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Outline
1.  The application domain�

score following and mixed music

2.  The augmented score: a domain specific language�
time as a first class entity of the language,�
not a side-effect of the computation nor a resource

3.  Real-time temporal patterns�
extended subset on RE on sequences in time (not memory!)

4.  Sketch of their semantics�
beware of causality

5.  Implementation by translation�
the efficient translation of the before operator

6.  Conclusions & perspectives
Jean-Louis Giavitto – PPDP September 2014



Automatic Accompaniment using Antescofo

Jean-Louis Giavitto – PPDP September 2014

Left Hand Concerto, Ravel.  Pianist: Jacques Comby
Orchestra: recording Orchestre de Paris modulated by Antescofo in real time (Ircam 2014). 
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More than 40 Creations�
New York Philharmonics, Chicago Symphony, Los Angeles Philharmonics, Berlin Philharmonics, BBC Orchestra...
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Antescofo domain specific language
n  handling multiple temporal references: event + tempo

o  external (e.g. musicien)
o  computed
o  physical (wall clock)

n  tempo: the « flow » of a time reference

n  duration: delays and groups lifespan (relative to a time reference)

n  dynamicity:
o  process: creation, call, destruction, with their own time frame, as high-order values
o  computed delays
o  computed tempii

n  augmented score as the expected (complex) temporal scenario

n  performance: implementation of the temporal scenario including deviation

n  synchronization & error handling  w.r.t. the temporal scenario
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Syntax
events:                  NOTE 60 2.0  

atomic actions:       $v := @sin($x)  

                                             superVP ($v+3)  


compound actions:

loop  3.0   
{   
 print "loop" 

} during [6#]  

curve @grain 0.1s 
      @action draw $x $y   
{ 
 $x,$y {   { 0.3,  1.2 } 
        4s { 0.9,  2.4 } 
       } 
} 

whenever ( $y > 3.0 )  
{  
  print $y "greather than 3" 
}  

group 
{        
        print hello 
        print beautiful  
    2.0 print world  
} 



Group
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Note C3 1.0 
 Group G1 
 { 

 
 } 
 Group G2 
 { 

 
 } 
 0.5 Group G3 
 { 

 
 } 
 0.5 Group G4 
 { 

 
 } 

Note C4 1.5 
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Whenever

Note C3  2/3 
 Whenever ($X > 0) 
 { 

 
 } 

Note C4 1.5 
… 

L 

C3 C4

$X	

L L L 

L 

L 

$X:=3	



Expressions
n  Values�

int, float, bool, string, symbol… 
tab, map, continuous symbolic curve… 
functions, processes… (first-order values) 

n  Operators and predefined functions�
@sin(), @exp(), (…? … : …), @random(), @score()…

n  Imperative Variables
o  system variables: $RT_TEMPO $NOW $RNOW $TEMPO $PITCH, etc.

o  history�
[3#]:$x 
[3]:$x 
[3s]:$x 

o  @date([3#]:$x) 
@rdate([3#]:$x) 

$v undef 43 52 53 49

timestamps
in beats

0.0 1.0 2.5 4.0 5.5

timestamps
in sec

0.0 2.3 4.2 5.9 7.5
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Example: sound synthesis control in Nachtleben (5', Julia Blondeau)
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Neume
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machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch

. . .

G B E B A G

1

2

3

4

5

Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-

4 2014/5/27
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Matching a temporal pattern

machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }

time

pitch
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Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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machine also updates the variable $PITCH representing the current
pitch,$DUR representing the duration of the current note in the score
and some other parameters (position in beat in the score, current
tempo of the musician, etc.).

3.1 A Motivating Example
The detection of the pattern described in Fig. 2 can be easily written
with nested whenever, see top of Fig. 3. In Antescofo, a variable
identifier starts with a dollar character (to distinguish it from the
message receiver used in atomic actions) and the @local statement
introduces local variables.

The behavior of this code fragment on the notification of a series
of pitches (indicated in the middle of Fig. 3) is illustrated on the
bottom of the same figure. This sequence of pitches contains only
one instance of the pattern, figured in bolder line.

The whenever in line 1 (W1) has no stop clause. It will be active
until the end of the program. The net effect is that its body is
triggered each time $PITCH is updated (a non-zero number evaluates
to true). The whenever at line 4 (W2) and at line 7 (W3) have a
during clause and will test their condition only once. The activity
table at bottom of Fig. 3 represents the flow of evaluation. A column
is a time instant. The evaluation of the condition of (W1) is pictured
in pale gray, (W2) in middle gray and (W3) in dark gray. When the
evaluation returns true the border is solid, otherwise it is dashed.

On the reception of the first note, the condition of (W1) returns
true. So, one instance of the body of (W1) is running now in parallel
with (W1), that is, one instance of (W2) is activated and waiting
for a note. The different instances of (W1) body are numbered and
correspond to the row of the activity table. On the reception of the
second note, this instance evaluates to true so (W2) launches its
body and one instance of (W3) is activated. The reception of the
third pitch does not satisfy the condition of (W3). Meanwhile, (W1)
has also been notified by the reception of the second notes which
trigger one instance of (W2) body (row 2) in parallel. Etc.

Admittedly the specification of such a simple pattern is con-
trived to write. And it becomes even more cumbersome if one wants
to manage duration and elapsing time. The objective of Antescofo
temporal patterns is to simplify such definition. The idea is to spec-
ify a pattern elsewhere and then to use it in place of the logical
condition of a whenever:

@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
ATP matching must be done in real-time and must be causal: the
decision that a pattern matches must be done with the last atomic
event matched by the pattern, as soon as it occurs. This is not the
case for example with r+ which need to look one token ahead to
determine the subsequence matched.

They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
property satisfied on a time interval.

1 whenever ($PITCH) {
2 @local $x
3 $x := $PITCH
4 whenever ($PITCH > $x) {
5 @local $y
6 $y := $PITCH
7 whenever ($PITCH <$y & $PITCH >$x) {
8 @local $z
9 $z := $PITCH

10 a

11 } during [1#]
12 } during [1#]
13 }
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Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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...
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At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
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in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iterations operators r

⇤

or r

+ available for a regular expression r. The reason is that
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case for example with r+ which need to look one token ahead to
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They are two kind of atomic patterns: Event that corresponds to
a property satisfied on a time point and State corresponding to a
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4 whenever ($PITCH > $x) {
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Figure 3. A fragment of Antescofo code that triggers action a on
the reception of 3 consecutive notes x, y, z such that x < y > z >

x. See text for explanation.

4.1 Event Patterns
An event pattern Event $X matches an update of the variable $X.
This variable is said tracked by the pattern. Three optional clauses
can be used to constraint the matching: value, where and at. The
value clause constrains the value of the tracked variable. For ex-
ample:

Event $PITCH value G4

matches only when $PITCH is assigned to G4. The where clause
is used to specify a guard with an arbitrary boolean expression:
the guard is evaluated at matching time and the matching fails
if it evaluates to false. The boolean expression can be any valid
Antescofo expression and may refer to arbitrary variables. The at

clause is used to constraint the date of matching.

