LES AUTEURS

Jean-Pierre Aubin est professeur émérite de l'Université Paris-Dauphine, chercheur au CREA et au LASTRE (Laboratoire d'Applications des Systèmes Tychastiques Régulés), et spécialiste de la théorie de la viabilité et de ses applications.

aubin.jp@gmail.com

Jean-Claude Bacri est professeur à l'Université Paris 7. Ses recherches se situent dans le domaine de la matière molle : instabilités et structuration, écoulements dans les milieux poreux, et propriétés physiques des ferrofluides, plus particulièrement en vue de leur utilisation dans le domaine biomédical.

jcbac@ccr.jussieu.fr

Arndt Benecke est expérimentateur-théoricien travaillant sur la plasticité génomique. Il est responsable de l'équipe « Systems Epigenomics » à l'Institut des Hautes Études Scientifiques et à l'Institut de Recherches Interdisciplinaires.

arndt@ihes.fr

Steffen Bohn est chargé de recherche CNRS au Pôle « Matière et Systèmes Complexes » (UMR 7057 CNRS-Paris 7) de l'Université Denis Diderot. Son activité de physique expérimentale et théorique porte sur la croissance des plantes et plus généralement la formation de structures.

steffen.bohn@paris7.jussieu.fr

Yves Bouligand est directeur de laboratoire émérite de l'École Pratique des Hautes Études et il a dirigé l'une des équipes du Centre de Cytologie Expérimentale du CNRS à Ivry-sur-Seine. Ses recherches ont porté sur divers tissus et cellules comportant des phases cristal-lines liquides, comme dans certains chromosomes et membranes, et aussi des systèmes analogues stabilisés, de type composite, présents dans les formations squelettiques.

yves.bouligand@univ-angers.fr

Paul Bourgine est directeur de l'Institut des Systèmes Complexes de Paris Ile-de-France. Il est membre du CREA à l'École Polytechnique.

bourgine@shs.polytechnique.fr

Hugues Chaté est physicien au CEA-Saclay. Il travaille sur les comportements collectifs dans les systèmes hors d'équilibre.

chate@dsm-mail.saclay.cea.fr

Stéphane Douady est directeur de recherche CNRS au laboratoire Matière et Systèmes Complexes. Il étudie les systèmes dynamiques, les milieux granulaires, et la morphogenèse, particulièrement en biologie et géologie.

douady@lps.ens.fr

Florence Elias est maître de conférences à l'Université Paris 6. Ses recherches portent sur les propriétés physiques de fluides complexes : morphologies de systèmes contenant des particules en interaction, et propriétés macroscopiques de mousses liquides en relation avec leur structure interne.

elias@ccr.jussieu.fr

Sara Franceschelli est maître de conférences à l'École Normale Supérieure des Lettres et Sciences Humaines et chercheur rattaché à l'équipe Rehseis. Elle travaille sur l'histoire de la physique non-linéaire et sur les interfaces de cette physique avec d'autres disciplines.

sfrances@ens-lsh.fr

Jean-Louis Giavitto est chercheur en informatique au CNRS et directeur-adjoint du laboratoire IBISC (Informatique, Biologie Intégrative et Systèmes Complexes) de l'Université d'Évry. Ses travaux portent sur les nouveaux modèles de calculs (en particulier ceux inspirés par les processus biologiques), les représentations du temps et de l'espace, et l'usage de notions de topologie combinatoire dans les langages de programmation.

giavitto@ibisc.univ-evry.fr

Guillaume Grégoire est maître de conférences à l'Université Denis Diderot-Paris 7. Il mène ses activités de recherche au sein du Pôle « Matière et Systèmes Complexes » (UMR 7057 CNRS-Paris 7), où il étudie des systèmes physiques hors d'équilibre grâce à des outils de physique statistique.

