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Abstract—Modern programming languages allow the definition
and the use of arbitrary nested data structures but this is not
generally considered in unconventional programming models. In
this paper, we present arbitrary nesting in MGS, a spatial comput-
ing language. By considering different classes of neighborhood
relationships, MGS can emulate several unconventional computing
models from a programming point of view. The use of arbitrary
nested spatial structures allows a hierarchical form of coupling
between them. We propose an extension of the MGS pattern-
matching facilities to handle directly nesting. This makes possible
the straightforward emulation of a larger class of unconventional
programming models.

I. INTRODUCTION

Modern programming languages allow data structure to be
nested so that a valid element of a structure can also be in
its turn another structure. Generally, this is not considered in
unconventional programming models. For instance, the state of
a cell in a cellular automata is not (the state of) another cellular
automata. Another example: the value labeling a symbol in
parametric Lindenmayer system is not (a string representing a
derivation in) another Lindenmayer system.

In chemical computing, as exemplified in Gamma [1],
chemical solutions are abstracted as multisets (a generalization
of the notion of set in which members are allowed to appear
more than once) and a molecule corresponds to an elementary
data and not another chemical solution. Nested multisets
are considered in membrane systems1 [4] but are studied
as a completely different computational model. Indeed, the
management of the nesting entails the introduction of new
mechanisms (transport rules in the case of membrane systems).

In this paper we consider arbitrary nesting in MGS, a spatial
computing language where space is managed through the
structure of the data. MGS relies on neighborhood relationships
to represent physical (spatial distribution, localization of the
resources) or logical constraints (inherent to the problem to be
solved) in a computation.

1Nested multisets are also considered in High Order Chemical Lan-
guage [2]. In Structured Gamma [3], elements of the multiset are linked
by relations defined by a graph grammar. It is then theoretically possible to
encode a given static nest of multisets using relations specified by a specific
graph grammar to implement membership test and to make a distinction
between elements and nested multisets.

By considering different classes of neighborhood relation-
ships, MGS can emulate several unconventional computing
models from the point of view of the programming. The
use of arbitrary nested spatial structures allows a hierarchical
form of coupling between them. Furthermore, we propose
an extension of the MGS pattern-matching facilities to handle
nesting explicitly. This makes possible the concise expression
of various algorithms as well as the straightforward emulation
of a larger class of unconventional programming models.

Outlines: This paper is organized as follows. The next
section introduces the emerging field of spatial computing and
the notions of topological collection and transformation devel-
oped in MGS. Section III discusses the relevance of nesting in
the context of spatial computing and section III-D proposes
a new pattern matching construct to make the handling of
nested structures mores easier. Section IV exemplifies the
use of nested spaces with three direct applications. The first
encodes terms used to represents boolean formulae with nested
sets. The computation of a disjunctive normal form on this
representation is explained. The second example computes
quadtrees, a recursive data structure for partitioning a two
dimensional space. The last one is dedicated to the informal
translation of the fraglet computational model into MGS.
Related and future work concludes this article.

II. BACKGROUND

A. Computing in Space, Space in Computation and Spatial
Computing

Spatial Computing is an emerging field of research [5]
where the computation is structured in term of spatial rela-
tionships where only “neighbor” elements may interact.

For example, the elements of a physical computing system
are spatially localized and when a locality property holds, only
elements that are neighbor in space can interact directly. So
the interactions between parts are structured by the spatial
relationships of the parts.

Even for non physical system, usually an element does not
interact with all other elements in the system. For instance,
from a given element in a data structure, only a limited number
of other elements can be accessed [6]: in a simply linked list,
the elements are accessed linearly (the second after the first,



the third after the second, etc.); from a node in a tree, we
can access the father or the sons; in arrays, the accessibility
relationships are left implicit and implemented through incre-
menting or decrementing indices (called “Von Neumann” or
“Moore” neighborhoods if one or several changes are allowed).

More generally, if an element e in a system interacts during
a computation with a subset E = {e1, . . . , en} of other
elements, it also interacts with any subset E′ included in
E. This closure property induces a topological organization:
the set of elements can be organized as an abstract cellular
complex which is a spatial representation of the interactions
in the computation [7]. This abstract space instantiates a
neighborhood relationship that represents physical (spatial
distribution, localization of the resources) or logical (inherent
to the problem to be solved) constraints.