Pattern Variables. Pattern variables can be used to match or to
record some parameters of the matching. Pattern variables are de-
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clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y, $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used freely in the pattern clauses. The first
time the variable is met, the pattern-matcher stores the correspond-
ing value into the variable; next time, the value stored is used in the
expression where the variable appears. For example:

@pattern P {
@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
(unknown) value $x. When the first event is matched, a value is
given to the pattern variable $x. When the second event is matched,
this value is used to constrain the match. However, we stress again
that the matching is causal. A pattern like

@local $x
Event $PITCH value ($x + 1)
Event $PITCH value $x

is rejected by the system because the matching of the first event
must be determined without any assumption on the future. The
record-then-match behavior is just the operational explanation of
the existential quantification in logic formula, when there is no
unification, only matching.

Pattern variables can be used in the action triggered by a pattern,
as ordinary variable. For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at" $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variable is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking to match the pattern Event $X, the
variable $X is tracked right after the match of the previous pattern.
Then, at the first value change of $X, Antescofo check the various

constraints of the pattern. If the constraints are not meet, the match-
ing fails. The before clause can be used to shrink or to extend the
temporal interval on which the pattern is matched beyond the first
value change. For instance, the pattern

@pattern twice
{

@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $x

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match, $V
must be updated for the same value before 3 beats have elapsed
from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the
next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@Local $start , $stop
Event $X value v at $start
Event $X value v at $stop

where ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats but it would not match three consecutive updates of $X
for the same value v, one at each beat, a configuration that should
be recognized.

It is not an easy task to translate the specification of a state that
lasts over an interval into a sequence of instantaneous events. Using
a State pattern, the specification of the previous pattern is easy:

State $X where ($X == v) during 2

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
before and where clauses constrain the matching as described for
event pattern. The at clause is replaced by the two clauses start

and stop to record or constrain the date at which the matching of
the pattern has started and the date at which the matching stops.
There is no value clause because the value of the tracked variable
may change during the matching of the pattern, for instance when
the state is defined as “being above some threshold”. The where

clause may refer to a pattern variable set in the start clause, but
not to the value of a stop clause because the date at which the
pattern ends is known only in the future.

The during clause can be used to specify the duration of the
state, i.e. the time interval on which the various constraints of the
pattern must hold. If the specified constraints are not satisfied, the
matching fails but, if there is a before clause, a new attempt is
launched at each update of the tracked variable, until the expiration
of the before clause.
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Event: checking an instantaneous property
Pattern P  
{ 

@local $x , $y , $z 
Event $PITCH value $x 
Event $PITCH value $y where $x < $y  
Event $PITCH value $z where ($y > $z) & ($z > $x) 

}  
… 
whenever P  
{ print  "I just saw a P" } 



State: a property that lasts
variable $X takes the value v at least for 2 beats

clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y , $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used freely in the pattern clauses. The first
time the variable is met, the pattern-matcher stores the correspond-
ing value into the variable; next time, the value stored is used in the
expression where the variable appears. For example:

@pattern P {
@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
(unknown) value $x. When the first event is matched, a value is
given to the pattern variable $x. When the second event is matched,
this value is used to constrain the match. However, we stress again
that the matching is causal. A pattern like

@local $x
Event $PITCH value ($x + 1)
Event $PITCH value $x

is rejected by the system because the matching of the first event
must be determined without any assumption on the future. The
record-then-match behavior is just the operational explanation of
the existential quantification in logic formula, when there is no
unification, only matching.

Pattern variables can be used in the action triggered by a pattern,
as ordinary variable. For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at" $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variable is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking to match the pattern Event $X, the
variable $X is tracked right after the match of the previous pattern.
Then, at the first value change of $X, Antescofo check the various

constraints of the pattern. If the constraints are not meet, the match-
ing fails. The before clause can be used to shrink or to extend the
temporal interval on which the pattern is matched beyond the first
value change. For instance, the pattern

@pattern twice
{

@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $x

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match, $V
must be updated for the same value before 3 beats have elapsed
from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the
next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@Local $start , $stop
Event $X value v at $start
Event $X value v at $stop

where ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats but it would not match three consecutive updates of $X
for the same value v, one at each beat, a configuration that should
be recognized.

It is not an easy task to translate the specification of a state that
lasts over an interval into a sequence of instantaneous events. Using
a State pattern, the specification of the previous pattern is easy:

State $X where ($X == v) during 2

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
before and where clauses constrain the matching as described for
event pattern. The at clause is replaced by the two clauses start

and stop to record or constrain the date at which the matching of
the pattern has started and the date at which the matching stops.
There is no value clause because the value of the tracked variable
may change during the matching of the pattern, for instance when
the state is defined as “being above some threshold”. The where

clause may refer to a pattern variable set in the start clause, but
not to the value of a stop clause because the date at which the
pattern ends is known only in the future.

The during clause can be used to specify the duration of the
state, i.e. the time interval on which the various constraints of the
pattern must hold. If the specified constraints are not satisfied, the
matching fails but, if there is a before clause, a new attempt is
launched at each update of the tracked variable, until the expiration
of the before clause.
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@local $start, $stop, $w 
P: Event $PITCH value  v    at $start 
Q: Event $PITCH value $w at $stop where ($stop - $start) ≥ 2 

next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q

ok

but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat

P

ok
Q

fail

P

ok
Q

fail

It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
3 beats

s

0

P

start
P

end ,Qok
1.5 beats

Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

time

$X

b

d

A T

a c r

Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.
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Contrary to Event, the State pattern is not driven solely by
the updates of the tracked variables: the constraints are checked
when the matching of a State is initiated and when there is an
update of the variables. The matching of a State also stops when
the specified duration has elapsed, independently of the variables
update. If there is no during clause, the pattern tracks the variables
whilst the constraints are satisfied and the matching stops as soon
they are no longer satisfied.

We illustrate State with the pattern

State $X during u where $X > a

Before [v]
State $X where $X > b

whose behavior is sketched in Fig. 4. The diagram assumes that
variable $X is sampling at a rate � a function f . The first State

pattern is looking for an interval of length u where constantly $X is
greater than a. The first possible interval start at A and is figured
by the two white circles on the time axis. The second State pattern
must start to match before v beats have elapsed since the end of
the previous pattern. The match starts as soon as $X is greater than
b. There is no specification of a duration for the second state, so it
finishes its matching at time T as soon as $X becomes smaller than
b. The matched interval is marked with the two dark circles on the
time line.

time

$X

f

a

b

u v r

A T

Figure 4. Matching two successive states, the first above level
a with a specified duration of u and the second above level b

with no duration and within a temporal scope of v. See text for
explanations.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instants. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Single Match” Property. Several distinct occurrences of
the same pattern starting at the same date may exists. Such alter-
native solution may appear when the temporal scope of a pattern
is extended beyond the first value change: then distinct matches
within the temporal scope may satisfy the various constraints of the
pattern2. However the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the single match property and
ensures that only the earliest match is reported.