Pascal Hersen est actuellement chercheur Post Doctorant au Center for Genomics Research à l'Université Harvard aux États-Unis. Ses recherches portent principalement sur la morphogenèse des dunes, la dynamique de la réponse osmotique chez la levure (S. Cerevisiae) et sur quelques problèmes de brisure de symétrie dans des écoulements tournants.

phersen@gmail.com

François Képès, directeur de recherche au CNRS, co-fondateur et directeur scientifique du Programme d'Épigénomique de Génopole[®]) (Évry), ancien professeur de biologie à l'École Polytechnique, est biologiste cellulaire et génomicien.

kepes@epigenomique.genopole.cnrs.fr

Annick Lesne est chercheur CNRS à l'Institut des Hautes Études Scientifiques. Elle travaille sur la modélisation mathématique et physique des mécanismes de régulation des systèmes vivants.

lesne@ihes.fr

Didier Marchand est paléontologue au Centre des Sciences de la Terre de l'Université de Bourgogne, UMR 5561. Il s'est spécialisé dans les relations qui existent entre évolution morphologique et embryogenèse et donc dans la mise en place des grands plans d'organisation.

didier.marchand1@9online.fr

Andras Paldi est directeur d'études à l'École Pratique des Hautes Études et chercheur au Généthon. Ses recherches portent sur les mécanismes épigénétiques de la régulation d'expression génique et les phénomènes épigénétiques. paldi@genethon.fr

Jean Petitot est directeur d'études à l'École des Hautes Études en Sciences Sociales et directeur du CREA (École Polytechnique). Ses recherches portent sur les modèles mathématiques en neurosciences cognitives.

petitot@shs.polytechnique.fr

Nadine Peyriéras est chercheur CNRS au laboratoire DEPSN à l'Institut Alfred Fessard de Gifsur-Yvette. Ses recherches portent sur l'embryogenèse et le développement du Zebrafish.

peyriera@iaf.cnrs-gif.fr

Denise Pumain est professeur à l'Université Paris I, membre de l'Institut Universitaire de France, géographe, membre fondateur de l'UMR Géographie-cités et directeur de la revue électronique Cybergeo, European Journal of Geography.

pumain@parisgeo.cnrs.fr

Caroline Smet-Nocca est chimiste de formation et travaille avec Arndt Benecke sur le découplage de la signalisation épigénétique et de la régulation transcriptionnelle dans le cadre des maladies génétiques et des leucémies myéloïdes à l'Institut de Recherches Interdisciplinaires.

caroline.smet@ibl.fr

Antoine Spicher travaille avec Jean-Louis Giavitto au laboratoire IBISC (Informatique, Biologie Intégrative et Systèmes Complexes) de l'Université d'Évry. Il étudie l'usage de notions de topologie combinatoire dans les langages de programmation pour la simulation de systèmes dynamiques.

aspicher@ibisc.univ-evry.fr

James Tabony est directeur de recherche au Commissariat à l'Énergie Atomique, Direction des Science du Vivant, Département Réponse et Dynamique Cellulaires, CEA Grenoble, où il étudie le problème de l'auto-organisation biologique.

james.tabony@cea.fr

TABLE DES MATIÈRES

Les auteurs		3	
Chapit		nnick Lesne et Paul Bourgine	13
1.1	Les qu 1.1.1 1.1.2 1.1.3 1.1.4	La notion de forme	13 13 14 15 15
1.2	Morph 1.2.1 1.2.2 1.2.3 1.2.4	ogenèse	16 16 17 17
1.3	Instab 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	ilités, transitions de phase et brisures de symétrie	18 18 19 19 20 20
1.4	1.4.1 1.4.2 1.4.3 1.4.4 1.4.5	s inanimées et formes vivantes	21 22 22 23 24 24 25
		ie	26
Chapit	UI	uto-organisation à l'équilibre. Le ferrofluide : n système modèle	27
2.1		uction: situation par rapport aux autres chapitres	27
2.2		alités : systèmes physiques auto-organisés à l'équilibre Exemples de systèmes physiques auto-organisés L'origine de l'ordre Le nombre de Bond La taille des domaines et le choix du motif	28 28 31 33 34
	2.2.5	Résumé	34