In addition, space can be an input to computation or a key
part of the desired result of the computation, e.g. in com-
putational geometry applications, amorphous computing [8],
claytronics [9], distributed robotics or programmable matter...
to cite a few examples where notions like position and shape
are at the core of the application domain.

B. The MGS approach to Spatial Computing

The MGS project recognizes that space is not an issue to
abstract away but that computation is performed distributed
across space and that space, either physical or logical, serves
as a mean, a resource, an input and an output of a computation.

1) Topological Collections: In MGS, the notion of space is
handled through a slight generalization of the notion of field.
In physics, a field assigns a quantity to each point of a spatial
domain [10].

MGS handles spatial domains defined by abstract cellular
complex [11]. An abstract cellular complex is a formal con-
struction that builds a space in a combinatorial way through
more simple objects called topological cells. Each topological
cell abstractly represents a part of the whole space: points
are cells with dimension 0, lines are cells with dimension
1, surfaces are 2 dimensional cells, etc. The structure of the
whole space, corresponding to the partition into topological
cells, is considered through incidence relationships, relating a
cell and the cells in its boundary.

In this approach a field is a finite labeling of a cellular com-
plex: a cellular complex may count an infinite number of cells
but MGS restricts itself on fields labeling only a finite number
of these cells. Such fields are called topological collections
to stress the importance of the neighborhood relationships
induced by the incidence relationships. Topological collections
are a weakening of the notion of topological chain developed
in algebraic topology [12] and have been introduced in [13]
to describe arbitrary complex spatial structures that appear
in biological systems [14] and other dynamical systems with
a time varying structure [15], [16]. Topological collections
generalize fields because they associate a quantity with 0-cells
(points in space) but also with arbitrary n-cells.

Graphs are examples of one dimensional cellular complexes:
they are made of only 0- and 1-cells. In this paper, we will

stick to topological collections where the underlying complex
is a graph. In [6] it has been showed how usual data structures
(sets, multisets, lists, trees, arrays. . . ) can be seen as one
dimensional topological collections: the elements in a data
structure are the quantities assigned by the field to the nodes
of a graph.

A specific neighborhood relationship has also a special
importance in the rest of this paper: the full relation. With
this relation, every node is neighbor of every other nodes.
This corresponds to a node-labeled complete graph and to the
multiset data structure.

2) Transformations: Usually in Physics, fields and their
evolution are specified using differential operators. MGS gen-
eralizes these operators in a rewriting mechanism, called
transformation. A transformation is the application of some
local rules following some strategy. The application of a local
rule a =⇒ b in a collection C:

1) selects a subcollection A that matches the pattern a;
2) computes a new subcollection B as the result of the

evaluation of the expression b instantiated with the
collection A;

3) and substitutes B for A in C.
A local rule specifies a local evolution of the field: the left hand
side (lhs) of the rule typically matches elements in interaction
and the right hand side (rhs) computes local updates of the
field.

Patterns pat are expressions defined inductively starting
from the pattern variables “x” (matching exactly one ele-
ment in a collection) and several operators used to compose
more complex patterns: the neighborhood between two sub-
collections “ pat, pat′ ”, the repetition “pat*”, the guard
“pat/exp” and the typing “pat:T ” (elements matched by pat
have to be of type T ).

Transformations are a powerful means to define functions on
topological collections complying with the underlying spatial
structure. For instance, discrete analog of differential operators
can be defined using transformations [17]. For multisets, trans-
formations reduce simply to associative-commutative rewrit-
ing [18] also called multiset rewriting.

III. NESTED SPACES

In classical Physics, a field can be classified as a scalar field
or a vector field according to whether the value of the field at
each point is a scalar or a vector. However, it is not usual to
consider “field valued fields”. From the MGS perspective, this
notion simply corresponds to the idea of nested topological
collections. Such a feature is relevant and valuable in at least
three areas: for the representation of and the computation on
hierarchical or inductive data structures; in the modeling and
the simulation of multiscale systems; and in the emulation of
“stratified” computational models.