For instance, consider the pattern twice in paragraph 4.2. If the
variable $V takes the same value three times within 3 seconds, say at

2 If there is no before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

the dates t1 < t2 < t3, then pattern::twice occurs three times as
(t1, t2), (t1, t3), and (t2, t3). Because the pattern matching stops to
look for further occurrences when a match starting at a given date
is found, only the two matches (t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the same
time point. For instance, the curve sketched in Fig. 4 presents many
other possible occurrences of the pattern that finishes at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long
f(A+ n�) > a.

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @Refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @Refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @Local clause. If there is no refractory period specified,
all feasible paths trigger the action.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q a
variable which is then tracked by P .

For instance, suppose that patterns G1, . . . G4 match some basic
gestures reported through the updates of some variables. Then, the
recognition of a sequence Gseq of gestures G1 · (G2|G3) ·G4 (i.e.
G1 followed either by G2 or G3 followed by G4) is easily written
as:

$gesture := 0
whenever pattern ::G1 { $gesture := 1 }
whenever pattern ::G2 { $gesture := 2 }
whenever pattern ::G3 { $gesture := 3 }
whenever pattern ::G4 { $gesture := 4 }

@pattern Gseq {
Event $gesture value 1
Event $gesture

where ($gesture ==2) || ($gesture ==3)
Event $gesture value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
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next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q

ok

but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat

P

ok
Q

fail

P

ok
Q

fail

It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
3 beats

s

0

P

start
P

end ,Qok
1.5 beats

Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.
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Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.

next 3 updates of the tracked variable. The temporal scope can also
be specified in seconds.

The temporal scope defined on an event starts with the preced-
ing event. So a Before clause on the first Event of a pattern se-
quence is meaningless and actually forbidden by the syntax.

4.3 State Patterns
The Event pattern corresponds to a logic of instants: each variable
update is meaningful and a property is checked on a given point in
time. This contrasts with a logic of states where a property is looked
on an interval of time. The State pattern can be used to face such
case.

A Motivating Example. Suppose we want to trigger an action
when a variable $X takes a given value v for at least 2 beats. The
pattern sequence

@local $start , $stop
Event $X value v at $start P
Event $X value v at $stop o

Qwhere ($stop - $start) >= 2

does not work: it matches two successive updates of $X that span
over 2 beats:

$X:=v $X:=v2 beats

P

ok
Q
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but it would not match three consecutive updates of $X for the same
value v, one at each beat, a configuration that should be recognized:

$X:=v $X:=v1 beat $X:=v1 beat
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It is not an easy task to translate the specification of a state that lasts
over an interval into a sequence of instantaneous events, because
they can be an arbitrary number of events that does not change the
state, while the Event pattern matches exactly one event.

The State pattern makes the previous constraint easy to specify:

State $X where ($X == v) during [2]

matches an interval of 2 beats where the variable $X constantly has
the value v (irrespectively of the number of variable updates).

Four optional clauses can be used to constraint a state pattern:
Before and where clauses constrain the matching as described for
Event patterns. The at clause is replaced by the two clauses start
and stop to record or constrain the date at which the matching of
the state has started and the date at which the matching stops. There
is no value clause because the value of the tracked variable may
change during the matching of the pattern, for instance when the
state is defined as “being above some threshold”. The where clause
may refer to a pattern variable set in the start clause, but not to the
value of a stop clause because the date at which the pattern ends is
known only in the future. The during clause can be used to specify
the duration of the state, i.e., the time interval on which the various
constraints of the pattern must hold. If the specified constraints are
not satisfied, the matching fails but, if there is a Before clause,
a new attempt is launched at each update of the tracked variable,
until the expiration of the Before.

“Discrete” vs. “Continuous” State Properties. Contrarily to
Event, the State pattern is not driven solely by the updates of

the tracked variables: in addition, the constraints are also checked
when the matching of a State is initiated. Furthermore, the match-
ing of a State stops when the specified duration has elapsed, inde-
pendently of the variables update. If there is no during clause, the
pattern tracks the variables whilst the constraints are satisfied and
the matching stops as soon they are no longer satisfied.

Still, it remains that checking the guard of a state is done
on discrete time instants (corresponding to the occurrence of a
variable update eventually delayed by durations taken in a finite
set). This constrains the kind of properties that can be handled to
the properties that can be expressed relatively to a given countable
set of dates (in continuous time) and set aside arbitrary properties
defined on continuous time. Consider for example the pattern

State $X where true during [1.5]
Event $X where ($X == v)

with $X updated at date 0 and assigned to v at date 3. We suppose
further that the pattern matching starts at date s = 0. With these
assumptions, one may consider that there is a match M starting at
date s

0 = 1.5 and ending at date 3:

s $X:=v
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Nevertheless Antescofo does not report any match because there is
no event at date 1.5 that can be a possible start to match the State

pattern. The arbitrary date s

0 = 1.5 does not belong on the set of
dates on which the pattern properties are checked.

One may wonder if the notion of state can be extended to handle
such examples. For instance, in the FRAN framework [14] it is
possible to express arbitrary equations on the date of an event in
the specification of this event. Interval analysis is then used to solve
numerically the equations. This approach can be used to extend the
kind of constraints expressible in a where clause but does help here:
the constraint on the start date of the State pattern implies the date
of a future event not yet known. As a matter of fact, reporting the
match M would imply either: (a) to start the matching at each time
instant of the continuous time, which is not reasonable, or, (b) to
access all the past states of the system to check the State pattern a
posteriori when the Event pattern occurs. The approach (b) implies
an unbounded memory and cannot be extended to patterns that do
not end with an event.

Example. We illustrate the State construction with a pattern used
to characterize some kind of “non monotonic increase” of a signal:

State $X during[a] where $X > b

Before[c] State $X where $X > d

The corresponding behavior is sketched in Fig. 4.

time

$X

b

d

A T

a c r

Figure 4. Matching two successive states, the first above level b
with a specified duration of a and the second above level d with no
duration and within a temporal scope of c. See text for explanations.

n  Continuous time but only a discrete number of events
n  The predicate feature in FRAN does not apply�

(the date of the future event is not known yet)
n  Implementation require either

o  a sampling of continuous time (and the start of a�
potential match at each sampled instant)

o  or the access of all past states (i.e. an unbounded memory)
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@pattern P { ... }
...
whenever pattern ::P
{ print "Found one occurrence of P" }

At parsing time, such whenever are recognized and translated on-
the-fly into an equivalent nest of whenever.

4. Antescofo Temporal Patterns
We describe through examples the notion of temporal patterns.
Their semantics is proposed in Sect. 5 and their implementation
in Sect. 6.

Antescofo temporal patterns are inspired by regular expressions.
An ATP P is a sequence of atomic patterns. There is no operators
similar to the option operator r? or the iteration operators r

⇤ or
r

+ available for a regular expression r. The reason is that ATP
matching must be done in real time and must be causal: the decision
that a pattern matches must be done with the last atomic event
matched by the pattern, as soon as it occurs. This is not the case for
example with r

+ which need to look one token ahead to determine
the subsequence matched.