2.3	-	ologies dans les ferrofluides	34
	2.3.1	Le ferrofluide : un système modèle pour l'étude des structures	34
	2.3.2 2.3.3	Bandes et bulles, mousses et anneaux dans les ferrofluides Influence de l'histoire : conditions initiales et conditions	38
	2.3.3	de formation	40
	2.3.4	À l'origine des motifs : les instabilités	43
2.4		ision	48
		ie	49
	0 1		
Cnapit		ÉSEAUX DE FRACTURES HIÉRARCHIQUESeffen Bohn	50
3.1		uction	50
3.2	La fori	nation des réseaux de fractures hiérarchiques	51
3.3	Réseau	de fractures comme une division hiérarchique de l'espace	52
3.4	Une éc	Phelle caractéristique	54
3.5	Conclu	ısion	55
Chapit	re 4 Ci	RISTAUX LIQUIDES ET MORPHOGENÈSE	58
_	Y	ves Bouligand	
4.1	Carapa	nces et séries d'arceaux	58
4.2	« Cont	replaqués hélicoïdaux »	60
4.3		ıx liquides cholestériques et analogues stabilisés	62
4.4	Spécifi	cité et diversité des cristaux liquides	64
	4.4.1	Molécules mésogènes	65
	4.4.2	Structure des cristaux liquides	65
	4.4.3	Transitions de phase	67
4.5	Cristat 4.5.1	ux liquides et analogues stabilisés en biologie : un fait général	67 68
	4.5.1	Muscles Figures myéliniques et membranes cellulaires fluides	68
	4.5.3	Membranes stabilisées	69
	4.5.4	Analogues nématiques et cholestériques	69
	4.5.5	Les limites d'un fait général	70
4.6	Auto-a	ssemblages cristallins liquides	70
4.7	Courb	ure et structure	71
	4.7.1	Diversité des courbures des cristaux liquides	
	4.7.0	et de leurs analogues	72
	4.7.2 4.7.3	Géométrie des différentes courbures	73 76
4.8		nes lyotropes et fluidité cellulaire	78
	•	• -	
4.9	4.9.1	es à surfaces parallèles et origine géométrique des formes Bonnets et selles de cheval :	81
	4.9.2	surfaces elliptiques ou hyperboliques	82 84
4 10		es et textures de cristaux liquides : leurs analogues biologiques	87
1.10	~~11110	o et tental es de elloman ilquides , leulo miniognes biologiques	0.

	ologique des textures cristallines liquides	91
	bans de Mœbius	92
4.11.2 Pai	res d'anneaux enlacés	93
4.12 Cristaux li	quides et mécanismes d'horlogerie	94
Bibliographie		95
_	ORGANISATION BIOLOGIQUE PAR PROCESSUS RÉACTIF	98
5.1 Auto-organ	nisation dynamique dans des systèmes physiques	101
5.2 Auto-organ	nisation dans des colonies d'organismes vivants	103
5.3 Auto-organ	nisation par réaction-diffusion : des bandes	
0	prouvette	105
5.4 L'auto-orga	anisation des microtubules	108
_		
	UNES	
-	ane Douady et Pascal Hersen	110
	e	110
	rce le sable qui vole et lui vole sa force	
	imimale	
	urt sur la dune et la pousse	
0	de vent forme la dune?	
	comprendre la forme de barchane?	
6.7 Le paradox	te des couloirs ou le problème des dunes entre elles	124
6.8 Le vent n'e	est jamais constant	125
6.9 Les dunes	ne sont pas isolées	125
6.10 Le grain de	e sable, la dune, le couloir de dunes	
Quid de l'i	ndividu, des flux, de la forme?	127
Bibliographie		128
_	HODYNAMIQUE DE LA VOIE SÉCRÉTOIRE	129
7.1 Quelques r	appels préliminaires	129
	on	
7.2.1 Me	mbrane cellulaire et translocation	130
	e sécrétoire eucaryote	
	tres compartiments eucaryotes	
	toplasme, cytosquelette et compartimentation	133
- •	namique des membranes	
	mbranes biologiquesgrégation	
_	ssion	
	sion	

