

The notion of derivative has been used in word recog-
nition because ifm = m1m2 . . .mn, then m ∈ LR iff
m2 . . .mn ∈ ∂R/∂m1. By iteration, the membership
problem is then reduced to the membership of the empty
word ε to the language recognized by a regular expres-
sion.

The annulator[R] of a regular expression is defined by:

[R] =
{ /0 if ε 6∈ LR

{ε}if ε ∈ LR

and can also be computed by symbolic rules on the
structure ofR. This gives a canonical decomposition
of the words ofLR:

LR = [R] ∪
[
a∈A

a⊗ ∂R
∂a

wherea⊗L = {a.m wherem∈ L}. Remark thata⊗ /0 =
/0 and thata⊗{ε}= {a}.

We want to adapt these ideas to our case: a path pat-
tern will play a role similar to a regular expression and
the GBF will correspond to the vocabularyA. Several
differences have to be taken into account:

• The notion of derivative of a regular expression is
traditionally used to check if a word belongs to a
language defined by a regular expression. In our
case, we want to enumerate the paths matched by
a path pattern in a GBF.

• A path and a path pattern exhibit both a canoni-
cal order over their elements. However, there is
no such canonical order between the elements of a
GBF.

• There is only one possible letter following another
letter in a word. There are several possible neigh-
bor of a given element in a GBF.

• Path patterns include logical expressions involv-
ing the value of the matched elements through the
binding of some variables.

The Pattern Expressions

For the sake of the simplicity, we restrict the grammar
of path patterns to the following abstract syntax:

Pattern ::= Atom | Atom Dir Pattern

Atom ::= id/ exp | Dir ∗
Dir ::= |u 1, ..., u n>

Notice that a literal patternctecan be rewrittena / a =
cte wherea is a fresh variable. A variable is system-
atically guarded but one can use the patterna/true if
there is no check to do. The neighborhood relation, can
be recovered as the direction|g 1,..., g n, -g 1,...,
-g n> where thegi are the generators of the GBF type.
There is no naming in a repetition pattern to simplify
the handling of the variable bindings. The unnamed fil-
ter “ ” in the previous syntax can be coded asa/true
wherea is a fresh variable and “ |u 1,...,u n>* ” in the
old syntax is coded as|u 1,...,u n>* in the new syn-
tax.The non-empty repetition+ can be recovered using
* , e.g.p dir + can be rewritten as

p dir dir *

using fresh variables where needed. The handling of the
naming of a sub-pattern presents no special difficulties
but would burden a lot the presentation. For the same
reason, we drop the handling of the<undef> basic fil-
ter2.

For example, the path pattern

x, ( |north>+) |east> y

in G2 can be rewritten in the new syntax:

( x/true)
|north,east,-north,-east>
( u/true)
|north>
(|north>*)
|east>
( y/true)

Notations

We use brackets to enumerate the elements in a set and
for set comprehension. The symbol/0 is for the empty
set. The expressionS−e denotes the setS without the
elemente. [ ] is the empty list;̀ @`′ is the concatenation
of lists ` and `′. The distribution e⊗S of an expres-
sion e over the elements of a setS of lists is defined
by {[e]@l , l ∈ S}. An environmentis a partial func-
tion defined for a set of identifiersi1, ..., in with values
v1, ...,vn, and elsewhere undefined;E ranges over the
environments; theaugmentationof an environmentE
with identifierin+1 and valuevn+1 is a new environment
E′ = E +[in+1 → vn+1], such thatE′(in+1) = vn+1 and
∀k, ik 6= in+1,E′(ik) = E(ik).

2The handling of<undef> is complicated and would
burden a lot our exposition. We sketch two examples to
show the difficulties. A rule like<undef> ⇒ 1 is for-
bidden inMGSbecause it implies the replacement of all
undefined elements by a1 and there is possibly an in-
finite number of such elements. Other example: in the
processing of a rule like<undef>, x⇒ 1, x we cannot
start by looking for an undefined element (because there
could be an infinite number of such elements) but rather
we have to look for a defined elementx that has an un-
defined neighbor.



∂dir∗
∂ p

(G,E, /0) =
{
[ ]
}

(1)

∂P
∂ p

(G,E, /0) = /0 provided thatP 6= dir∗ (2)

∂ id/ expr
∂ p

(G,E,Π) = if eval(E +[id→ p],G,expr) then
{
[p]

}
else /0 (3)

∂dir∗
∂ p

(G,E,Π) =
{
[ ]
} ∪ ∂(id/true dir dir∗)

∂ p
(G,E,Π) whereid is a fresh variable(4)

∂ id/ expr dir P
∂ p

(G,E,Π) = let E′ = E +[id→ p] and Π′ = Π− p

in if eval(E′,G,expr)

then p⊗
( [

p′∈neighbor(Π′,dir, p)

∂P
∂ p′

(G,E′,Π′)

)

else /0

(5)

∂dir∗ dir′ P
∂ p

(G,E,Π) =
[

p′∈neighbor(Π,dir′, p)

( ∂P
∂ p′

(G,E,Π)
)

∪ ∂(id/true dir dir∗ dir′ P)
∂ p

(G,E,Π)

whereid is a fresh variable(6)

Figure 5. Specification of the derivatives of a path pattern. We suppose thatΠ 6= /0 in the equations.