There are two kinds of atomic patterns: Event that corresponds
to a property satisfied on a time point and State for a property
satisfied on a time interval.

4.1 Event Patterns
A pattern Event $X matches an update of the variable $X. This
variable is said tracked by the pattern. Three optional clauses can
be used to constraint the matching: value, where and at. The value

clause constrains the value of the tracked variable. For example:
Event $PITCH value G4

matches only when $PITCH is assigned to G4. The value clause can
be an Antescofo expression and may refer to arbitrary variables.
The where clause is used to specify a guard with an arbitrary
boolean expression: the guard is evaluated at matching time and
the matching fails if it evaluates to false. The at clause is used to
constraint the date of matching.

Pattern Variables. Pattern variables can be used to match and to
record some parameters of the matching. Pattern variables are de-
clared at the beginning of a pattern definition with a @local state-
ment and can then be used elsewhere in the pattern expressions. For
example, the pattern described in paragraph 3.1 becomes:

@local $x, $y, $z
Event $PITCH value $x
Event $PITCH value $y where $x < $y
Event $PITCH value $z

where ($y > $z) & ($z > $x)

Pattern variables can be used in any pattern clauses. For example:
@pattern Twice {

@local $x
Event $PITCH value $x
Event $PITCH value $x

}

matches two consecutive updates of variable $PITCH with the same
unknown value referred by $x: local variables appear as con-
straints linking the patterns.

However, not every constraints are allowed: only syntactic
matching as time progress is used to resolve the constraints ex-
pressed through the pattern variables. This restriction ensures that
the matching is causal. For example, a pattern like

@local $x, $y
Event $PITCH value ($x + $y)
Event $PITCH value ($x + 2*$y)

is rejected at parsing time by Antescofo because the constraint
between the values of the first and second event is an equation that
cannot be solved by syntactic substitutions as the time progresses
(in the example, we have to wait the second update of $PITCH to
decide if the first pattern has matched the first update).

The constraint accepted in ATP have a simple operational inter-
pretation. Consider pattern Twice: when the first event is matched,
a value is given to the pattern variable $x. When the second event
is matched, this value is used to constrain the match. This record-
then-match behavior is just the operational explanation of the ex-
istential quantification in logic formula when no unification nor
solver are available, only matching following the patterns order,
as in ML-like pattern-matching [22].

The scope of the pattern variables extends to the actions trig-
gered by the pattern, when they can be used as ordinary variables.
For example:

@pattern P {
@local $t
Event $PITCH at $t

}
...
whenever pattern ::P
{ print "found a P at " $t }

will report the date of the matching for each occurrence of the
pattern.

Tracking Multiple Variables Simultaneously. It is possible to
track several variables simultaneously: the pattern matches when
one of the tracked variables is updated (and if the other clauses are
fulfilled). For instance, to match an update of $X followed by an
update of either $X or $Y before 1.5 beat, we can write:

@local $t1 , $t2
Event $X at $t1
Event $X , $Y at $t2

where ($t2 - $t1) < 1.5

4.2 Temporal Scope and the Before Clause
The previous example shows that timed properties can be expressed
relying on the at and the where clause. It is however not easy to
express that a variable must take a given value within the next
three updates. This drawback motivates the introduction of the
Before clause to specify the temporal scope on which a matching
is searched.

When Antescofo is looking for the match of the pattern Event

$X, the variable $X is tracked right after the match of the previous
pattern. Then, at the first value change of $X, Antescofo checks the
various constraints of the pattern. If the constraints are not met,
the matching fails. This behavior corresponds to the next operator
in temporal logic. The Before clause can be used to shrink or
to extend the temporal interval on which the pattern is matched
beyond the first value change. For instance, the pattern

@pattern TwiceIn3B {
@local $v
Event $V value $v
Before [3] Event $V value $v

}

is looking for two updates of variable $V for the same value $v

within 3 beats. Nota bene that other updates for other values may
occurs as well as updates for $V but, for the pattern to match,
variable $V must be updated for the same value before 3 beats have
elapsed from the match of the first event.

If the temporal scope [3] is replaced by a logical count [3#],
we are looking for an update for the same value that occurs in the
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The diagram assumes that variable $X is sampling at a rate �

the underlying continuous evolution of a signal f . The first State
pattern is looking for an interval of length a where constantly
variable $X is greater than b. The first possible interval starts at
date A and is figured by the two white circles on the time axis.
The second State pattern must start to match before c beats have
elapsed since the end of the previous pattern. The match starts as
soon as $X is greater than d. There is no specification of a duration
for the second state, so it finishes its matching at time T , as soon
as $X becomes smaller than d. The matched interval is marked with
the two dark circles on the time line.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instant. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Earliest Match” Property. A regular expression may match
several prefixes of the same string. For example, a.b⇤ matches the
three prefixes a, ab, abb of the word abb. Usually, a pattern matcher
reports only one match, characterized by an additional property,
e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the ab-
sence of iteration operators: several distinct occurrences of the
same pattern starting at the same date but ending a different date
may exists. Such alternative solutions may appear when the tem-
poral scope of a pattern is extended beyond the first value change:
then, distinct matches within the temporal scope may satisfy the
various constraints of the pattern2. For instance, consider the pat-
tern TwiceIn3B in paragraph 4.2. If the variable $V takes the same
value three times within 3 seconds, say at the dates t1 < t2 < t3,
then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and (t2, t3).

To ensure the real-time decidability of the matching, the occur-
rence (t1, t2) of the match must be reported because at t2 there is
no information about a possible further match. So the question is to
decide if further matches have to be reported or not. We adopted the
common behavior of reporting only one match (this is for instance
the behavior of lex or grep).

In other word, the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the earliest match property.
In the previous example, with this property, only the two matches
(t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the
same time point. For instance, the curve sketched in Fig. 4 presents
many other possible occurrences of the pattern that finish at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long as
f(A+ n� + x) > b for x 2 [0, a].

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @local clause. If there is no refractory period specified,
all feasible paths trigger the action.

2 If there is no Before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q

a variable which is then tracked by P . For instance, suppose that
patterns G1, . . . , G4 match some basic gestures reported through
the updates of some variables. Then, the recognition of a sequence
Gseq of gestures G1 · (G2|G3) ·G4, i.e., G1 followed either by G2

or G3 followed by G4, is easily specified as:

$g := 0
whenever pattern ::G1 { $g := 1 }
whenever pattern ::G2 { $g := 2 }
whenever pattern ::G3 { $g := 3 }
whenever pattern ::G4 { $g := 4 }

@pattern Gseq {
Event $g value 1
Event $g where ($g==2) || ($g==3)
Event $g value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
one after the other. It is very convenient to have events and actions
that can happen at the same metric time instant, but in some well
definite order. For example, on some event, an audio filter must
be turned on and then it must receive some control parameters.
Obviously, the control parameters must be sent only when the filter
is on, but it is pointless to explicitly wait some arbitrary small delay
between the two actions.

