Simulation of self-assembly processes using
abstract reduction systems

Jean-Louis Giavitto & Antoine Spicher

LaMI UMR 8042 CNRS — Université d’Evry, Génopole,
528 place des Terrasses de I’Agora, 91000 Evry, France

Abstract

We present in this chapter the use of MGS, a declarative and rule-based language
dedicated to the modeling and the simulation of various morphogenetic and devel-
opmental processes, like self-assembly processes. The MGS approach relies on the
introduction of a topological point of view on various data structures called topo-
logical collections. This topological approach enables a uniform handling of theses
data structure by a new kind of rewriting rules called transformations. Using (local)
rewriting rules to specify self-assembling processes is particularly adequate because
it mimics closely the incremental building mechanism of the real phenomena. The
MGS approach is illustrated on the fabrication of a fractal pattern, a Sierpinsky
triangle, using two approaches: by accretive growth and by carving. More generally,
the notions of topological collections and transformations available in MGS enable
the easy and concise modeling of cellular automata on various lattice geometries as
well as more arbitrary constructions of multi-dimensional objects.

1 Introduction

Self-assembly is a process that creates incrementally complex hierarchical spa-
tial structures. Nature presents a lots of examples, ranging from crystallization
in physics to morphogenesis in developmental biology. There is no unified gen-
eral theory of self-assembling, nor a unique definition. However, understand-
ing the principles underlying self-assembly processing will open entire new
opportunities for our technological capabilities. In this chapter, self-assembled
systems can be thought to be built of basic building elements (molecules,
cells, etc.); together these basic elements exhibit a new, often highly, complex
behavior.

Email address: [giavitto,aspicher]@lami.univ-evry.fr.
URL: http://mgs.lami.univ-evry.fr.

Preprint submitted to Elsevier Science 11 July 2005

For a computer scientist, self-assembly processes are particularly inspiring
because the dynamic organization of the involved entities emerge from many
decentralized and local interactions that occur concurrently at several time and
space scales. As a matter of fact, they have inspired several new computational
models like amorphous computing (1) or autonomic computing (9).

The emergence of the global structure of self-assembled systems cannot be
deduced from the individual composing elements. Simulation models are often,
if not the only available way, to obtain a deeper insight of these complex
systems. However, the modeling and the simulation of self-assembly can be
very difficult to achieve, because of the representation of the underlying space
and of the handling of complex spatial structures build in this space.

1.1 Self-Assembly by Accretive Growth and by Carving

A central thema in the research in self-assembly processes is the organizational
principles that can be used to structure a population of basic elements. The
structure is incrementally built and often corresponds to a spatial structure.
In this paper we will focus on the modeling of two kinds of self-assembly
that rely on the addition or the removal of materials. That is, we do not
consider rearrangement of matter, nor its modification (e.g. by stretching).
Our approach has a combinatorial nature and hide the burden of the physical
implementation.

Self-Assembly by Accretive Growth. One of the most fundamental kind
of self-assembly is certainly processes where basic elements are aggregated
into a shape during a growth process. An incremental growth process can be
described as the iteration of a basic aggregation : in each growth stage, new
basic entities (e.g., material) are added to the preceding growth stage (10).
The aggregation depends on the available material and also on the the form
of the object in the preceding growth stage. We use the term accretive growth
to qualify a growing process that takes place on the boundaries of the system.
This kind of growth is to oppose to “intercalary growth” where the growing
process is from the inside of the assembly.

Self-Assembly by Carving. Manca et al. have introduced a somewhat
unusual type of computation strategy called computation by carving (12). The
idea is to generate a (large) set of candidate solutions of a problem, then
remove the non-solutions such that what remains is the set of solutions. This
idea to remove unwanted elements is also present in building shapes by space
carving (11), an algorithm to compute a volume that is consistent with a set

of photos of a 3D shape. Transposed in the domain of self-assembly, this leads
to the idea to iteratively remove elements, starting from an initial shape. A
better name is perhaps self-disassembling.

1.2 Domain Specific Languages for the Simulation of Self-Assembly

As noted above, the simulation of self-assembly can be very difficult to achieve.
In this paper, we advocate the use of a domain specific language (DSL) for the
modeling and the simulation, in an abstract and uniform setting, of accretive
growth and carving.

DSLs are specially tailored programming languages designed for solving prob-
lems in a particular domain. To this end, a DSL provides abstractions and
notations for the domain at hand. DSLs are usually small, and more declara-
tive than imperative. Moreover, DSLs are more attractive for programming in
the dedicated domain than general-purpose languages because of easier pro-
gramming, systematic reuse, better productivity and flexibility. Our approach
relies on two dedicated notions:

e dedicated data-structures, called topological collections are used to repre-
sent the space underlying a self-assembly process and/or the self-assembled
system; and

e rewriting rules on topological collection, called transformations, are used to
implement the local evolution rules usually used to specify the self-assembly
process.

These two notions are studied in an experimental programming language
called MGS. MGS is a vehicle used to investigate the notions of topological
collections and transformations and to study their adequacy to the simulation
of various biological and self-assembly processes (6; 4). Using (local) rewriting
rules to specify the self-assembling process is particularly adequate because it
mimics closely the incremental building mechanism of the real phenomenon.
In addition, the declarative style enabled by rule-based programming corre-
sponds to a mathematical specification of the self-assembly process, which
opens the way to mathematical reasoning and proofs.