A. Inductive Data Structures

The possibility to nest arbitrarily data structures is now
pervasive in modern programming languages. Its usefulness to
represent hierarchical data (e.g., XML) or inductive structure



(e.g., list, trees) is well established. We give an example of
the use of nested spaces in an algorithmic application relying
on multisets in section IV-A.

B. Multiscale Systems

The modeling of a natural system often implies entities
appearing on distinct temporal and spatial scales: each level
addresses a phenomenon over a specific window of length and
time. These scales appear for logical reasons (at a particular
scale, the system exhibits uniform properties and can be
modeled by homogeneous rules acting on objects relevant
at this scale) or for efficiency reasons (e.g., the reductionist
simulation of the whole system from first principles is compu-
tationally not tractable while we are only interested in coarse-
grained description).

Multiscale models and simulations arise when interactions
between scales must be considered. For spatial scales, it means
that simultaneous spatial representations must be managed as
in adaptive mesh refinement [19]. This method relies on a
sequence of “nested rectangular grids” on which a PDE is
discretized. It is important to realize that these subgrids are not
patched into the coarse grid but overlaid to track the feature
of interest. A simplistic example is presented in section IV-B.
Another example, in the area of discrete modeling, is the
complex automata framework [20] corresponding to a “graph
of cellular automata”.

Sometimes scales can be separated, meaning that the cou-
pling between scales can be localized at some isolated interac-
tion points in space and time. Then, the resulting computation
corresponds to a hierarchical process with a directed flow of
information. This is not always the case and we will introduce
a dedicated pattern-matching mechanism in section III-D to
ease the reference between scales.

C. Stratified Computational Models

Some models of computation exhibit naturally an inductive
structure. For instance, the state of a membrane system is a
multiset of symbols and (inductively) membrane systems. This
structure leads directly to a nested organization of “multiset
of symbols and multisets”.

Some computational models are also best described as a
combination of two paradigms: the second being substituted
for some generic parts in the first. We list a few examples
issued from various compartmentalization devices introduced
over a basic chemical framework. In membrane systems,
strings have been considered instead of symbols [21]. This
leads obviously to “multiset of sequences of symbols and
multisets”. Nested multisets are restricted to the description of
membranes organized by inclusion only. Tissue P systems [22]
arrange the membranes and their interactions following an
arbitrary graph, calling for a “graph of multisets”. Spatial P
systems [23] are a variant of P systems which embodies the
concept of space and position inside a membrane. Membranes
and objects are positioned in a two-dimensional discrete space.
Hence, we have to consider “grids of multisets and grids and
symbols”.

In section IV-C, we will sketch the encoding of fraglets,
a molecular biology inspired execution model for computer
communications leading to “graph of multisets of sequences”.

D. Matching Nested Structures

In the next section, we give examples of the three usages of
nested spaces we have identified above section III. The use of
nested spaces does not require a priori new control structures.
For example, if the reactions between symbols of a P systems
are coded by a transformation EvalRule , then we can defines a
function Apply and an auxiliary transformation ApplyNested
to thread EvalRule over the nested structure:
fun Apply(x) = EvalRule(ApplyNested(x))
and trans ApplyNested = x:bag =⇒ Apply(x)

This piece of code is enough to trigger the chemical rules
specified by EvalRule through the entire structure. But the
transport rules, used for example to expel one molecule from
a membrane to the enclosing one, are a little bit heavier to
write because they imply the simultaneous matching of two
levels in the nested structure.

The usual MGS pattern constructions are “flat”: the pattern
variables of a transformation T refer to elements of the
collection on which T is applied [24]. To make easier the
handling of nested collections, we extend the current syntax
with a new construction allowing references to elements of a
nested collection. The pattern construct
[ pat |x]

matches a collection C nested within the current one. The
pattern pat must match a subcollection C ′ in C and the
variable x is bound to the collection C deprived of C ′. For
example, the pattern
x, [2, 3| y ] as z

matches only one occurrence in the sequence
(0, (1, 2, 3, 4), 5)

and binds x to 0, z to the nested sequence (1, 2, 3, 4)
and y to the sequence (1, 4). The notation [ pat |...]
can be used to spare a variable if the rest of the subcollection
is not used elsewhere.