We formalize time-event sequences as follows. We represent
the time passage by an element of R+. The elements of U , the
set of events, are the updates of the variables: an element of U is
a term x := v where x 2 I is an Antescofo variable and v 2 V
an Antescofo value. We look at these sets as flat domains U? and
R+

? with the same minimal element ?: all elements except ? are
incomparable [24] for the ordering � (this order is the domain order
and should not be confused with the numerical order  on R+). So,
a time-event sequence is an element of the monoid

S = (U? [ R+
?)

⇤
/ ⇠

where the monoid operation is denoted by · and where ⇠ is the
congruence relation defined by:

d · d0 ⇠ d+ d

0
, 0 · s ⇠ s, s · 0 ⇠ s

for d, d

0 2 R+ and s 2 S. The congruence relation is used to
aggregate consecutive time passages and to throw away useless

G1 

G3 

G2 
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The diagram assumes that variable $X is sampling at a rate �

the underlying continuous evolution of a signal f . The first State
pattern is looking for an interval of length a where constantly
variable $X is greater than b. The first possible interval starts at
date A and is figured by the two white circles on the time axis.
The second State pattern must start to match before c beats have
elapsed since the end of the previous pattern. The match starts as
soon as $X is greater than d. There is no specification of a duration
for the second state, so it finishes its matching at time T , as soon
as $X becomes smaller than d. The matched interval is marked with
the two dark circles on the time line.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instant. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Earliest Match” Property. A regular expression may match
several prefixes of the same string. For example, a.b⇤ matches the
three prefixes a, ab, abb of the word abb. Usually, a pattern matcher
reports only one match, characterized by an additional property,
e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the ab-
sence of iteration operators: several distinct occurrences of the
same pattern starting at the same date but ending a different date
may exists. Such alternative solutions may appear when the tem-
poral scope of a pattern is extended beyond the first value change:
then, distinct matches within the temporal scope may satisfy the
various constraints of the pattern2. For instance, consider the pat-
tern TwiceIn3B in paragraph 4.2. If the variable $V takes the same
value three times within 3 seconds, say at the dates t1 < t2 < t3,
then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and (t2, t3).

To ensure the real-time decidability of the matching, the occur-
rence (t1, t2) of the match must be reported because at t2 there is
no information about a possible further match. So the question is to
decide if further matches have to be reported or not. We adopted the
common behavior of reporting only one match (this is for instance
the behavior of lex or grep).

In other word, the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the earliest match property.
In the previous example, with this property, only the two matches
(t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the
same time point. For instance, the curve sketched in Fig. 4 presents
many other possible occurrences of the pattern that finish at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long as
f(A+ n� + x) > b for x 2 [0, a].

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @local clause. If there is no refractory period specified,
all feasible paths trigger the action.

2 If there is no Before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q

a variable which is then tracked by P . For instance, suppose that
patterns G1, . . . , G4 match some basic gestures reported through
the updates of some variables. Then, the recognition of a sequence
Gseq of gestures G1 · (G2|G3) ·G4, i.e., G1 followed either by G2

or G3 followed by G4, is easily specified as:

$g := 0
whenever pattern ::G1 { $g := 1 }
whenever pattern ::G2 { $g := 2 }
whenever pattern ::G3 { $g := 3 }
whenever pattern ::G4 { $g := 4 }

@pattern Gseq {
Event $g value 1
Event $g where ($g==2) || ($g==3)
Event $g value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
one after the other. It is very convenient to have events and actions
that can happen at the same metric time instant, but in some well
definite order. For example, on some event, an audio filter must
be turned on and then it must receive some control parameters.
Obviously, the control parameters must be sent only when the filter
is on, but it is pointless to explicitly wait some arbitrary small delay
between the two actions.

We formalize time-event sequences as follows. We represent
the time passage by an element of R+. The elements of U , the
set of events, are the updates of the variables: an element of U is
a term x := v where x 2 I is an Antescofo variable and v 2 V
an Antescofo value. We look at these sets as flat domains U? and
R+

? with the same minimal element ?: all elements except ? are
incomparable [24] for the ordering � (this order is the domain order
and should not be confused with the numerical order  on R+). So,
a time-event sequence is an element of the monoid

S = (U? [ R+
?)

⇤
/ ⇠

where the monoid operation is denoted by · and where ⇠ is the
congruence relation defined by:

d · d0 ⇠ d+ d

0
, 0 · s ⇠ s, s · 0 ⇠ s

for d, d

0 2 R+ and s 2 S. The congruence relation is used to
aggregate consecutive time passages and to throw away useless

The diagram assumes that variable $X is sampling at a rate �

the underlying continuous evolution of a signal f . The first State
pattern is looking for an interval of length a where constantly
variable $X is greater than b. The first possible interval starts at
date A and is figured by the two white circles on the time axis.
The second State pattern must start to match before c beats have
elapsed since the end of the previous pattern. The match starts as
soon as $X is greater than d. There is no specification of a duration
for the second state, so it finishes its matching at time T , as soon
as $X becomes smaller than d. The matched interval is marked with
the two dark circles on the time line.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instant. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Earliest Match” Property. A regular expression may match
several prefixes of the same string. For example, a.b⇤ matches the
three prefixes a, ab, abb of the word abb. Usually, a pattern matcher
reports only one match, characterized by an additional property,
e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the ab-
sence of iteration operators: several distinct occurrences of the
same pattern starting at the same date but ending a different date
may exists. Such alternative solutions may appear when the tem-
poral scope of a pattern is extended beyond the first value change:
then, distinct matches within the temporal scope may satisfy the
various constraints of the pattern2. For instance, consider the pat-
tern TwiceIn3B in paragraph 4.2. If the variable $V takes the same
value three times within 3 seconds, say at the dates t1 < t2 < t3,
then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and (t2, t3).

To ensure the real-time decidability of the matching, the occur-
rence (t1, t2) of the match must be reported because at t2 there is
no information about a possible further match. So the question is to
decide if further matches have to be reported or not. We adopted the
common behavior of reporting only one match (this is for instance
the behavior of lex or grep).

In other word, the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the earliest match property.
In the previous example, with this property, only the two matches
(t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the
same time point. For instance, the curve sketched in Fig. 4 presents
many other possible occurrences of the pattern that finish at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long as
f(A+ n� + x) > b for x 2 [0, a].

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @local clause. If there is no refractory period specified,
all feasible paths trigger the action.

2 If there is no Before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q

a variable which is then tracked by P . For instance, suppose that
patterns G1, . . . , G4 match some basic gestures reported through
the updates of some variables. Then, the recognition of a sequence
Gseq of gestures G1 · (G2|G3) ·G4, i.e., G1 followed either by G2

or G3 followed by G4, is easily specified as:

$g := 0
whenever pattern ::G1 { $g := 1 }
whenever pattern ::G2 { $g := 2 }
whenever pattern ::G3 { $g := 3 }
whenever pattern ::G4 { $g := 4 }

@pattern Gseq {
Event $g value 1
Event $g where ($g==2) || ($g==3)
Event $g value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
one after the other. It is very convenient to have events and actions
that can happen at the same metric time instant, but in some well
definite order. For example, on some event, an audio filter must
be turned on and then it must receive some control parameters.
Obviously, the control parameters must be sent only when the filter
is on, but it is pointless to explicitly wait some arbitrary small delay
between the two actions.