1.3 Organization of the Paper

The rest of this paper is organized as follows. The next section provides a
quick introduction to MGS. Group-based data fields are sketched: they are
topological collections used to define various lattices used in the modeling of
accretive growth. Section 3 presents three short and well-known examples of

growth by aggregation processes in MGS. Section 4 details the self-assembly
of Sierpinsky triangles. Section 5 introduces the notion of abstract cellular
complexes and their handling in MGS. Cellular complexes are used to model
arbitrary shape for growth and carving. The use of abstract cellular complexes
is illustrated to sketch the tridimensional assembly of proteins. The process
sketched is rather abstract and does not refer to a physical example. However
it gives a good flavor of the possibilities offered by abstract cellular complexes
and the very concise style enabled by the MGS transformations. In section 7
we build again Sierpinsky triangles but in 3 dimensions and using a carving
process. The conclusion reviews some previous, related and future work.

2 A Short MGS Presentation

In this section, we present the notions needed to understand the MGS coding of
the following computation processes. MGS is a declarative programming lan-
guage aimed at the representation and manipulation of local transformations
of entities structured by abstract topologies (4). A set of entities organized by
an abstract topology is called a topological collection. Topological means here
that each collection type defines a neighborhood relation specifying both the
notion of locality, path and sub-collection. A path is a finite sequence of ele-
ments e; where e;,1 is a neighbor of e;. A sub-collection B of a collection A is
a subset of elements of A defined by some path and inheriting its organization
from A. The global transformation of a topological collection C' consists in the
parallel application of a set of local transformations. A local transformation
is specified by a rewriting rule r that specifies the change of a sub-collection.
The application of a rewrite rule 8 = f(3,...) to a collection A:

(1) selects a sub-collection B of A whose elements match pattern (3,
(2) computes a new collection C' as a function f of B and its neighbors,
(3) and specifies the insertion of C' in place of B into A.

The collection types can range in MGS from totally unstructured with sets
and multisets to more structured with sequences, “group-based data fields”
and “abstract cellular complexes”.

There are two kinds of patterns that can be used in a transformation for
selecting a sub-collection: path patterns and patch patterns.

Path Patterns. Path patterns match paths in a collection. A path pattern
is a sequence of elements separated by a comma. Path pattern x, y defines a
path of two elements, where y must be a neighbor of x. Arbitrary condition
can be tested using guards inserted in a path pattern: (x/x>0), (y/y>x)

matches two elements x and y such that the value of x is strictly positive and
y is a neighbor of x and the value of y must be greater than the value of x.

Patch Patterns. Patch patterns allow the matching of arbitrary sub-collection.
A patch pattern is specified using a set of clauses. We will present the patch
pattern features we need on section 7.

2.1 Group-Based Data Field

Group-based data fields (GBF in short) are used to define topological collec-
tions with uniform neighborhood. A GBF is an extension of the notion of
array, where the values are indexed by the elements of a group, called the
shape of the GBF (5). The elements of the group are called the positions of
the GBF. For example:

gbf Grid2 = < north, east >

defines a GBF collection type called Grid2, corresponding to the Von Neu-
man neighborhood in a classical array (a cell above, below, left or right —not
diagonal). The two names north and east refer to the directions that can be
followed to reach the neighbors of an element. These directions are the gen-
erators of the underlying group structure. The right hand side (r.h.s.) of the
GBF definition gives a finite presentation of the group structure.

The list of the generators can be completed by giving equations that constraint
the displacements in the shape:

gbf Hex2 = <east, north, northeast; east+north=northeast >

defines an hexagonal lattice that tiles the plane, see figure 2. Each cell has
six neighbors (following the three generators and their inverses). We use an
additive notation for the group operation. The equation east + north =
northeast specifies that a move following northeast is the same as a move
following the east direction followed by a move following the north direction.
In this chapter we will use only commutative groups, that is, commutation
equations between generators (like east+north = north+east always hold
implicitly.

For convenience, we identify the type of a GBF with the presentation of the
underlying group. A GBF ¢ of type GG can be formalized as a partial function
g from the group specified by G' to some set of values: g associates a value
to some positions. In other words, the group elements act as indices of a
generalized array. An empty GBF is the everywhere undefined function. A
special constant <undef> can be used in path patterns to match a position in
a GBF that has no associated value.

The topology of the collections of type G is easily visualized as the Cayley
graph G of G: each vertex in the Cayley graph is an element of the group G
and vertex x and y are linked by an edge labeled by u if there is a generator
u in the presentation of GG such that x +u =y.

The relationships between Cayley graphs and group theory are pictured in
figure 1. A word (a sum of generators) is a path. Path composition corresponds
to the group addition. A closed path (a cycle) is a word equal to e (the identity
of the group, denoted also by 0). An equation v = w can be rewritten v—w = e
and then corresponds to a cycle in the graph. There are two kinds of cycles in
the graph: the cycles that are present in all Cayley graphs and corresponding to
group laws (intuitively: a backtracking path like east +north —north—east)
and closed paths specific to the own group equations (e.g.: east — north —
east+north). The graph connectivity (there is always a path going from P to
Q) is equivalent to say that there is always a solution x to equation P+z = Q.

b+b+a-a-b-b

Fig. 1. Graphical representation of the relationships between Cayley graphs and
group theory. The GBF pictured is Grid2 where, for brievety, a is used to denote
north and b is used to denote east.

3 Aggregation Processes in MGS

Eden’s Process. We start with a simple model of growth sometimes called
the Eden model (3). The model has been used since the 1960’s as a model for
such things as tumor growth and growth of cities. In this model, a 2D space is
partitioned in empty or occupied cells. We start with only one occupied cell.
At each step, occupied cells x with an empty neighbor are selected, and the
corresponding empty cell is made occupied (by a copy of the content of x).

The Eden’s aggregation process is simply described as the following MGS
global transformation:

trans Eden = { x, <undef> => x,x }

The r.h.s of the rule lists a set of values: in a path transformation, the first
value in the r.h.s replaces the first value matched in the left hand side (L.h.s),
the second value in the r.h.s replaces the second value matched in the L.h.s,
ete.

