
MuTAnt team
 Jean-Louis Giavitto

INRIA Evaluation seminar, march 2016

Programming Cyber-Temporal Musical Systems�
subsuming the event-driven and time-driven models

CYBER-TEMPORAL SYSTEMS
Notion of

Cyber-temporal systems:
 computing time in real-time

•  from: physical entities
 monitored by algorithms

•  to: temporal relationships
 sensed and produced by algorithms

•  example: interactive music systems
 Antescofo

•  notionS of TIME:

cyber-
physical
systems

cyber-
temporal
systems

•  multiple times: deferred time, real-time
•  multiple models of time: event-driven, time-driven
•  multiple scales: from audio (0.02 ms) to control (hours)
•  time programmability: time is a denotable entity

④	

①

②

reactive, strongly timed language + score following
Antescofo

actual
musical

performance

whole mixed performance

musical
events

synchronizations

perform
listen

execute

schedule

augmented score

actual
electronic

performance

co
m

po
sit

ion
 (o

ut
-o

f-t
im

e)

pe
rfo

rm
an

ce
 (r

ea
l-t

im
e)

electronic
actions

 e(t), e(t) .
③

Author (composer)

« read » « eval » « print »

interactive scenario
open score, virtual

score…

interactive piece �
 mixed music, �

time-art, �
…

Analysis

Synthesis, �
rendering

Acquisition Production

Perception Action

Musicans�
(& audience)

write

interact

Authoring time:
•  composition
•  computing time

authoring interaction :
•  performance
•  computing in real-time

Authoring time�
in real-time

reader
parsing

writer
pretty-printing

A “Language Approach”

② TEMPORAL SCENARIOS
Programming

Strongly timed
•  event-driven system

–  event from the listening machine
–  logical event

•  predicates on variables
•  begining or end of a computation �

(continuation)
–  introspective event

•  time-driven: computing with duration
–  delay
–  continuous actions
–  relative time�

(dynamic) tempo
–  synchronization �

tempo + event

•  time transformations are for Antescofo�
what changes of coordinates are for postscript…

•  BUT

–  time is only spent in real-time

–  time is causal �
(I don’t know the transformation in the future)

–  the transformation comes from the environment �
(synchronization)

–  transformations are not necessarily newtonian �
(when human is in-the-loop position ≠∫tempo)

Strongly timed

The Multiples Times of Temporal Scenarios

Time-time diagrams

BPM 60
TRILL (A4 B4) 1.0
NOTE 0 1.0
BPM 85
TRILL ((C5 E5) (D5 F5)) 2.0

time in seconds

be
at

s i
n

sc
or

e

musical event

tempo

position in"
the score as"

 a function of
physical time

Time-time diagrams

actual date of arrival (early event)

time in seconds

be
at

s
in

 s
co

re

(potential) position in
the score as a
function of physical
time , given by the
score

(actual) event’s position in the score with
the associated estimated tempo, as
performed by the musician

forecasted date of arrival considering the last available tempo

actual date of arrival (late event)

p

t’ t

p’

event arrival

time in seconds

be
at

s
in

 s
co

re

actual position in a
sequence of actions as a
function of physical time,"

with loose strategy

event arrival

loose interpolation

actual date of arrival (early event)

time in seconds

be
at

s
in

 s
co

re

forecasted date of arrival

actual date of arrival (late event)

p

t’ t

p’
tight, conservative —interpolation

actual position in a
sequence of actions as a
function of physical time,"
with tight strategy

José Echeveste
PhD, Defended 2015

Time-time diagrams

Dynamic Target

Open Score in Antescofo
•  real-time matching of temporal pattern

pattern P
{

@local $x , $y , $z
NOTE $x
before [0.5]
NOTE $y where $x < $y
before [0.5]
NOTE $z where ($y>$z) & ($z>$x)

}

•  dynamic non-deterministic score
Jason Freeman (GeorgiaTech) Shadows, 2015.

pitch

time

compilation
&

on-the-fly matching
specification

(including durational properties)

Real-Time Matching of Antescofo
Temporal Patterns, Jean-Louis Giavitto,

José Echeveste, ACM PPDP 2014, 2014.