We formalize time-event sequences as follows. We represent
the time passage by an element of R+. The elements of U , the
set of events, are the updates of the variables: an element of U is
a term x := v where x 2 I is an Antescofo variable and v 2 V
an Antescofo value. We look at these sets as flat domains U? and
R+

? with the same minimal element ?: all elements except ? are
incomparable [24] for the ordering � (this order is the domain order
and should not be confused with the numerical order  on R+). So,
a time-event sequence is an element of the monoid

S = (U? [ R+
?)

⇤
/ ⇠

where the monoid operation is denoted by · and where ⇠ is the
congruence relation defined by:

d · d0 ⇠ d+ d

0
, 0 · s ⇠ s, s · 0 ⇠ s

for d, d

0 2 R+ and s 2 S. The congruence relation is used to
aggregate consecutive time passages and to throw away useless

The diagram assumes that variable $X is sampling at a rate �

the underlying continuous evolution of a signal f . The first State
pattern is looking for an interval of length a where constantly
variable $X is greater than b. The first possible interval starts at
date A and is figured by the two white circles on the time axis.
The second State pattern must start to match before c beats have
elapsed since the end of the previous pattern. The match starts as
soon as $X is greater than d. There is no specification of a duration
for the second state, so it finishes its matching at time T , as soon
as $X becomes smaller than d. The matched interval is marked with
the two dark circles on the time line.

4.4 Limiting the Number of Matches
The same pattern may match distinct occurrences that start or that
stop at the same time instant. This behavior may be unwanted
because it will produce “spurious matches” that reach, by multiple
paths, the same time point T .

The “Earliest Match” Property. A regular expression may match
several prefixes of the same string. For example, a.b⇤ matches the
three prefixes a, ab, abb of the word abb. Usually, a pattern matcher
reports only one match, characterized by an additional property,
e.g., “the longest match”.

A similar problem exists for temporal patterns, even in the ab-
sence of iteration operators: several distinct occurrences of the
same pattern starting at the same date but ending a different date
may exists. Such alternative solutions may appear when the tem-
poral scope of a pattern is extended beyond the first value change:
then, distinct matches within the temporal scope may satisfy the
various constraints of the pattern2. For instance, consider the pat-
tern TwiceIn3B in paragraph 4.2. If the variable $V takes the same
value three times within 3 seconds, say at the dates t1 < t2 < t3,
then TwiceIn3B occurs three times as (t1, t2), (t1, t3), and (t2, t3).

To ensure the real-time decidability of the matching, the occur-
rence (t1, t2) of the match must be reported because at t2 there is
no information about a possible further match. So the question is to
decide if further matches have to be reported or not. We adopted the
common behavior of reporting only one match (this is for instance
the behavior of lex or grep).

In other word, the Antescofo pattern matching stops looking for
further occurrences in the same temporal scope, after having found
the first one. This behavior is called the earliest match property.
In the previous example, with this property, only the two matches
(t1, t2) and (t2, t3) are reported.

The Refractory Period. Symmetrically, several occurrences of
the same pattern may start at distinct time points to end on the
same time point. For instance, the curve sketched in Fig. 4 presents
many other possible occurrences of the pattern that finish at instant
T . These occurrences start at A + n�, where � is the sampling
rate of the curve (i.e., the rate at which $X is updated), as long as
f(A+ n� + x) > b for x 2 [0, a].

In such case, a @refractory period can be used to restrict the
number of successful (reported) matches. The @refractory clause
specifies the period after a successful match during which no other
match may occur. This period is counted starting from the end of
the successful match. A possible refractory period r is represented
in Fig. 4. The refractory period is defined for a pattern sequence, not
for an atomic pattern. The @refractory clause must be specified
at the beginning of the pattern sequence just before or after an
eventual @local clause. If there is no refractory period specified,
all feasible paths trigger the action.

2 If there is no Before clause, the temporal scope is “the first value change”
which implies that there is at most one match.

4.5 Patterns Hierarchization
Because atomic patterns track ordinary Antescofo variables, it is
very easy to create patterns P for more complex events and states
from more elementary patterns Q. The idea is to update with Q

a variable which is then tracked by P . For instance, suppose that
patterns G1, . . . , G4 match some basic gestures reported through
the updates of some variables. Then, the recognition of a sequence
Gseq of gestures G1 · (G2|G3) ·G4, i.e., G1 followed either by G2

or G3 followed by G4, is easily specified as:

$g := 0
whenever pattern ::G1 { $g := 1 }
whenever pattern ::G2 { $g := 2 }
whenever pattern ::G3 { $g := 3 }
whenever pattern ::G4 { $g := 4 }

@pattern Gseq {
Event $g value 1
Event $g where ($g==2) || ($g==3)
Event $g value 4

}
...
whenever pattern ::Gseq { ... }

5. Antescofo Temporal Patterns Semantics
We present in this section a simplified pattern-matching algorithm
for Antescofo temporal patterns, following a denotational style. We
first introduce the notion of time-event sequence which formalizes
the input stream on which the matching is done. Then we define the
matching of a pattern P on a time-event sequence S by a function
which returns either the time at which the matching succeeded
(from the start of S) or fail. This function is defined by induction
on both P and S.

5.1 Time-Event Sequences
It should be clear by now that the Antescofo DSL goes beyond
the synchronous stream of atomic events, to handle the metric
passage of time. This leads to the notion of time-event sequence
representing an interleaving of time passages and events [3]. As
usual in synchronous languages, an event is atomic: updates of a
variable occur at certain time points and consume no time. Time-
event sequences allow two events to happen simultaneously but still
one after the other. It is very convenient to have events and actions
that can happen at the same metric time instant, but in some well
definite order. For example, on some event, an audio filter must
be turned on and then it must receive some control parameters.
Obviously, the control parameters must be sent only when the filter
is on, but it is pointless to explicitly wait some arbitrary small delay
between the two actions.

We formalize time-event sequences as follows. We represent
the time passage by an element of R+. The elements of U , the
set of events, are the updates of the variables: an element of U is
a term x := v where x 2 I is an Antescofo variable and v 2 V
an Antescofo value. We look at these sets as flat domains U? and
R+

? with the same minimal element ?: all elements except ? are
incomparable [24] for the ordering � (this order is the domain order
and should not be confused with the numerical order  on R+). So,
a time-event sequence is an element of the monoid

S = (U? [ R+
?)

⇤
/ ⇠

where the monoid operation is denoted by · and where ⇠ is the
congruence relation defined by:

d · d0 ⇠ d+ d

0
, 0 · s ⇠ s, s · 0 ⇠ s

for d, d

0 2 R+ and s 2 S. The congruence relation is used to
aggregate consecutive time passages and to throw away useless

:	

Time passages are not divisible
One cannot insert new time instants at will

$x := a  ,	 $y := b, $x := c    ,	
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time passages of duration zero: time passages are indecomposable
and bounded by events. This monoid equipped with the prefix order
�, i.e., s � s

0 iff it exists t such that s0 = s · t, is a domain. The
empty element of S is denoted by ✏.