Fig. 2. Eden’s model on an hexagonal mesh (initial state, and states after 3 and 7
time steps). This shape corresponds to the Cayley graph of Hex2 with the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graphs
share an edge in this representation. An empty cell has an undefined value. Only a
part of the infinite domain is figured.

The Growth of a Snowflake. A crystal forms when a liquid is cooled below
its freezing point. Crystals start from a seed and then grows by progressively
adding more molecules to their surface. As an idealization, the molecules of
a snowflake lie on an hexagonal grid and when a piece of ice is added to the
snowflake, the heat released by this process inhibits the addition of ice nearby.

This phenomenon leads to the following cellular automata rule (19): a black
cell (value 1) represents a place of the crystal filled with ice and a white cell
(value 0) is an empty place. A white cell becomes black if it has exactly one
black neighbor, otherwise it remains white. The corresponding MGS transfor-
mation is:

trans SnowFlake = { Oasx / 1==FoldNeighbor[+,0](x) => 1 }

The construction path as x enables the naming of a sub-collection matched
by path: here the identifier x refers to some occurence of 0 in the GBF. The
construct FoldNeighbor is not a function but an operator available only within
a rule: it enables to fold a function on the defined neighbors of an element
matched in the Lh.s. Here, this operator is used to compute the number of
neighbors with value of x (the accumulating function is the sum and the
initial value is 0). This transformation acts on a value of type Hex2 and a
possible run is illustrated in figure 3.

Fig. 3. Formation of a snowflake. The pictured states are the step at time states 1,
4, 8,12, 16, 18, 20 and 23.

Diffusion Limited Aggregation. In a diffusion limited aggregation pro-
cess, or DLA (18), a set of particles diffuse randomly on a given spatial domain.
Initially one particle, the seed, is fixed. When a mobile particle collides a fixed
one, they stick together and stay fixed. This process leads to a simple lattice
gas automata that could be easily done in MGS using topological collections
and transformation:

trans dla = {
‘mobile, ‘fixed => ‘fixed, ‘fixed
‘mobile, <undef> => <undef>, ‘mobile

}

We use two symbols ‘mobile and ‘fixed to represent respectively a mobile
and a fixed particle (MGS’s symbols are like Lisp’s atoms). The two rules of
the transformation deal with:

(1) the aggregation: the first rule specifies that if a diffusing particle is the
neighbor of a fixed one, then it becomes fixed (at the current position);

(2) the diffusion: if a mobile particle is neighbor of an empty place (position),
then it may leave its current position to occupy the empty neighbor (and
its current position is made empty).

Note that the order of the rules is important because, following the rule ap-
plication semantics of MGS, the first one has priority over the second. The
figure 4 presents the final state of the application of the transformation dla
on two kinds of topological collections: on the left, the neighborhood relation-
ship is homogeneous and a GBF is used. On the right, the d1a transformation
is applied on a meshed sphere modeled as an abtract complex, cf. section 5
below. The elements are the facets, and two facets are neighbors if they share
an edge. For more details, refer to (16).

™

2 T

T PR

une T o 2k WSSe ¥ o Jupnas n Weee)
Ty

Fig. 4. Examples of DLA on two different topologies: an hexagonal mesh and a
sphere. The plain hexagons and facets represent fixed particles. On the sphere, the
empty positions are not drawn. Exactly the same transformation is used on the two
collections.

4 Accretive Growth of Sierpinski Triangles

The Sierpinski triangles (ST from now on) is a fractal described by Waclaw
Sierpinski (polish mathematican, 1882-1969) in 1915 but appearing at least
back from the 13th century (e.g. in Cosmati mosaics on the Anagni cathedral
in Italy). It is also called the Sierpinski gasket or Sierpinski sieve (17). The ST
can be produced by iterating the 2-dimensional morphism defined on {0, 1}
by 0 — 99 and 1 — 1} 9. Starting from 1, we obtain:

1000 10000000

169000088
R T L oy g

11 1010 11001100

10101010

1111 11111111

Equivalently, it can be produced by taking the Pascal’s triangle modulo 2
(see Fig. 5). The formula for the binomial coefficient in Pascal’s triangle is:
P(0,5) =1, P(i,j) =0fori> jand P(i,j) = P(i—1,j—1)+ P(i —1,7) for
the remaining cases.

north
west

e
W N P O
w kL OO
B O O O
L = S = =
B O L O
B P, O O
B O O O

south

Fig. 5. Taking the binomial coefficients modulo 2 produces the shape of the ST.

Considered modulo 2, this formula gives raise to the transformation below
acting on a lattice Grid2:

trans ST1 = { <undef> |south> x |west> y => (x+y)mod?2, x,y }

In this rule, the comma is refined using a GBF generator: a |south> b means
that b is a neighbor of a following the south direction. The transformation
could be iterated on an initial lattice where the positions (0, j) are filled with
1 and positions (,0) are filled with 0 for ¢ > 0. The result is shown in figure 6.