IV. COMPUTING WITH NESTED COLLECTIONS

A. Disjunctive Normal Form

Since the logical conjunction and disjunction operators are
associative, commutative and idempotent, a logical formula
can be encoded by nested sets. Let consider the following
type declaration:
type formula = string | Not | And | Or
and record Not = { f:formula }
and collection And = set[formula]
and collection Or = set[formula]

In this declaration, formula is a sum type: a formula is
either a boolean variable (represented by a string value), or
the negation of a formula nested in a record with one field
f, or the conjunction (resp. disjunction) of formulae nested
in a set with subtype And (resp. Or). With these types, the
formula ¬(p ∧ q) ∨ r can be represented as follows:



{ f = "p"::"q"::And:() }::"r"::Or:()

where e::S inserts an element e in the set S and C:()
denotes the empty collection of type C.

The computation of the disjunctive normal form can be
achieved by iterating until a fixpoint is reached, the following
transformation:
trans DNF = {
(* Simplifying unaries *)
[[x|...]:Not|...]:Not =⇒ x
x:And / size(x)==1 =⇒ choose(x)
x:Or / size(x)==1 =⇒ choose(x)

(* Flattening nested ops *)
[ f:And| g ]:And =⇒ join(f,g)
[ f:Or| g ]:Or =⇒ join(f,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =⇒
fold(::, And:(), map(λf �{f= f }, x))

[x:And|...]:Not =⇒
fold(::, Or:(), map(λf �{f= f }, x))

(* Distributivity *)
[x:Or| s]:And =⇒ map(λf � f::s, x)

(* Induction *)
x:And =⇒ DNF(x)
x:Or =⇒ DNF(x)
x:Not =⇒ DNF(x)

}

Each rule is a straightforward translation in MGS of a well
known transformation of a boolean formula into an equivalent
one. In this program, the map and fold are the usual map
and fold functions: map(f,s) applies the function f to each
elements of the collection s and returns the collection of
results; fold(f,z,s) reduces the elements of the collection
s using the binary function f and starting from z. The function
join is used to append two collections and choose is used
to pick-up one element in a collection. Finally, the expression
λf � f::s is a lambda expression that appends its argument
(here a formula) to the collection s.

B. A Simple Space Subdivisions Scheme

This example shows the building of a quadtree that par-
titions a set of points in 2D space. Quadtrees recursively
subdivide a rectangular spatial domain into four regions. The
subdivision is recursively iterated until there is less than n
points in each region (we take n = 2 in the following).
Figure 1 gives an example where the points are more or less
aligned along a curve.

This adaptive mesh is described by the following type
definitions:
type QuadTree = Grid[QuadTree] | Cloud
and gbf Grid = < n, e;2e=0,2n=0>
and collection Cloud = set[Point2D]
and record Point2D = { x:real, y:real }

GBF are collections with a regular neighborhood whose topol-
ogy is specified though a group presentation. Here, the GBF

Figure 1. Top: Adaptive mesh refinement using quadtrees on a set of 100
points. Bottom: The corresponding nested structure pictured as an inclusion
tree.

Grid specifies a 2×2 torus with two directions n and e. Such
grid describe a partition in four adjacent regions.

The recursive subdivision is computed by the following
transformation:

trans MakeQuadTree =
c:Cloud / size(c)>2 =⇒

MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:Cloud) =
let g = barycenter(c) in
let c0, c1 = split(λp � p.x<g.x, c) in
let c00, c01 = split(λp � p.y<g.y, c0) in
let c10, c11 = split(λp � p.y<g.y, c1) in

Grid:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four sub-
clouds cij depending on the positions of the points compared
to the barycenter (above or below, on the left or on the right).
Then it builds a new Grid collection where the four cells are
labeled by the clouds cij . Function barycenter computes
the center of mass of a cloud of points (it is easily expressed
using a fold over the elements of the set.) The function split
takes a predicate and a collection, and returns two collections:
the elements of the first one satisfy the predicate and the
second one gathers the remaining elements. The syntactic
construction T:(. . . vi@ci . . .) builds a collection of type T
where the value vi is associated with the cell ci.