Derivativesof a Path Pattern

A pattern-matching expression is an element ofPattern.
Thederivativeof a pattern-matching expressionP with
respect to a positionp, given a setG of pairs(position,
value)(i.e., a GBF), an environmentE and a set of avail-
able positionsΠ is written

∂P
∂ p

(G,E,Π)

and representsthe set of paths in a GBFG starting at
positionp and matched by the path patternP. The envi-
ronmentE is an additional argument used to record the
variable bindings used in the evaluation of guards in a
pattern. The result of∂P/∂ p(G,E,Π) is a set of lists̀
of positions. Such a list̀ records the sequence of the
elements of the GBF that match the path patternP.

Let ε be the empty environment, anddom(G) the set of
positions which have a value inG then all the occur-
rences of a path patternP in a GBFG are computed by:[

p∈dom(G)

∂P
∂ p

(G,ε,dom(G)) (7)

The derivatives of a path pattern is a 5-ary function
∂ ·/∂ ·(·, ·, ·) defined by induction on the path patternP
and the GBFG. The specification is given in figure 5
and use two additional functions:eval(E,C,expr) is a

predicate that holds when the expressionexprevaluates
to the boolean true value in the environmentE with re-
spect toG; neighbor(Π,dir, p) is a function that com-
putes, given a set of positionsΠ and a list of directions
, the neighbor positions of a positionp in Π:

neighbor(Π, |u 1, ..., u n>, p)

=
{

p+ui | 1≤ i ≤ n andp+ui ∈Π
}

The equations in figure 5 can be intuitively explained as
follow:

1. There is only one empty path in an empty GBF.

2. There is no non-empty path in an empty GBF.

3. A path reduced to only one element matches an
element at positionp if the conditionexpr is met.
In this case, there is only one possible path with
only one element at positionp. If the condition is
not met, there is no singleton path starting atp.

4. A path specified bydir∗ starting at positionp is
either empty or begins with the value at positionp
and continues following the directiondir as a path
specified bydir∗.

5. The paths starting at positionp and beginning with
an elementid satisfying conditionexp and then
following directiondir to continue as a pathP can
exist only if the condition is satisfied. This con-
dition is checked byeval(E′,G,expr) using the



augmented environmentE′: E′ contains the previ-
ous bindings together with the binding ofid with
the positionp.

If the condition is satisfied, then such a path can
be obtained by computing the paths starting from
a dir-neighborp′ of p and matchingP and then
adding the positionp in front of these paths thanks
to the⊗ operator.

6. The last rule decomposes into two sets the paths
starting at positionp beginning with a repetition
dir∗ and continuing following directiondir′ by a
path matched byP.

The first set corresponds to an empty repetition.
So, we want to match the paths specified byP
starting from adir′-neighbor ofP.

The second set corresponds to a non empty-
repetition and we just unfold the repetition one
time.

Example of Derivative Computation

To make these definitions more concrete, we compute
the path matching the pattern “, 1 |north> x”. This
pattern is first transformed into

P = u/true
|north,east,-north,-east>
Q

Q = v/ v=1
|north>
x/true

(for convenience, we introduce a meta-variableQ to
name a sub-pattern). We look for some paths in the GBF
G of typeG2

· · · · · · · · · · · · · · · · · ·
· · · · · ·
· · · 2 · · ·
· · · 1 0 · · ·
· · · · · ·
· · · · · · · · · · · · · · · · · ·

which is represented as the set of pairs (position, value).
To spare the notation, we write a couple(n,e) for a po-
sition “n|north> + e|east> ”.

G =
{

((0,0),1), ((0,1),0), ((1,0),2)
}

We have arbitrarily fixed the value1 at position
(0,0). There is only one path matchingP in G:
[(0,1);(0,0);(1,0)]. Indeed(0,0) is a neighbor of(0,1)
and its value is1. Moreover, at north of(0,0), i.e. at
position(1,0), there is a value.

The domain ofG is calledΠ :

Π = dom(G) = {(0,0), (0,1), (1,0)}

All the paths matched byP are computed using the def-
inition (7):

∂P
∂(0,0)

(G,ε,Π) ∪ ∂P
∂(0,1)

(G,ε,Π) ∪ ∂P
∂(1,0)

(G,ε,Π) (8)

Then we have:

∂P
∂(0,0)

(G,ε,Π)= (0,0)⊗
[

p′∈{(1,0),(0,1)}

∂Q
∂ p′

(G, [u→ (0,0)],Π′)

whereΠ′ = {(0,1),(1,0)}. The union is composed of
two terms. The first one evaluates to/0:

∂Q
∂(1,0)

(G, [u→ (0,0)],Π′) = (1,0)⊗
[
p′∈ /0

∂x/true

∂ p′
(...)

where the union is made on an empty set of indexes, so:

∂Q
∂(1,0)

(G, [u→ (0,0)],Π′) = (1,0)⊗ /0 = /0

The second term
∂Q

∂(0,1)
(G, [u → (0,0)],Π′) gives a

similar result and then:

∂P
∂(0,0)

(G,ε,Π) = (0,0)⊗ /0 = /0

This result is also true for
∂P

∂(1,0)
(G,ε,Π).