However, this transformation uses arithmetic operators (the + and mod). This is
not acceptable if we want model more closely a physical growth process: then,
the values 0 and 1 must be considered as arbitrary symbols and not as integers
amenable to arithmetic operations. To avoid the arithmetic operations, the
rule can be split into 4 rules where all the different cases are enumerated.
Therefore, we obtain:

trans ST2 = {

<undef> |south> 0 |west> 0 => 0, 0, O
<undef> |south> 0 |west> 1 => 1, 0, 1
<undef> |south> 1 |west> 0 => 1, 1, 0
<undef> |south> 1 |west> 1 => 0, 1, 1

}

This more elementary computation is close to a specification of the ST growth
using a tiling process where the tiles are DNA fragments, as in (15). Following
this work, we consider 4 tiles corresponding to the two boolean values a cell
(1,7) receives from the cells (i — 1,7 — 1) and (i — 1, 7). This tiling is easily
coded and then simulated in MGS. We use the four symbols ‘T00, ‘T10, ‘TO1
and ‘T11 to represents the 4 types of tiles: tile ‘Tzy at position (7, j) means
that z is the value of P(i — 1,7) and y is the value of P(i — 1,5 —1). So the
value 0 is represented by either ‘TO0 or ‘T11 and the value 1 by ‘T10 or ‘TO1.
Finally, we use a transformation with 4 rules to specify the placement of the
tiles:

trans ST3 = {
<undef> |south> (‘TO0|‘T11) as x |west> (‘TO1]|‘T10) as y
=> ‘T01, x, y

<undef> |[south> (‘TO0|‘T11) as x |west> (‘TO0|‘T11) as y
=> ‘Ti1, x, y

two additional symmetric rules
}

The path pattern works as follow: the | operator in a pattern denotes an
alternative: ‘TO0 | ‘T11 matches the symbol ‘TO0 or the symbol ‘T11; the
as construct is used to bind the value of a pattern fragment to a variable: in
(‘TO0 | ‘T11) as x the pattern variable is bound to the actual value matched
by the pattern.

10

In (15), the tile corresponds to molecules and the self-assembly process to a
crystallization. In this kind of process, at a given time, only a fraction of the
available binding sites effectively accept a new molecule. This is not correctly
specified using the standard rule application strategy in MGS. The standard
rule application strategy is called maximal parallel: in this strategy, all distinct
instances of the subcollections matched by the l.h.s. pattern are “simultane-
ously replaced” by the r.h.s. This matching strategy ensures a maximal rule
application over a collection. In other words, if a rule is not triggered, then
there is no instance of a possible path that fulfills the pattern. Such strategy
is for example used in the application of the production rules of a Lindemayer
system (14) and may give an account for the fact that the laws of physics
apply everywhere.

The non-deterministic character of the process described in (15) is due to
errors and the kinetics of chemical reactions and can be taken into account
using a stochastic application strategy. As a matter of fact, there are several
kinds of application strategy in MGS.

With the stochastic application strategy, only one rule is applied (asynchronous
mode) and the rule is selected according to a given probability. A pseudo-
probability p can be associated to a rule using a new kind of arrow:

Fig. 6. Growth of ST on GBF': the four figures present the growth of the ST on a
Grid2 at different steps. Left: the initial state; rigth: the final state; on top middle:
an intermediate step with the standard rule application strategy (maximal parallel);
on bottom middle an intermediate step using a stochastic application strategy (note
the irregular boundary). On the grid, blank squares corresponds to the special value
<undef>, light and dark gray squares are respectively the digits 0 and 1.

11

lhs ={probability=p}=> rhs

(the pseudo-probabilities of the rules within a transformation are summed
up and normalised to give a probability; an ordinary rule has implicitly a
pseudo-probability of 1).

The use of the stochastic application strategy is specified in the transformation
application, not in the transformation definition. The expression:

ST3[strategy=’stochastic] (c)

applies the transformation ST3 using the stochastic application strategy to
collection c. Because the four rules in ST3 do not define any explicit probability,
each rule as an equal chance to be chosen.

In the building of a ST by the previous transformations, the final result is
not affected by the choice of a stochastic application strategy instead of the
maximal parallel one, because each rule application is exclusive from the other
ones. However, intermediate results may differ, cf. figure 6.

5 Handling arbitrary shapes

Using a group presentation to define the underlying lattice of a DLA process
is a powerful mechanism. However, the sphere in the right of figure 4 cannot
be specified as the Cayley graph of a group. Indeed any Cayley graph is a
regular graph (i.e.: each vertex has the same number of neighbors) and this is
not the case for the sphere.

In addition, the self-assembly processes we have described so far take place in
a predefined discretized space. This is a shortcomming in several situations,
for example when there is a need to handle arbitrary rotation.

In the rest of this chapter, we will use abstract cellular complezes to represent
and build incrementally arbitrary shapes in arbitrary dimensions.

5.1 Cellular complexes

The notion of abstract cellular complex comes from the combinatorial alge-
braic topology theory. An abstract cellular complex represents a space build
by gluing together cells of various dimension (13). This data structure gener-
alizes the idea of a graph: cells of dimension 0 are vertices, cells of dimension
1 are edges, cells of dimension 2 are faces, etc.

12

More formally, a cellular complex is a set K of abstract elements together with
an antisymmetric, irreflexive and transitive binary relation B C K x K and
a function dim : K — N. The relation B is called the boundary relationship,
and the function dim, dimension. Moreover, B and dim verify: V(cy,cs) €
B, dim(c1) < dim(cz). The elements of K are called topological cells. If ¢ € K
and dim(c) = n, then we say that ¢ is an n-cell.

The structure of cellular complex can be easily handled using a lattice based
on the boundary relationship B. The following notion will be used in the rest
of the paper:

(1) incidence: let ¢; and ¢y be two cells, ¢; and ¢y are incident if (¢y,c) € B
or (cg, 1) € B. Therefore, the lattice based on B is also called incidence
graph.

(2) notion of face: let ¢ be an n-cell, the faces of ¢, are the set of the (n—1)-
cells ¢y such that (cf,c¢) € B. As an example, if ¢ is a triangle (a 2-cell),
the faces of ¢ are the three edges of c.

(3) notion of coface: let ¢ be an n-cell, the cofaces of ¢, are the set of the
(n 4 1)-cells c.¢ such that (c,c.s) € B. Of course, if ¢; is a coface of ¢,
¢ is a face of ¢;.

In this context, the corresponding MGS topological collection associates a
value with each topological cell. This association corresponds to the notion of
chain developed in algebraic topology.