Real-Time Matching
a Temporal Pattern

machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-

4 2014/5/27

machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-

4 2014/5/27

pattern P
{

@local $x , $y , $z
NOTE $x
before [0.5]
NOTE $y where $x < $y
before [0.5]
NOTE $z where ($y>$z) & ($z>$x)

}

compilation & on-the-fly matching

Real-Time Matching
of Antescofo Temporal Patterns,

 J.-L. Giavitto, J. Echeveste,
ACM PPDP 2014, 2014.

machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-

4 2014/5/27

temporal
patterns

③ REAL-TIME SCHEDULING

Embedding audio in Antescofo

outlet

continuous
time-driven
(high and periodic sampling)

(low and asynchronous sampling)
event-driven

discrete

mixer

gain

$x := 0.75

Curve
{
 $$x
}

audio reactive

inlet antescofo~

continuous
 variable

discrete variable

inlet

Faust reverb

listening
machine events

tempo

threshold Patch {
 $$y := mixer(…)
}rewiring

•  audio effects written in�
FAUST + specifics (FFT)

•  compiled on-the-fly

•  40% cpu improvement�
on the remake of Antheme2

•  new hybrid scheduling

•  sample accurate for�
curve → audio

•  sample accurate for�
audio → control

•  buffer accurate elsewhere

relative time physical time

buffer accurate sample accurate buffer accurate sample accurate

④	ARTISTIC APPLICATIONS

Yan Maresz Polyrythmic machine in Antescofo

Marco Stroppa
Antescofo library
for totem control

Marco Stroppa
… of Silence

(2009)

Julia Blondeau
Phrasé

IRCAM Scientific Council – 19-20 December 2013 21

©Julia Blondeau - 2014

Notation et nécessités du symbole
Dimensions temporelles et écriture de l’électroniqueNotation et expressivité

 Dans cet exemple, on veut décrire un contrepoint
entre l’alto et l’électronique dans lequel la partie
électronique fluctue temporellement autour de la partie
d’alto puis converge vers le « la » joué en écrasé de l’alto.

 L’écriture est ici assez simple puisque les durées et
rythmes sont exprimées de façon identique, en valeurs
relatives et toutes égales. C’est la modulation du tempo qui
rend ici le geste malléable, tout en étant lié en permanence
au tempo de l’interprète (variable $RT_TEMPO).

 Pour les dynamiques, le même principe est employé
grâce à l’utilisation d’une variable commune à toutes les
notes ($ampexplo) envoyées au moteur de synthèse. On
peut ainsi écrire directement une courbe comme on écrirait
un crescendo sur un partition au lieu d’écrire une valeur
d’amplitude pour chaque note.
�

����������	
����

�

������

�����#

��

�

��

�

�����$

��

����������	
����

�

�!

�

�

"�

����������	
����

�

!�

�

�

�

�

	

�

�� �

�

���

�

�

�� ��

�

��

��

#�$$��

�

��

��!	

��
�

�

� � � �

	

�

�

�

	

�

�

�

�

	

� � �

�

��

�

��

�

�

�

��

�

�� �

���

��

��

�

�

��

��

��

��

� � � � �

�

�

� �

� �

	

��

��

�

�

�
�

��

�
� � � � � � � � � � �

�

���
���

�

�

	

�

��

���,����

�

��

���

�

�

�

�

�

�

�

�

�

�

	

���

�

�

�������

�
�

�

�

	

��

�

�

�

	

�

�

�

�

����

��

�
�

�

��

� � �

��

�

	

�

�

�

�

�

�

�

�

������

�������

	

�

�

�� ��

�

��

��

	

�

�

�

� � �

�� �

�

�

�

�

��

�

��

	

��

�

�

�

�

�

�

�

�

�� ��

�

�

�����$

'���(�%����������

�

��

�
� �

� �

�

	