There is a difference in the computation of:

∂P
∂(0,1)

(G,ε,Π) =

(0,1)⊗
[

p′∈{(0,0)}

∂Q
∂ p′

(G, [u→ (0,1)],Π′′)

whereΠ′′ = {(0,0),(1,0)}. The union term does not
reduce to the empty set:

∂Q
∂(0,0)

(G, [u→ (0,1)],Π′′) =

(0,0)⊗ ∂x/true

∂(1,0)
(G, [u→ (0,1),v→ (0,0)],Π′′′)

whereΠ′′′ = Π′′− (0,0) = {(1,0)}. Because

∂x/true

∂(1,0)
(G, ...,Π′′′) = {[(1,0)]}

we have then that

(8) = (0,1)⊗
(
(0,0)⊗{

[(1,0)]
})

=
{
[(0,1);(0,0);(1,0)]

}

which is what was expected.

8 Conclusions

The array data structure is not smoothly handled in func-
tional languages because it cannot be described convinc-
ingly as instances of an algebraic data type. Therefore,
there are no means to specify by cases a function on an
array. This annoying situation is summarized by Wadge:
“We spent a great deal of efforts trying to find a simple
algebra of arrays (...) with little success” [WA85].

In this work, we have presented a framework, the group-
based data fields, that allows a uniform description of



trees and arrays in the same framework [GM01a]. The
GBF approach puts the emphasis on the logical neigh-
borhood of the data structure elements [GM02a]. This
topological point of view allows the definition of path
patterns used to match a sub-collection in an array or
a tree. A first algorithm to enumerate all the paths
matched by a pattern is given, inspired by the notion of
derivative developed for the recognition of regular ex-
pressions on sequences. This algorithm has been ex-
tended to handle a more complete pattern language and
is used in the current version of theMGSinterpreter (see
the web home pagehttp://mgs.lami.univ-evry ).
This interpreter handles the examples proposed in sec-
tion 6 as well as more intricate ones like:

x, ( y+ / x > Sum(y))

that looks for a path beginning with anx that is greater
than the sum of the rest of the matched elements (the
functionSum is an auxiliary function that computes the
sum of all elements in an collection of numbers). A re-
markable feature is that the same algorithm sketched
here is used to find the occurrences of a pattern in a
set, a multiset, a sequence or a GBF. We think that this
demonstrates the usefulness and the unifying nature of
our topological framework.

Several other examples of the programming style al-
lowed byMGSrules on GBF are developed in [GGMP02]
in the context of biological simulations. Many mathe-
matical models of objects and processes are based on
a notion of state that specifies the object or the process
by assigning some data to each point of a physical or
abstract space. The goal ofMGSis to support this ap-
proach by offering several mechanisms to build complex
and evolving spaces and handling the mappings between
these spaces and the data in a functional framework. In
this context, GBF are used to model the uniform and
regular discretization of spaces.

Pattern matching in arrays has been considered in the
functional languages community from [Bir77, Bak78]
and more recently in [Jeu92] but the problem is then
restricted to determine an occurrence of a rectangular
sub-array. For example, ifP is a p×q rectangular two-
dimensional array (a pattern of literals), andG is an×m
array, the problem handled is to find a pair(i, j) such
that for allk andl such that1≤ k≤ p and1≤ l ≤ q, we
haveG[i− p+k, j−q+ l ] = P[k, l ].

Compared to these previous works, our algorithm is
more general in two directions: it handles group-
indexed data structures and it allows a more expressive
pattern language. Obviously, there is a large room for
optimizations. For instance, we do not compute all paths
before applying a rule but we stop the search as soon as
one matching path has been found. By specifying an
order over the unions appearing in the definition of the
derivative Fig. 5, we can parameterize a strategy for the
enumeration of paths. We are currently developing a
pattern compiler forMGSbased on pattern transforma-
tions.
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France.

[Man01] Vincenzo Manca. Logical string rewriting.
Theoretical Computer Science, 264(1):25–
51, August 2001.

[Pau99] G. Paun. Computing with membranes:
An introduction. Bulletin of the European
Association for Theoretical Computer Sci-
ence, 67:139–152, February 1999.

[RS92] G. Rozenberg and A. Salomaa.Linden-
mayer Systems. Springer, Berlin, 1992.

[Ser77] J.-P. Serre. Arbres, Amalgames,SL2.
Number 46 in Ast́erisque. Sociét́e
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