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Abstract

Spatial computing is an emerging field that recognizes the importance of explicitly handling spatial relationships at three levels: computer
architectures, programming languages and applications. In this context, we present MGS, an experimental programming language where data
structures are fields on abstract spaces. In MGS, fields are transformed using rules. We show that this approach is able to unify, at least
for programming purposes, several computational models like Lindenmayer systems and cellular automata. The MGS notions of topological
collection and transformation are formalized using concepts developed in algebraic topology. We propose to use transformations in order to
implement a discrete version of some differential operators. These transformations satisfy a Stokes-like theorem. This result constitutes a geometric
view of programming where data are handled like fields in physics. The relevance of this approach for the design of autonomic software systems
is discussed in the conclusion.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The notion of space appears in several application domains
of computer science. Spatial relationships are involved in CAD
applications, geographic databases or image processing, to cite
a few. They also have long been used to structure and reason
about programs; see [15] for an early reference.

Now the importance of space in the computation process
itself is recognized by the emergence of Spatial Computing.
This new field outlines that computations are performed in
space and that concepts like position and distance metric
matter [17]. Space is then no longer an issue to abstract away,
but a first-order effect that we have to produce or optimize.
Spatial computing is relevant both at the computer and the
application levels.

At the level of the computer architecture, due to the increase
in frequency of very-large-scale integration chips (VLSI),
space is a resource that must be optimized (e.g. [12]). At
the same time, research designed to build and handle objects
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at the nanoscale level in physics, chemistry and molecular
biology, reveals promising almost available resources for
unconventional computing [41,52] as foreseen by [21]. All
these new possible carriers for computation have in common
a large number of unreliable elementary entities localized in
space and whose function depends on their shape.

At the level of the applications, ubiquitous applications
managing several thousands of localized processing elements
are already common: think to grid systems like SETI@home,1

peer-to-peer systems like the Mule [47], popular Internet
applications like Google [11] or the management of mobile
phones in an urban area. Spatial relationships come into
play because each processing element interacts with only
a limited set of neighbors. New kinds of applications
are also “space-demanding”. For example cyber-physical
systems [46], like programmable matter or claytronics [2],
integrate computations with physical processes embedded in
space. In this area, space is used as a means, as a resource and as
a result.

1 SETI@home is currently the largest distributed computing effort with over
3 millions CPU, http://setiathome.berkeley.edu/.
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To face the new application domains or to harness the
opportunities brought by the new computing media, we propose
to introduce explicit spatial notions in a programming language.

Several programming models have already elaborated a
notion of space to escape the von Neuman paradigm which
smashes away any spatial relationships by considering a
uniform access cost for all data. Well-known examples are
given by systolic programming [34], cellular automata [54]
or data-parallel models [26]. However, in these examples, the
underlying space is static and predefined.

Our proposition is illustrated through MGS, an experimental
programming language dedicated to the handling of space
through the notion of field. Fields were introduced in MGS,
where they are called topological collections, for the modelling
and the simulation of dynamical systems with a dynamical
structure [22] (MGS stands for “encore un Modèle Généraliste
de Simulation” that is “yet another general model for
simulation”). Topological collections can be used to directly
handle highly structured or semi-structured data used in
algorithmics (like trees, arrays, stacks, XML data, etc.), as well
as to take into account the distribution of data elements over
a network where the communication costs between processing
elements induce a neighborhood relationship. The network
architecture can be static and regular, as in a tightly coupled
parallel architecture, or more fuzzy and dynamic, as in a grid on
the Internet, in a peer-to-peer system (P2P) or in an amorphous
medium [1].

The MGS approach, based on concepts developed in
algebraic topology, introduces spatial relationships both at the
data structure and the control structure levels. The fundamental
idea is to relate the notions of field and data structure to
specify computations through the declarative description of
local changes in the field evolution.

The genericity brought by this topological approach allows
us to encompass several unconventional computing models
for programming purposes. It makes also possible to develop
a discrete counterpart of the differential operators used to
specify the evolution of fields in physics. These features
enable a concise expression of systems dynamics and the rapid
prototyping of various simulations of physical processes; they
are also relevant for the expression of various algorithmic
processes.

Organization of this article.