� ��

� � � � �

� � � � �

�

� � � �

� �

��

��� �

�

�

� ���

��

��

�

	

��
��

�

�

�

�

�

�

�

� �

�

��

�

��

�� � �

��

�

�

�

�

�

�

�� ��
� �

� �

��

��

�

�

��
��

��

�

��
��

�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

� �

�

�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�� ��

��

��

� ��

��
�

�
�� ��

��

�

�

��

��

��

��

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

��

�

�

�

��

��

��

��

��

�

�

�

��

�

�

�

��

��

�

�� �� ��
�

��
� � �� ��� � ���� � � � �� �

�
� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

�� �
�

�

�

� �
�

�

�

� �
�

�

�

� �
�

�

� �
�

�

�

� �
�

�

�

�

�

�

�

�

�

��

�

�

�
��

�� �

��

�

�� � � � � � � � � ���

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�
��

�

��

�

�
�

�

	

�

	

�

�

�
�

��

�

�

��

�

��
��

� ��

� ��

��

�

��

��

�

��

��
�

��
�

��

��

��

��

��

�

�

��
��

��

��
��

��

��

��
�
��

�
��

�

��

��
�

��

��

��

�
��

��

��

��

��
��

��

��

��
��

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�
�

�
�

� �

� �

�

�

��

�

�

��

�

�

�
�

�

� �

�

� �

�

� ��

�

��
��

�

��

�

��

��
��

��

�

��
�

�
�
�
�

�� �

�

�

�

�

�

�

��

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�� ��

��

� �

�

�

�

�

�

�

�

� �

�

�

�
��
�

��

�

�

�

�

�

�

�

� �

�

� �

�

�

� �

�

� �

�

� �

�

�
�

�

�

�

�

�
� �

�

�

�

�

��

�

�� � �

��

�

��

�

�

��
�

�

�

�

�
�

�

�

��

�

�

�

��

�

�

�

��

�

�

� �

��

� �

� �

�

�
�
�

�

�

� �

�

��

�

�

�

��

�

�

�

�

�

�

�

�
� �

�
� � �

��
�
�

� � �
�

�

� �

�

��

�

��

�

��

�

�

�

�

��

��

�

�

��
��

��

�

��

��

�

��

��
�

��
��

�
�

�
�

��

� �

�
��

� �

#

©Julia Blondeau - 2014

Notation et nécessités du symbole
Dimensions temporelles et écriture de l’électroniqueNotation et expressivité

 Dans cet exemple, on veut décrire un contrepoint
entre l’alto et l’électronique dans lequel la partie
électronique fluctue temporellement autour de la partie
d’alto puis converge vers le « la » joué en écrasé de l’alto.

 L’écriture est ici assez simple puisque les durées et
rythmes sont exprimées de façon identique, en valeurs
relatives et toutes égales. C’est la modulation du tempo qui
rend ici le geste malléable, tout en étant lié en permanence
au tempo de l’interprète (variable $RT_TEMPO).

 Pour les dynamiques, le même principe est employé
grâce à l’utilisation d’une variable commune à toutes les
notes ($ampexplo) envoyées au moteur de synthèse. On
peut ainsi écrire directement une courbe comme on écrirait
un crescendo sur un partition au lieu d’écrire une valeur
d’amplitude pour chaque note.
�

����������	
����

�

������

�����#

��

�

��

�

�����$

��

����������	
����

�

�!

�

�

"�

����������	
����

�

!�

�

�

�

�

	

�

�� �

�

���

�

�

�� ��

�

��

��

#�$$��

�

��

��!	