The process is illustrated on figure 1. There is no need of
the new pattern matching construct because there is no need to
“mix” the elements of a top level collection with the elements
of a nested one. It is the recursive calls of MakeQuadTree
that create the nested structure from a flat cloud of points.



C. Fraglet

Fraglets are tiny computation fragments or sequences of
tokens that flow and react through a computer network.
They have been introduced in [25] as an execution model
for computer communications inspired by molecular biology.
They have been designed to lay the ground for automatic
network adaption and optimization processes as well as the
synthesis and evolution of protocol implementations. Table I
sketches the core instructions.

For example, the fraglets below together with a fraglet
[length tail] located on the same node of the network,
will compute the length of tail by generating the fraglet
[total n] (where n is the size of tail):

[counter 0]
[matchp length empty stop cnt]
[matchp stop match counter total]
[matchp cnt pop cnt1]
[matchp cnt1 split match counter

incr counter * length]
[matchp incr exch sum 1]

In this program, the fraglets can be interpreted as follows:
fraglet [counter 0] defines a local variable with initial
value 0; fraglets starting with matchp define functions;
finally fraglet [length tail] is the application of function
length on the list tail.

In the following we encode the fraglet formalism by imple-
menting a fraglet interpreter in MGS. For the sake of simplicity,
we do not consider here the localization of the fraglets on the
nodes of a communication network and the communication
rules between nodes2. Let consider the following MGS type
declaration:

type Token = int | ‘nul | ‘exch | ...
and collection Fraglet = seq[Token]
and collection State = bag[Fraglet]

The state of the system is represented by a multiset inhabited
by a population of fraglets; fraglets are sequences of tokens
(symbols or integers). For each fraglet operator, Table I gives
the formal fraglet instruction, its informal semantics and its
translation into an MGS transformation rule. For example,
the split instruction consists in extracting the subsequence of
tokens in the fraglet located between the operator (the first
element in the sequence) and the first occurrence of the special
token *. This operation is straightforwardly translated in MGS:
the pattern matches in a fraglet the operator ‘split (the
syntactic construction @0 checks that the operator is located
at the first position in the sequence) followed by a subsequence
terminated by the special token ‘time. The subsequence is
specified by (x/x!=‘time)* that matches a repetition of
elements different from ‘time.

2Nevertheless the reader is invited to pay attention that this restriction is
done for the sake of the simplicity: the whole formalism can be specified in
MGS using an additional level of nesting by considering a graph labeled by
multisets of fraglets.

V. RELATED WORK

Topological collections are reminiscent of Data-fields, stud-
ied e.g. by B. Lisper [26]. Data-fields are a generalization of
the array data structure where the set of indices is extended to
all Zn (see also [27]). We have introduced the concept of group
based fields, or GBF [28], [29], to extend data-fields towards
more general regular data structures. Topological collections
emphasize data structures as a set of places independently of
their occupation by values. This approach is also shared by the
theory of species of structures [30]. Motivated by the devel-
opment of enumeration techniques for labeled structures, the
emphasis is put on the transport of structures along bijections
while spatial computing focuses on topological relationships.

Disentangling the elements in a data structure from their
organization has several advantages. In [31], B. Jay develops a
concept of shape polymorphism where a data structure is also a
pair (shape, set of data). The shape describes the organization
of the data structure (restricted to tabular organizations) and
the set of data describes the content of the data structure.
This separation allows the development of shape-polymorphic
functions and their typing: the shape of the result of a shape-
polymorphic function application depends only on the shape of
the argument, not of its content. The same line is developed in
the field of polytypic programming for algebraic data type [32].
MGS transformations are naturally polytypic and extend far
beyond arrays and algebraic data type. Polytypism in MGS
relies on a generic implementation of pattern matching [24]
not on overloading or ad-hoc polymorphism.