5.2 The Patterns
Without loss of generality, we restrict ourselves to the case of pat-
terns tracking only one variable. We assume also that the argument
of the clauses at, value, start and stop is always a fresh pattern
variable (that is, a pattern variable that do not appear in a previ-
ous clause). Furthermore, for an Event pattern, we assume that all
the clauses appear. For a State pattern, we assume that there is a
Before clause and no start and stop clauses. The management of
these clauses is similar to the value clause of an Event as done
in the equations of Fig. 5 and presents no difficulty. If a pattern is
the first of the sequence, the value of its Before clause is +1 by
convention.

As a matter of fact, a pattern can always be rewritten into an
equivalent pattern that fulfills these assumptions. For example

Event $X value v at $s where e

Event $Y value v

0 at $s where e

0

where v, v0 are expressions, can be rewritten in

Event $X value $v at $s
where e && ($v == v)

Event $Y value $w at $t
$where e

0 && ($w == v

0) && ($s == $t)

where $v, $w, $t are fresh identifiers.
An implicit Before clause corresponds to a temporal scope of

“first value change”, so

Event $X ...
Event $Y ...

can be rewritten in

Before[+1] Event $X ...
Before [1#] Event $Y ...

And a pattern tracking two variables $X and $Y

Event $X , $Y ...

can be rewritten into an equivalent program using a fresh variable
$XY to track the updates of both $X and $Y.

whenever ($X==$X || $Y==$Y) { $XY:=true }
...
Event $XY ...

Here, the expression $X==$X is used to have a predicate which is
always true on the update of $X.

With these assumptions, a pattern is a sequence of Event and
State:

P ::= " | Event · P | State · P
Event ::= Before[ Dur ] Event I at I value I where Exp
State ::= Before[ Dur ] State I where Exp

| Before[ Dur ] State I where Exp during[ R+ ]

Dur ::= R+ | N#

where " is the empty pattern sequence, Exp is the (unspecified) set
of Antescofo expressions, R+ = R+ [ {+1} and d < +1 for
all d 2 R+. The notation P

x

is used to make explicit the variable x
tracked by the pattern P .

5.3 The Pattern Matching Function
An environment ⇢ 2 E is a partial function from the set of vari-
ables I to the set of values V . The augmentation ⇢[$X := v] of
an environment ⇢ with identifier $X and value v is a new en-
vironment ⇢

0 such that ⇢

0($X) = v and ⇢

0(x) = ⇢(x) for all
x 6= $X. We write ⇢[x1 := v1, x2 := v2, . . . ] as a shorthand for�
⇢[x1 := v1]

�
[x2 := v2, . . . ] and ⇢[x += d] as an abbreviation for

⇢

⇥
x := ⇢(x) + d

⇤
. We also reserve the identifier $NOW to record the

“current time” in the environment for some bookkeeping.
Let E : Exp ! E ! V be the function used to evaluate an

expression e 2 Exp: E
q
e

y
⇢ returns the value of the expression e in

the environment ⇢. The two booleans true and false belong to V .
We do not specify the function E in this article but its definition is
standard.

Let P be a pattern sequence. We define the matching of P on a
time-event sequence S by a function M:

M : P ! E ! S ! R+ [ {fail}
specified inductively by the equations on Fig. 5. If P matches a
prefix of S, the function M returns a date, else it returns fail . The
date returned in case of success is the date at which the action
triggered by the pattern must be launched (i.e., the at date for
an Event or the stop date for a State pattern, of the last atomic
pattern of the sequence). This date is the earliest possible match,
thus satisfying the earliest match property. We do not model here
the mechanism of refractory period, which is straightforward by
recording the history of matches, nor the semantics of actions,
which is out of the scope of this paper3.

The basic idea is to define by case analysis what happens on the
reception of an event or when the time is passing. In this sense, the
M function is similar to the Brzozowski’s derivatives of a regular
expression [8]. Our context at the same time is simpler (there is no
iteration operator and there is no need to represent symbolically the
derivatives in a closed form) and presents specific difficulties (the
handling of both events and time passages, and the management
of variables). We follow the approach already taken in [17] by
augmenting the derivatives with an environment.

The equations of Fig. 5 are commented below. These equations
are well formed recursive definitions: the left hand sides specify
mutually disjoint cases, and the right hand sides are composition
of continuous functions on domains. So they admit a least fixed
point which is the denotation of a pattern: a function which, given
an environment and a time-event sequence, returns the date of the
earliest match or fail.

General Equations. The matching always succeeds if the pattern
is the empty sequence (Eq. 1). Symmetrically, the matching fails
if the input time-event sequence is exhausted but there is still an
atomic pattern to process (Eq. 2). And (Eq. 3) expresses the match-
ing is insensitive to the update of a variable that is not the tracked
variable. The remaining equations correspond to a definition by
case on the structure of the first pattern of the sequence (the rest
of the sequence is denoted by Q).

Matching an Event. The matching of an Event pattern is defined
by (Eq. 4–7). The notation P

x

is used to factorize the writing of the
Event through the various possible values for the Before clause.

3 It would require transformations of the time-event sequence in the right
hand side of the equations in Fig. 5 beyond taking its tail. To take into
account causality, this imply to rely on (U? [ R+

?)$ / ⇠ for the time-
event sequences where X $ ⇠= X ⌦ X $

? which differs from the domain
of streams in that the former does not allow ? components to be followed
by non-? components. This domain makes easier the handling of temporal
shortcuts, e.g., a pattern that launches an action which leads to trigger the
same pattern in the same time instant.

time passages of duration zero: time passages are indecomposable
and bounded by events. This monoid equipped with the prefix order
�, i.e., s � s

0 iff it exists t such that s0 = s · t, is a domain. The
empty element of S is denoted by ✏.
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0) && ($s == $t)

where $v, $w, $t are fresh identifiers.
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“first value change”, so

Event $X ...
Event $Y ...

can be rewritten in
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And a pattern tracking two variables $X and $Y

Event $X , $Y ...

can be rewritten into an equivalent program using a fresh variable
$XY to track the updates of both $X and $Y.

whenever ($X==$X || $Y==$Y) { $XY:=true }
...
Event $XY ...

Here, the expression $X==$X is used to have a predicate which is
always true on the update of $X.

With these assumptions, a pattern is a sequence of Event and
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of Antescofo expressions, R+ = R+ [ {+1} and d < +1 for
all d 2 R+. The notation P

x

is used to make explicit the variable x
tracked by the pattern P .

5.3 The Pattern Matching Function
An environment ⇢ 2 E is a partial function from the set of vari-
ables I to the set of values V . The augmentation ⇢[$X := v] of
an environment ⇢ with identifier $X and value v is a new en-
vironment ⇢
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“current time” in the environment for some bookkeeping.
Let E : Exp ! E ! V be the function used to evaluate an

expression e 2 Exp: E
q
e

y
⇢ returns the value of the expression e in

the environment ⇢. The two booleans true and false belong to V .
We do not specify the function E in this article but its definition is
standard.