5.2 Patch transformations

Path patterns, previously used to operate on GBF, are not well fitted to han-
dle arbitrary cellular complex: an arbitrary sub-collection cannot be easely
described by a path. Patch transformations have been created to handle any
arbitrary cellular sub-complex. As any kind of transformations, patch trans-
formations acts on topological collections using rewriting techniques, and are
defined by case where each case is a rewriting rule. The rest of this section
describes the patch rules syntax.

Patch patterns. In patch patterns, a subcollection is described through the
elements that compose it (i.e., the n-cells) and their topological organization.
We use two new operators < and > to represent the incidence relationship:
a < b (or b > a) means a is a face of b (and obviously b is a coface of a).

So we define a new syntax for pattern: a patch pattern PPat is a sequence
of basic filters PBF separated by an incidence operator POp. Each basic filter
matches one n-cell. The new grammar is defined by:

13

PPat := PBF | PBF POp Pat

POp == < | >]’
PBF := PVar | ~“PVar
PVar == id | id: [dim=exp,...,clause;,...]

where id ranges over the pattern variables and exp is an expression. A sys-
tematic interpretation for these patterns is given below.

Variable. A pattern variable a: [dim=exp, ...] matches exactly one element
with a well defined value. The pattern variable a denotes the matched element.

For each variable, some constraints can be given between square brackets.
The constraint dim = exp specifies the dimension of the filtered n-cell (the
expression exp has to be evaluated into an integer). Other constraints can be
given and some are detailed below.

Contrary to what was required with path patterns, a pattern variable a may
occur several times elsewhere in the whole rule. If the same variable is defined
several times, both guards are grouped together in a conjunction. For example,
a: [clausei] a: [clauses] is equivalent to a: [clause;, clauses].

Neighborhood. The expression e op p matches an element e that respect the
incidence property denoted by op with the first element ¢’ matched by p. The
incidence relation op is either: “<” which means that e is a face of ¢/, “>” which
means that e is a coface of € or “ 7 (i.e. a white space) if e and ¢’ don’t have
to respect any relationship.

Consuming. Usually, if an element is matched by a pattern, it cannot be
matched in another pattern matching. Indeed, two sub-collections matched
by the L.h.s. of some rules of a transformation cannot overlap. We say that the
elements matched by a pattern are “consumed”.

Nevertheless, we need sometimes to refer to some particular elements (e.g.
for the sake of the reconstruction in the r.h.s.), but without consuming those
elements (that is: leaving this element free for another possible matching).
This is the role of the tilda qualifier: “v is a basic pattern that leaves the
element v free to be matched in a forthcoming rule application. To avoid any
overspecification, any matched and unconsumed element can be matched but
not consumed in another occurrence of a patch pattern.

Note that using this syntax, the specification of a path of n-cells is easy: the
path pattern a,b,c is equivalent to the patch pattern

a<_>b<_>c

the _is used to match a cell without giving it a name.

14

As an example, the following pattern matches a triangle £ with its boundary
and without consuming edges el, e2 and e3:

f:[dim=2]

vl < el > v2 < "e2 > v3 < "e3d > vl
“el < f

“e2 < f

“e3 < f

In order to have a more concise syntax, syntactic sugar is used to refer to a
part of the neighborhood. The previous example can be rewritten as:

f:[dim=2, (el,e2,e3) in faces]
vl < Tel > v2 < "e2 > v3 < "e3 > vi

The clause “(el,e2,e3) in faces” means that a matched cell must have at
least 3 faces named el, e2 and e3. These elements are not consumed.

Specifying the right hand side. Basically, the left hand side specifies a
subpart of the incidence graph of the cellular complex. So, the reconstruction
can be described by an incidence graph that will replace the one matched by
the patch pattern. The syntax to specify this graph is very close to the patch
pattern specification: it is a sequence of two kinds of elements. An element
can be either

id: [exp]

which refers to an existing matched and consumed element named id in the
patch pattern and whose value has to be updated by the value of exp, or

“id: [dim=expy,
faces=(idy,idy, ..., %dy, 0dy, . ..),
cofaces=(idy ,idy, ..., %dy, idy, .. .),
val=exp,]

which refers to a new cell of dimension exp,, with the associated value exp,. If
the val clause is missing, there is no value associated to the cell. The symbol
“id can be used elsewhere in another clause to refer to this newly created
element.

Two clauses faces and cofaces are given to specify the list of faces and cofaces
of the new cell ‘id. In these lists, the variables refer to the matched elements
(i.e. they are pattern variables) while the symbols refer to new elements created
elsewhere during the reconstruction step. The default value for faces and
cofaces is the empty list. Note that the list of faces and cofaces do not
need to be complete: all the faces and cofaces specifications are collected and
normalized (that is, if x appears in the face list of y, then y is added if necessary
in the coface list of x and vice-versa).

15

Note that a pattern variable in an expression may refer to two different values:
the topological cell corresponding to the matched element or the value asso-
ciated with the topological cell. The denoted value depends on the context:
for instance, in a face clause, a pattern variable refers to the matched cell.
In an ordinary expression, a pattern variable refers to the value associated to
the matched cell. The operator = applied on pattern variable can be used to
force the denotation of the matched cell is necessary.

A simple Example. Here is a short and simple example of a patch rule
that matches an edge and adds a new vertex on it:

vl < e:[dim=1] > v2

=> ‘el:[dim=1,faces=(vl, ‘v)]
‘v:[dim=0,cofaces=(‘el, ‘e2)]
‘e2:[dim=1,faces=(v2, ‘v)]

In this example, three new elements are created ‘v, ‘el and ‘e2, and e is
removed. Figure 7 gives an illustration of this rewriting step.

vl v2 vl . ‘v oo v2
0 e O mup O— @ —2_0

Fig. 7. Insertion of a vertex on an edge.