7.4 Modèles			es fonctionnels	142
	7.5	Conclu7.5.1	rsions	
		7.5.2	Perspectives évolutionnaires	146
		7.5.3	Questions	147
		7.5.4	Perspectives	147
	Bibli	ographi	e	148
Cl	napit		E L'ÉPIGÉNOMIQUE À L'ÉMERGENCE MORPHOGÉNÉTIQUE	153
		Ca	aroline Smet-Nocca, Andràs Paldi et Arndt Benecke	
	8.1	-	ge génétique, régulation de l'expression génétique	1
		8.1.1	amique chromatinienne	155
		8.1.2	génétique	156
		0.1.2	transcriptionnelle	156
	8.2		ismes épigénétiques, héritage épigénétique,	
		et diffé 8.2.1	renciation cellulaire La méthylation de l'ADN : marqueur épigénétique	159
		0.2.1	de la répression transcriptionnelle	160
		8.2.2	Organisation structurale et fonctionnelle de la chromatine : une régulation spatio-temporelle	163
	8.3	Coupla	ge entre l'épigénétique et la régulation de l'expression	103
		-	que	168
		8.3.1 8.3.2	•	
			la différenciation et le développement	171
		8.3.3	Épigénétique et oncogenèse	172
	8.4	Morpho	ogénomique	174
	Bibli	-	e	
Cl	napit	re 9 M	ORPHOGENÈSE ANIMALE	179
		No	adine Peyriéras	
	9.1	L'acqui 9.1.1	isition de la diversité cellulaire	181
		9.1.2	dès la fécondation?	182
			et l'hypothèse « dehors dedans »	183
	9.2	La trad	lition anatomique de l'embryologie, identification des brisures	
			nétrie et caractérisation des champs morphogénétiques Brisure de symétrie au cours de l'embryogenèse précoce Formation de frontières et de compartiments	
		· -= • -	au cours de l'organogenèse	187
	9.3	L'appro	oche « <i>bottom-up</i> » de la Biologie du Développement	
			dans la formation de patterns	190

9.3.2 Le concept de morphogène et la génération de patrons	
(patterns) par effet de seuil	191
9.3.3 La formation des somites chez les vertébrés :	
un modèle d'oscillateurs couplés	194
9.4 La reconstruction des morphodynamiques cellulaires	
et le renouvellement de la tradition anatomique de l'embryologie 9.4.1 Mouvements et déformations cellulaires	
dans la morphogenèse	
dans l'embryon	
9.5 En forme de conclusion	198
Bibliographie	200
Chapitre 10 LA PHYLLOTAXIE	202
Stéphane Douady	
10.1 Découverte	202
10.2 Pourquoi?	
10.3 Comment?	
10.4 L'arbre de Van Iterson Élagué!	207
10.5 Dynamique	
10.6 Conclusion	
Bibliographie	
Chapitre 11 LA LOGIQUE DES FORMES	
Didier Marchand	212
	242
11.1 Introduction	
11.2 La paléontologie et le temps	213
11.3 De la cellule à l'organisme pluri-cellulaire :	24.4
un « lego » de plus en plus complexe	214
11.4 Les grands plans d'organisation : au Cambrien inférieur,	215
tout est en place	
11.5 L'embranchement des vertébrés : un bel exemple de péramorphose.	. 217
11.6 Les anomalies de développement :	210
une ouverture vers de nouvelles morphologies	219
11.7 Le cerveau comme dernier espace de liberté	
11.8 Conclusion	
Bibliographie	223
Chapitre 12 LES FORMES ÉMERGEANT DU MOUVEMENT COLLECTIF	. 224
Hugues Chaté et Guillaume Grégoire	
12.1 Introduction	. 224
12.2 Vers un modèle minimal	226
12.2.1 Les ingrédients	226