��
�

�

� � � �

	

�

�

�

	

�

�

�

�

	

� � �

�

��

�

��

�

�

�

��

�

�� �

���

��

��

�

�

��

��

��

��

� � � � �

�

�

� �

� �

	

��

��

�

�

�
�

��

�
� � � � � � � � � � �

�

���
���

�

�

	

�

��

���,����

�

��

���

�

�

�

�

�

�

�

�

�

�

	

���

�

�

�������

�
�

�

�

	

��

�

�

�

	

�

�

�

�

����

��

�
�

�

��

� � �

��

�

	

�

�

�

�

�

�

�

�

������

�������

	

�

�

�� ��

�

��

��

	

�

�

�

� � �

�� �

�

�

�

�

��

�

��

	

��

�

�

�

�

�

�

�

�

�� ��

�

�

�����$

'���(�%����������

�

��

�
� �

� �

�

	

� ��

� � � � �

� � � � �

�

� � � �

� �

��

��� �

�

�

� ���

��

��

�

	

��
��

�

�

�

�

�

�

�

� �

�

��

�

��

�� � �

��

�

�

�

�

�

�

�� ��
� �

� �

��

��

�

�

��
��

��

�

��
��

�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

� �

�

�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�� ��

��

��

� ��

��
�

�
�� ��

��

�

�

��

��

��

��

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

�

�

��

��

��

�

��

�

�

�

��

��

��

��

��

�

�

�

��

�

�

�

��

��

�

�� �� ��
�

��
� � �� ��� � ���� � � � �� �

�
� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

�� �
�

�

�

� �
�

�

�

� �
�

�

�

� �
�

�

� �
�

�

�

� �
�

�

�

�

�

�

�

�

�

��

�

�

�
��

�� �

��

�

�� � � � � � � � � ���

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�
��

�

��

�

�
�

�

	

�

	

�

�

�
�

��

�

�

��

�

��
��

� ��

� ��

��

�

��

��

�

��

��
�

��
�

��

��

��

��

��

�

�

��
��

��

��
��

��

��

��
�
��

�
��

�

��

��
�

��

��

��

�
��

��

��

��

��
��

��

��

��
��

�
�
�
�

�

�

�

�

�

�

�

�
�
�
�

�

�

�

�

�

�

�

�
�

�
�

� �

� �

�

�

��

�

�

��

�

�

�
�

�

� �

�

� �

�

� ��

�

��
��

�

��

�

��

��
��

��

�

��
�

�
�
�
�

�� �

�

�

�

�

�

�

��

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�� ��

��

� �

�

�

�

�

�

�

�

� �

�

�

�
��
�

��

�

�

�

�

�

�

�

� �

�

� �

�

�

� �

�

� �

�

� �

�

�
�

�

�

�

�

�
� �

�

�

�

�

��

�

�� � �

��

�

��

�

�

��
�

�

�

�

�
�

�

�

��

�

�

�

��

�

�

�

��

�

�

� �

��

� �

� �

�

�
�
�

�

�

� �

�

��

�

�

�

��

�

�

�

�

�

�

�

�
� �

�
� � �

��
�
�

� � �
�

�

� �

�

��

�

��

�

��

�

�

�

�

��

��

�

�

��
��

��

�

��

��

�

��

��
�

��
��

�
�

�
�

��

� �

�
��

� �

#

José-Miguel Fernandez
gesture-driven synthesis

IRCAM Scientific Council – 19-20 December 2013 22

Hypersphère, Jose Miguel Fernandez,
séance de travail IRCAM 26/2/16

GeKiPe (Gest Kinect Percussion),
Philippe Spiesser (percu),
Alexander Vert (composition),
Jose Miguel Fernandez (RIM)

OSC or setvar

PERSPECTIVES

Perspectives

The Augmented Score !
•  temporal scope as denotable value
•  musical gesture
•  embedding composer specific

languages (idiosyncrasy)
•  abstraction
•  durative vs continuous�

computations

Next Generation of IMS !
•  offline and online score analysis
•  offline and online score scheduling
•  real-time score execution �

at sample accuracy
•  extensible-, distributed-architectures

for interactive music systems (ex.:
VST, RTAS, audio plugins)

Digital Preservation
•  compilation

Beyond Music!
•  cyber-temporal systems: exploring

other highly timed interactive
scenarios (Robotics, Domotics)

•  Programming with Perceptual
Concepts

•  other sensing devices/listening
machines