6 Self-assembled Polymers

In this section we will use abstract cellular complexes and patch transforma-
tion to model a polymerization process. The model does not refer to a real
example. Its only purpose is to illustrate the ability of modeling arbitrary
shapes using abstract complexes. In the next section we will use abstract
complexes to build Sierpinsky triangle and tetrahedra by carving.

Polymers are long-chained molecules with repeating units. They are formed
by reacting monomers (the repeating part of the chain) in a process known as
polymerization. These reactions fall into 2 main groups — addition polymer-
ization and condensation polymerization. Addition polymerization is adding
monomers and polymers together to form the chain. Thus, it is an example
of accretive growth. In condensation polymerization, a small molecule, often
water, is removed as part of the process.

Here we suppose that a monomer is represented by a rectangle, that is, a 2-cell.
When a monomer is joined to another monomer or a chain, the junction may
form an angle that depends of the monomer constituent. For the sake of the

16

simplicity, we suppose that each monomer is associated with its corresponding
angle, see figure 8.

Fig. 8. The initial population of monomers. They are represented with their corre-
sponding joining angle.

The self-assembly process consists in taking arbitrarily two monomers (or
intermediate polymers) and gluing them together, as sketched in figure 9. We
assume that a monomer or a polymer has only one active binding site which
correspond to an edge. The functions mark and unmark are used to activate
and inhibit a binding site.

Fig. 9. Gluing of two monomers: a triangular 2-dimensional cell is added between
the two rectangles. Beware that the rectangles are in a general position in a tridi-
mensional space (see figure 8) and consequently, the three cells are not in the same
plane.

Polymerization is a patch transformation that takes two elements in the pre-
vious multiset and joins them. This operation is iterated until there is only
one polymer left in the solution. The transformation is applied following a
stochastic strategy. Here is the code of the reaction transformation:

17

trans reaction = {
a,b => let cc = mark(merge(a + b)) in translate(cc)

b
This transformation implements the chemical reaction in the chemical soup:
two complexes are selected and merged using the patch merge. The expression
a + b creates a complex made of the two disjoint complexes a and b. After
the merging, an edge of the boundary is selected to become the new active
site using the function mark.

The only rules in the merge patch is looking for two active edges el and e2.
They have to belong to two disconnected complexes. The guards (the clause
that starts with a “?”) check these properties. We only match and consume
the vertices v11 and v21 because they are merged to create ‘v (see figure 9).
The other cells remain after the application of the rule. The patch merge must
be applied in an asynchronous mode to link the molecules by a unique edge.

patch merge = {

vil < “el:[dim=1, 2 (...) 1 > "vi2

v21l < "e2:[dim=1, 2 (...)] > ~v22

=>
‘v:[dim=0,cofaces=join(cofaces(vll),cofaces(v21)),...]

‘e:[dim=1,faces=(v12,v22),cofaces=(‘f),...]
‘f:[dim=2,faces=(‘e,el,e2),...]
b
This patch searches for two edges el and e2. They have to belong to two dis-
tinguished complexes and correspond to a possible link between the molecules.
The guards check these properties. We only match and consume the vertices
v11l and v21 because they are merged to create ‘v. The other cells remain
unchanged after the application of the rule. The patch merge must be applied
in an asynchronous mode to link the molecules by a unique edge. Figure 10
illustrates a final result.

Fig. 10. A final polymer, from two points of view, generated by the reaction and
merge transformations.

18

7 Carving Sierpinski Triangles

In this last section, we will use abstract complexes to introduce a new kind of
self-assembly: self-assembly by carving. We will use the shape already intro-
duced in section 4: the Sierpinski triangles and its tridimensional generaliza-
tion. Building a ST by carving is illustrated in figure 11. This process is easily
coded in MGS using patch patterns on abstract cellular complexes.

7.1 Carving transformation

To represent the ST, we use an abstract cellular complex where the value of
a vertex represents the coordinate of an embedding of the ST in the plane.
The main advantage of using cellular complexes is that we can handle cells of
various dimensions to represent all the elements that compose the ST. In fact,
in the previous representation, the ST were patterns appearing on a matrix of
digits, that is, on a predefined space. Here the concrete geometric structure of
the ST is specified and the building of the ST also builds “its own embeding
space”. Building ST by carving means iterating the removing of the central
part of a triangle. The limit of this process corresponds to the ST fractal (see
fig. 11).

An
A AA Al AL

Fig. 11. ST can also be produced by iterating the carving of a triangle inside another
triangle.

The initial step consists in a unique triangle. It corresponds to the digit 1 of
the previous representation at the beginning of the series of transformations
given in section 4. It is composed of three 0-cells (vertices), three 1-cells (the
edges that link the vertices pairwise) and a unique 2-cell (the unique coface
of the edges):

vl
let rec vl = new_cell(0,[], [el,e3]) g f
and v2 = new_cell(0,[], [e1,e2])
and v3 = new_cell(0,[],[e2,e3])
e3 el
and el = new.cell(1,[v1,v2], [£f])
and e2 = new_cell(l, [v2,v3], [f])
and e3 = new_cell(l, [v3,v1], [f])
- .. o o
and f = new.cell(2,[el,e2,e3],[1);; V3 2 V2

The primitive new_cell(d,l,¢') creates a new topological d-cell whose faces
are given as the list £ and cofaces are ¢'.

19

@] . O
‘e6
CRV
e3 el — V6@
‘65
3
O———O O —
v5 e2 v3 v5 e
‘e46

Fig. 12. Local topological transformation: the patch transformation CRV divides a
triangle into 3 smaller ones, leaving a triangular hole in the middle.