12.2.2 Le formalisme	
12.3 Des formes en l'absence de cohésion	
12.3.1 Se déplacer en bandes auto-organisées	
12.3.2 Trajectoires microscopiques et formes	
12.4 Avec cohésion : goutelettes en mouvement	
12.4.1 Diagramme des phases et forme des goutelettes	
12.4.2 Cohésion brisée lors de la mise en mouvement	
12.5 Retour à la nature	235
Bibliographie	236
Chapitre 13 Systèmes de villes et niveaux d'organisation	238
Denise Pumain	
13.1 Trois niveaux d'observation du fait urbain	
13.1.1 Des propriétés émergentes au niveau de la ville	
13.1.2 La structure du système des villes	
13.2 Une interprétation fonctionnelle de l'organisation hiérarchique	245
13.2.1 La ville au quotidien	
13.2.2 Les fonctions du système des villes	
13.3 Les interactions qui construisent les niveaux	
13.3.1 Les interactions constitutives des formes des villes	
13.3.2 Les interactions constitutives des systèmes de villes	
13.4 Les modèles de systèmes complexes pour la morphogenèse urbaine 13.4.1 Les villes, objets spatiaux	256256
13.4.2 Villes et objets fractals	
13.4.3 De l'espace-support à l'espace relationnel et conformant	
Bibliographie	
Chapitre 14 NIVEAUX D'ORGANISATION ET MORPHOGENÈSE:	
LE POINT DE VUE DE D'ARCY THOMPSON	264
Yves Bouligand	
14.1 Jeux de construction	265
14.1.1 Synthèses chimiques et biosynthèses	
14.1.2 Assemblages supramoléculaires en réseaux	
14.1.3 Modèles moléculaires et supramoléculaires	
14.2 Jeux aquatiques	270
14.2.1 Formes hydrostatiques	
14.2.2 Figures hydrodynamiques	271
14.2.3 Adaptations morphologiques à l'hydrodynamique	
de l'environnement	
14.3 Les fragiles architectures de la diffusion	
14.3.1 Diffusion en situation hydrostatique	
14.3.2 Diffusion en situation hydrodynamique	
14.4 Stabilisation et remaniement des formes	
14.5 Le problème des fortes courbures locales et nouvelles perspectives	
14.6 Théories morphogénétiques particulières et générales	
14.6.1 Rôle direct ou indirect du génome en morphogenèse	279

14.6.2 Brisures de symétrie et différenciation	
Bibliographie	286
Chapitre 15 LES MODÈLES MORPHOGÉNÉTIQUES DE RENÉ THOM	288
15.1 Le contenu général du modèle	288
15.2 Morphodynamique et stabilité structurelle	
15.3 La théorie des systèmes dynamiques	
15.4 La théorie des singularités et les modèles morphogénétiques	
« élémentaires »	
15.5 Les principes des modèles morphodynamiques	296
15.6 Les modèles de morphogenèse	296
Bibliographie	297
Chapitre 16 MORPHOGENÈSE, STABILITÉ STRUCTURELLE	
ET PAYSAGE ÉPIGÉNÉTIQUE	298
Sara Franceschelli	
16.1 La correspondance	298
16.2 Le modèle de Delbrück	
16.3 Stabilité structurelle et champ morphogénétique	302
16.4 Paysage épigénétique : une image mentale, une métaphore de quoi ?	303
16.5 Interprétations	307
Bibliographie	308
Chapitre 17 Analyse morphologique et mutationnelle :	
DES OUTILS POUR LA MORPHOGENÈSE	309
Jean-Pierre Aubin et Annick Lesne	
17.1 Objectifs	309
17.2 Motivations.	
17.2 Motivations. 17.2.1 Problèmes de co-viabilité	
17.2.2 Morphogenèse biologique	
17.2.3 Traitement de l'image	
17.2.4 Optimisation de forme	
17.2.5 Économie dynamique	315
17.2.6 Propagation de front	
17.2.8 Analyse d'intervalles	
17.3 Genèse de l'analyse morphologique	
	317
	320
	321
	323
	326

hapitre 18 Morphogénèse informatique	328
Jean Louis Giavitto et Antoine Spicher	
18.1.1 L'animal-machine	330 330
18.2 Les systèmes de réécriture	334 336 336 337
18.3 Réécriture de multi-ensembles et modélisation chimique	340 343
18.4 Les systèmes de Lindenmayer et la croissance des structures linéaires 3. 18.4.1 Croissance d'une structure filamentaire	345
18.5 Au-delà des structures linéaires : calculer une forme	
pour la comprendre	348
Bibliographie	350