Transformations are a kind of rewriting that differs in many
ways from graph rewriting. Their formalization in [33] is
not based on the usual graph morphisms and pushouts like
in [34] but is inspired by the approach of J.-C. Raoult [35]
where graph rewriting based on a (multi-)set point of view
is developed. The proposed model is close to term rewriting
modulo associativity and commutativity (where the left hand
side of a rule is removed and the right hand side is added).
This kind of approach also allows to extend results from term
rewriting to topological rewriting (as we did for termination
in [36]). Note that the notions of topological collection and
topological rewriting are more general than labeled graphs and
graph rewriting, and may handle higher dimensional objects,
a feature relevant in a lot of application areas [37].

Nested data structure are now widespread in programming
languages but are less natural in the context of data bases.
The importance of organizing the accesses to the element in
a complex structure trough primitive operations related to the
type constructor is stressed in [38]. In MGS, accesses rely on
pattern matching, and the pattern matching constructs reflect
the spatial structure underlying a collection. Nevertheless,
structural recursion, advocated in [38], is straightforward as
showed by the programs in sections IV-A and IV-B.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the advantages of nesting
in a spatial model of computation, the MGS experimental
language. The language MGS, has been used in the context



Op Input Output
nul [nul tail] []

destroy a fraglet
[‘null@0| tail ]:Fraglet =⇒ Fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0, t, a| tail ]:Fraglet =⇒ t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0, t, a, b| tail ]:Fraglet =⇒ t::b::a::tail

split [split s1 * s2] [s1] [s2]
break a fraglet into two at the first occurrence of *
[‘split@0,(x/x!=‘time)* as s1,‘time| s2 ]:Fraglet =⇒ s1, s2

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0, h, a| tail ]:Fraglet =⇒ h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0, y, n| tail ]:Fraglet =⇒ if size(tail)==0 then y::Fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0, t, n1, n2 | tail ]:Fraglet =⇒ t::(n1+n2)::tail

match [match a tail1],[a tail2] [tail1 tail2]
two fraglets react, their tails are concatenated
[‘match@0, a| t1 ]:Fraglet, [ b@0| t2 ]:Fraglet =⇒ join(t1,t2)

matchP [matchP a tail1],[a tail2] [tail1 tail2]
idem as match but the rule persists
[‘matchp@0, a| t1 ]:Fraglet as f, [ b@0| t2 ]:Fraglet =⇒ f, join(t1,t2)

Table I
SUBSET OF THE FRAGLETS CORE INSTRUCTIONS (FROM [25]) AND THEIR MGS TRANSLATION.

of P systems [13] and in several large modeling projects in
systems biology [39], [14], [40].

One interest of the spatial paradigm à la MGS is its ability
to subsume several computational models in a single uniform
formalism, as long as one focuses on programming [41],
[42]. We showed the benefits of considering nested spatial
computing through three kind of examples: in algorithmic, in
simulation of multiscale phenomena and in the emulation of
other programming models.

The management of nested collections is achieved through
three kinds of devices:

1) collections are first-citizen values and can be used as the
values of another collection;

2) a specific pattern construction [ p| . . . ] makes possi-
ble, within the current pattern, to refer to the elements
matched by a pattern p in a nested collection;

3) recursive type declarations generate predicates used to
constrain the nesting and to control the pattern matching
facilities.

These three features together enable a very concise and
readable programming style, as exemplified in section III-D.
All the presented examples are actual MGS programs, at the
exception of some slight syntactic sugar.

The work presented in this paper may be enriched and
extended in several directions. The pattern matching we have
presented can be seen as operating at an “horizontal level”
on the elements of a collection and at a “vertical level” when
descending to match some elements of a nested collection.
The constructions dedicated to the horizontal level are very

expressive, allowing for example the matching of an unknown
number of elements. The handling of the vertical level is
actually restricted to the [ pat| . . . ] operator. Other construc-
tion can be designed, by analogy with the vertical level. For
example, an operator to allow references through an unknown
number of nesting, in a manner analog to the iteration operator
“*”, would be interesting to mimic path queries in XML.
Note however that the distinction between horizontal and
vertical level is questionable. An alternative approach would
be to unify the nested collection by looking for the spatial
relationships holding in the whole structure, irrespectively of
the horizontal or the vertical view. The topology of this “flat
whole structure” can be build as the topology of a fiber space
over the top collection. The investigation of this framework
remains to be done.
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