The carving, which is the unique step of the process, is the topological surgery
described on figure 12. The MGS patch transformation follows:

patch CRV = {

“vl < el:[dim = 1] >

“v3 < e2:[dim = 1] >

“v5 < e3:[dim = 1] > ~“vi

f:[dim = 2, (el,e2,e3) in faces]

=> ‘v2[dim=0, val=average(v1l,v3)]
‘v4[dim=0, val=average(v3,v5)]
‘v6 [dim=0, val=average(v5,v1)]
‘el[dim=1, faces=(vl,‘v2), val=‘edge]
‘e2[dim=1, faces=(‘v2,v3), val=‘edge]
‘e3[dim=1, faces=(v3, ‘v4), val=‘edge]
‘e4[dim=1, faces=(‘v4,vb), val=‘edge]
‘eb[dim=1, faces=(v5, ‘v6), val=‘edgel
‘e6[dim=1, faces=(‘v6,vl), val=‘edgel
‘e24: [dim=1, faces=(‘v2, ‘v4), val=‘face]
‘ed6: [dim=1, faces=(‘v4, ‘v6), val=‘face]
‘e62: [dim=1, faces=(‘v6,‘v2), val=‘face]
‘f1:[dim=2, faces=(‘e6, ‘el, ‘e62), val=‘face]
‘f2:[dim=2, faces=(‘e2, ‘e3,‘e24), val=‘face]
‘£3:[dim=2, faces=(‘e4, ‘eb, ‘ed6), val=‘face]

}

The function average that is not detailed here, computes coordinates of the
middle point between its 2 arguments. In this patch, all the elements of a
triangle are matched. They are all consumed except the vertices that remain
after the application of the rule. Moreover, they may be shared by other tri-
angles, and therefore they can’t be destroyed and have to be matchable in a
parallel application of the rule. Note that each edge has only one coface at any
step of the building process. This is easy to prove considering the initial state
and making an inductive reasoning at each step: in fact, the rule creates 9
new edges that have a unique coface. This kind of proofs on rewriting systems
is usual and allows easy verifications of properties on self-assembly processes
specified using rewriting techniques.

20

The patch CRV is a little long and may be difficult to understand. Moreover,
CRV depends on the property of having one coface per edge. Indeed, if we take
another initial state that does not assume this property, some aberrations can
appear as shown on figure 13.

A . AR O

\v/ \V/ \V/ \7<7>V/

Fig. 13. On the left, application of the CRV patch on a different initial state. On the
right, the expected result.

In this example, two triangles share an edge. If we apply CRV on one of the
two triangles, the topology of the other one is modified. It is not a triangle
anymore, but a square.

To reach the expected result irrelevantly of the initial shape, the building
process can be divided into two distinguished transformations. The first one,
AV, adds a vertex in the middle of each edges (see Fig. 14):

patch AV [gen] = {
“vl < e:[dim = 1] > ~“v2
=> ‘v:[dim=0, cofaces=(‘el, ‘e2), val=average(vl,v2,gen)]
‘el:[dim=1, faces=(v1, ‘v), val=‘edge]
‘e2: [dim=1, faces=(v2, ‘v), val=‘edge]

}

An additional argument, gen, is required to distinguish the new and the old
vertices and is used in the next computation step. Conveniently gen can be an
integer representing the generation number of the vertex. The function average
is modified to compute and store the position and the age of the vertex.

Fig. 14. Carving a triangle. The first transformation AV adds vertices in the middle
of every edge. The second transformation RV refines the central hexagonal face into
three triangles.

21

The next step looks for all the hexagons and replaces them with three triangles
(see figure 14):

patch RF [gen] = {
f:[dim=2, faces = (el,e2,e3,ed,e5,e6)]
“vl < el > "v2:[7 ok(gen,v2)] < "e2 >
“v3 < “e3 > “v4:[?ok(gen,v4)] < “ed >
“vb < "eb > "v6:[7 ok(gen,v6)] < "e6 > “vi
=> ‘e24:[dim=1, faces=(v2,v4)]
‘ed6: [dim=1, faces=(v4,v6)]
‘e62: [dim=1, faces=(v6,v2)]
‘f1:[dim=2, faces=(eb6,el, ‘e62)]
‘f2:[dim=2, faces=(e2,e3, ‘e24)]
‘£3:[dim=2, faces=(e4,eb, ‘e46)]

}

Note the guards in the specification of the matched vertices: the predicate ok
checks the vertices v2, v4 and v6 to have the right generation number gen.

The ST is 2-dimensional. The corresponding 3-dimensional fractal is called the
Sierpinsky sponge, see figure 15. These pictures have been generated using the
current implementation of the MGS language. The 3D program is the same
as the 2-dimensional one. In fact, we use the patches AV and RV to perforate
the faces of a tetrahedron. A last patch (not detailed in this chapter) is used
to create the 4 smaller tetrahedrons associated with the 4 original vertices.
It is interesting to note that the Sierpinsky process is recursive within the
dimension: we first applied an iteration of the 2D process (with AV and RV),
and a last patch finalized the 3D construction.

)|
AN
N
j‘\.

N\

Y

N

Yy

WINILY
2 \\ R
A
N\
\Y)
N

P\
N -~

\
A

A\

W\
\

AN

Fig. 15. Sierpinski sponge building process: initial state and steps 1, 2, 3 and 4.

22

8 Conclusions

In this paper we have presented the use of a DSL language for the modeling
and the simulation of two kinds of self-assembly processes: by accretive growth
and by space carving. Despite their specificities, we are convinced that they are
paradigmatic of a full class of self-assembly processes. For instance, arbitrary
Wang tiling (8) could be coded in MGS following the scheme presented in
section 4. The self-assembly of ST has been really implemented using DNA
molecules (15). Compared to the TAM and kTAM simulations used in this
last work, the MGS modeling is more abstract: the purpose is not to study
the implementation in DNA but to investigate the shape produced by some
families of self-assembly processes. We insist on the expressiveness brought by
the notions of topological collections and their transformation. For example,
the patch language used in section 7 is powerful enough to produce Sierpinski
and Menger sponge (a generalization of carving a tetrahedron and a cube in
3D), see fig. 16.