Let P be a pattern sequence. We define the matching of P on a
time-event sequence S by a function M:

M : P ! E ! S ! R+ [ {fail}
specified inductively by the equations on Fig. 5. If P matches a
prefix of S, the function M returns a date, else it returns fail . The
date returned in case of success is the date at which the action
triggered by the pattern must be launched (i.e., the at date for
an Event or the stop date for a State pattern, of the last atomic
pattern of the sequence). This date is the earliest possible match,
thus satisfying the earliest match property. We do not model here
the mechanism of refractory period, which is straightforward by
recording the history of matches, nor the semantics of actions,
which is out of the scope of this paper3.

The basic idea is to define by case analysis what happens on the
reception of an event or when the time is passing. In this sense, the
M function is similar to the Brzozowski’s derivatives of a regular
expression [8]. Our context at the same time is simpler (there is no
iteration operator and there is no need to represent symbolically the
derivatives in a closed form) and presents specific difficulties (the
handling of both events and time passages, and the management
of variables). We follow the approach already taken in [17] by
augmenting the derivatives with an environment.

The equations of Fig. 5 are commented below. These equations
are well formed recursive definitions: the left hand sides specify
mutually disjoint cases, and the right hand sides are composition
of continuous functions on domains. So they admit a least fixed
point which is the denotation of a pattern: a function which, given
an environment and a time-event sequence, returns the date of the
earliest match or fail.

General Equations. The matching always succeeds if the pattern
is the empty sequence (Eq. 1). Symmetrically, the matching fails
if the input time-event sequence is exhausted but there is still an
atomic pattern to process (Eq. 2). And (Eq. 3) expresses the match-
ing is insensitive to the update of a variable that is not the tracked
variable. The remaining equations correspond to a definition by
case on the structure of the first pattern of the sequence (the rest
of the sequence is denoted by Q).

Matching an Event. The matching of an Event pattern is defined
by (Eq. 4–7). The notation P

x

is used to factorize the writing of the
Event through the various possible values for the Before clause.

3 It would require transformations of the time-event sequence in the right
hand side of the equations in Fig. 5 beyond taking its tail. To take into
account causality, this imply to rely on (U? [ R+

?)$ / ⇠ for the time-
event sequences where X $ ⇠= X ⌦ X $

? which differs from the domain
of streams in that the former does not allow ? components to be followed
by non-? components. This domain makes easier the handling of temporal
shortcuts, e.g., a pattern that launches an action which leads to trigger the
same pattern in the same time instant.

The environment: variable à value

The input (the future)

The date of the 
action launched as 
the result of the 
match of the pattern
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Figure 5. Specification of the Antescofo temporal pattern matching function M. In these equations: d 2 R+; d0 2 R+; x, x0
, y and

z are elements of I; P,Q are elements of P and P

x

, P

0
x

are patterns, or parts of a pattern, tracking the variable x; ⇢ 2 E ; v 2 V;
n 2 N and n 6= 0; D 2 Dur, i.e., D = d or D = n#; and S 2 S. The function min is the usual function on R+ extended such that
min(d, fail) = min(fail , d) = d and min(fail , fail) = fail . The auxiliary function MS as the same signature as M.
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The occurrence of an event on x  has no effect on the 
pattern matching except the update of the environment 
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Figure 5. Specification of the Antescofo temporal pattern matching function M. In these equations: d 2 R+; d0 2 R+; x, x0
, y and

z are elements of I; P,Q are elements of P and P

x

, P

0
x

are patterns, or parts of a pattern, tracking the variable x; ⇢ 2 E ; v 2 V;
n 2 N and n 6= 0; D 2 Dur, i.e., D = d or D = n#; and S 2 S. The function min is the usual function on R+ extended such that
min(d, fail) = min(fail , d) = d and min(fail , fail) = fail . The auxiliary function MS has the same signature as M.

if something happens it can either
•  participate to the match
•  or not



IMPLEMENTATION SKETCH




@pattern_def  pattern::Gong
{
   @Local $x, $y, $z, $s2, $s3

   Event $S value $x
   Event $S value $y at $s2 
   Event $S value $z at $s3 

   where  ($z in $x .. $y) 
               &&  ($s3 - $s2) < 2
} 

whenever pattern::Gong
{
   print GOTCHA  GONG $s3
}

WHENEVER  ( $S == $S )   
{ 

 @local $__71_continue, $x 
 

 let $__71_continue := true   
 let $x := $S   
 WHENEVER  ( $__71_continue && $S == $S )   

    { 
      @local $s2, $y 
 

  let $s2:= $NOW   
      let $y := $S   
      WHENEVER  ( $__71_continue && $S == $S )   
         { 

   @local $s3, $z 
 

   let $s3 := $NOW   
   let $z := $S   
   if (@between($x, $z, $y) && ($s3-$s2 < 2))  

             { 
              let $__71_continue := false   

    print GOTCHA GONG $s3  
             } 
         } during [1 #] 
    } during [1 #] 
} 

Compilation through translation
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Handling efficiently the before operator
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WHENEVER ( $X == $X )   { 
    @local $__2_continue 
 
    let $__2_continue := true          
    WHENEVER  ( $__2_continue && $X == $X )  { 
        if ($X > 0) { 
            let $__2_continue := false         
            print OK     
        } 
    } during [2] 
} 

@pattern_def pattern::P
{
     Event $X
     Before [2] Event $X where $X > 0
}
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Figure 5. Specification of the Antescofo temporal pattern matching function M. In these equations: d 2 R+; d0 2 R+; x, x0
, y and
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are patterns, or parts of a pattern, tracking the variable x; ⇢ 2 E ; v 2 V;
n 2 N and n 6= 0; D 2 Dur, i.e., D = d or D = n#; and S 2 S. The function min is the usual function on R+ extended such that
min(d, fail) = min(fail , d) = d and min(fail , fail) = fail . The auxiliary function MS has the same signature as M.



CONCLUSION



Temporal Patterns
n  Inspired by "regular expression" but

o  infinite alphabet : event valued in an unbounded alphabet 
(variables + values)

o  arbitrary predicate
o  state pattern (a causal version of * )
o  causal (no crystal ball)

n  First dedicated implementation
o  more efficient
o  less expressive
o  heavy to maintain

n  Current implementation by translation : �
 efficient enough for the current applications

n  Used in a few concerts



Perspectives
n  Concise Semantics

o  do not handle patterns as their own source of event
o  causality is hidden�

but some result may express causality: prefix computation
o  more work needed to delineate what kind of state can be 

expressed
o  difficult to compare precisely with current work in temporal logic

n  Extensions
o  additional operators (NoEvent)
o  extending state properties (if bounded memory)
o  expressing audio signal transformation (in spectral domain ?)
o  more efficient translation (using variable's history)
o  more demanding applications (e.g., probabilistic matching)
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http://repmus.ircam.fr/antescofo
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Application : accompagnement automatique