The MGS programming style corresponds to the rule-based programming
paradigm. Rule-based programming is currently experiencing a renewed pe-
riod of growth with the emergence of new concepts and systems that allow
a better understanding and better usability. However, the vast majority of
rule-based languages (like expert-systems) are funded on a logical approach
(computation is a logical deduction and a deduction step is specified by a rule)
which is not adequate to describe various spatio-temporal processes. We hope
that the previous section have demonstrated the ability of MGS to express
easely and concisely the building of sophisticated spatial structures, like the
ones needed to model self-assembly processes.

Our topological approach is motivated by some considerations internal to com-
puter science, and also by the needs expressed by some application domains.
A target application domain for MGS is the modeling and simulation of dy-
namical systems and especially dynamical systems that exhibit a dynamic
structure (4). This kind of dynamical systems is very challenging to model
and simulate. New programming concepts could be developed to ease their
modeling and simulation. Another target application that should be investi-
gated is robotics self-assembly:.

All the examples presented in this chapter have been developped and processed
using the MGS interpreter. The results of the various programs have been
stored in data files that are later used by separate external viewers for graphic
representation.

The perspectives opened by this work are numerous. We want to develop
several complementary approaches to define new topological collection types.

23

One approach to extend the GBF applicability is to consider monoids in-
stead of groups, especially automatic monoids which exhibit good algorithmic
properties. Another direction is to handle other kind of combinatorial spatial
structures. At the language level, the study of the topological collections con-
cepts must continue with a finer study of transformation types. Several kinds
of restrictions can be put on the transformations, leading to various kinds of
pattern languages and rules. The complexity of matching such patterns has
to be investigated. The efficient compilation of a MGS program is a long-term
research plan. We have considered in this paper only one dimensional paths,
but a general n-dimensional notion of path exists and can be used to generalize
the substitution mechanism of MGS. From the applications point of view, we
are targeted by the simulation of more complex developmental processes (7).

Acknowledgments

We are grateful to Natalio Krasnogor that give us the initial motivation to write
this chapter. We are also grateful to the anonymous referrees for comments and
suggestions. A big thank is due to Olivier Michel at the University of Evry which
is one of the designer of MGS. Further acknowledgments are also due to M. Gheo-
rghe at the University of Sheffield, F. Delaplace and J. Cohen at the University of
Evry, C. Godin and P. Barbier de Reuille at CIRAD-Montpellier, the members of
the Epigenomic group at GENOPOLE-Evry, P. Prusinkiewicz at the University of
Calgary, and the participants of the CellCom FET proposal for helpful discussions,
biological motivations, fruitful examples and challenging questions. This research
is supported in part by the CNRS, GENOPOLE-Evry, the GDR ALP, IMPG, and
the University of Evry.

Fig. 16. Menger sponge building process: initial state and steps 1 and 2.

24

References

1]

[10]
[11]

[12]

Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman,
and Weiss. Amorphous computing. CACM: Communications of the ACM,
43, 2000.

J.-P. Banatre, P. Fradet, and D. L. Métayer. Gamma and the chemical
reaction model: Fifteen years after. Lecture Notes in Computer Science,
2235:17-44, 2001.

M. Eden. In H. P. Yockey, editor, Symposium on Information Theory in
Biology, page 359, New York, 1958. Pergamon Press.

J.-L. Giavitto. Invited talk: Topological collections, transformations and
their application to the modeling and the simulation of dynamical sys-
tems. In Rewriting Technics and Applications (RTA’03), volume LNCS
2706 of LNCS, pages 208 — 233, Valencia, June 2003. Springer.

J.-L. Giavitto and O. Michel. Declarative definition of group indexed data
structures and approximation of their domains. In Proceedings of the 3nd
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-01). ACM Press, Sept. 2001.

J.-L. Giavitto and O. Michel. Modeling the topological organization of
cellular processes. BioSystems, 70(2):149-163, 2003.

J.-L. Giavitto and O. Michel. Molecular Computational Models: Un-
conventional Approaches, chapter Modeling Developmental Processes in
MGS, pages 1-46. Idea Group, 2004.

B. Griinbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman
& Co., 1986.

P. Horn. Autonomic computing: IBM’s perspective on the
state of information technology. Technical report, IBM Research,
Oct. 2001. http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf’.

J. A. Kaandorp. Modelling growth forms of biological objects using frac-
tals. PhD thesis, University of Amsterdam, 1992.

K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving.
International Journal of Computer Vision, 38(3):199-218, July 2000.

V. Manca, C. Martin-Vide, and G. Paun. New computing paradigms
suggested by dna computing: computing by carving. Biosystems, 52(1-
3):47-54, Oct. 1999.

J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.

P. Prusinkiewicz, A. Lindenmayer, J. S. Hanan, et al. The Algorithmic
Beauty of Plants. Springer-Verlag, 1990.

P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic
self-assembly of dna sierpinski triangles. PLoS Biol, 2(12):e424, 2004.
www.plosbiology.org.

A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for
the specification and the simulation of discrete dynamical systems. In
Siath International conference on Cellular Automata for Research and

25

Industry (ACRI’04), volume 3305 of LNCS, Amsterdam, October 2004.
Springer.

[17] 1. Stewart. Four encounters with sierpinski’s gasket. Mathematical Intel-
ligencer, 17:52-64, 1995.

[18] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic
critical phenomenon. Phys. Rev. Lett., 47:1400-1403, 1981.

[19] S. Wolfram. A new kind of science. Wolfram Media, 2002.

26