In the next section we introduce the notions of data field and
topological collection. The spatial relationships of a topological
collection can be used to define in a declarative style the local
evolutions of a system.

Section 3 illustrates these notions in the context of MGS.
We develop a useful syntax for defining topological collections
and their transformations. We compare the MGS approach
with some other formalisms, namely Gamma and the chemical
formalism, L systems and lattice-gas automata. The comparison
is made on a small but paradigmatic example for each
formalism. We do not claim that topological collections
and transformations are a useful theoretical framework

encompassing all the previous formalisms. Nevertheless, we
advocate that few notions and a single syntax can be
consistently used to allow the merging of these formalisms for
programming purposes.

Section 4 formally defines the notions of topological
collection and transformation. The algebraic structure of a
topological collection has been introduced in combinatorial
topology to build spaces by gluing elementary bricks.
Transformations are a kind of rewriting on these topological
objects.

Section 5 relies on the previous definitions to investigate
a notion of discrete differential operators. At a combinatorial
level, these discrete operators correspond to some specific
moves of values on the underlying space. The formal tools that
have been introduced enable the proof of a Stokes’ theorem that
justifies our definition of the discrete differential operators.

Finally, in Section 6 we summarize our results and we
discuss the geometric view of programming entailed by this
work, and the relevance of the geometric approach in the
engineering of autonomic systems.

2. Topological collections and transformations

2.1. Fields, data fields and topological collections

The concept of field is a basic ingredient in physics that
assigns a physical quantity to every point in a space [10]. Many
physical quantities have different values at various points in
space. For example, the temperature field in a room is not
uniform: higher near the heater, lower near the window. More
generally, there is a particular region of space which is of
interest for the problem at hand. This region is characterized
by a value depending on the region dimension [55], e.g. a
concentration for a volume and a flux for the surface bounding
this volume. In the following, these regions of space are called
cells.

This extended notion of physical field includes the idea of
data structure. In this point of view, a data structure is a set
of places filled by some value [8]. The set of places exhibits
some structure: a spatial organization. We focus here on spatial
relationships induced by the notion of neighborhood where
the neighborhood relationship represents physical (spatial
distribution, localization of the resources) or logical constraints
(inherent to the problem to be solved).

Logical neighborhood relationship comes from the accessi-
bility relation involved by a data structure [23], i.e. which el-
ement (place, cell) is accessible from another element (place,
cell). For example, in a simply linked list, the elements are
linearly accessed (the second after the first, the third after the
second. . . ). In arrays, a computation often involves only an el-
ement and its neighbors: the neighborhood relationship is left
implicit and implemented through incrementing or decrement-
ing indices.

The neighborhood relationships can also be used to take into
account physical constraints given by distributed computations
where the data elements and the computing resources are
localized at different places in space. In this case, the direct
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interactions of arbitrary elements in the system are not always
allowed nor desirable, and only “neighbor” elements may
interact: the neighborhood relationship instantiates the local
nature of the computations.

Note that parallel computing addresses both logical and
physical constraints: on the one hand computations are
distributed on physically distinct computing resources. On the
other hand, the distribution of the computation is a parameter
of the execution, that is a choice given at a logical level to
minimize the computation time, and that does not depend on
some imposed physical localizations solely induced by the
problem to be solved, as in distributed computing.

The notion of data field is an old one in computer science:
it already appeared in the development of recurrence equations
and dates at least from [31]. The term “data field” seems to be
used for the first time in [14]. The notions of data field and data
parallelism have been explicitly brought together in [37]. This
approach is also close to the notion of pvar or xapping [51] in
the context of the Connection Machine. However, in all these
works, the set of places is simply an integer lattice (places are
elements of Zn) and is often left implicit.

We call topological collection a data structure which makes
explicit the spatial relationships used to structure the set of
its data elements. Topological collections consider, for the
underlying space, more general spaces than integer lattices or
even arbitrary graphs, in order to accommodate a large variety
of spatial organizations [23]. This generality will ease the
development of various applications, for example in simulation
by allowing a direct representation of the modelled entities. It
will also facilitate portability by offering a uniform abstraction
of arbitrary spatial computing media (e.g. grids, amorphous
computers, chemical reaction diffusion computers, DNA self-
assembly, natural or synthetic cellular assemblies, etc.).

Technically, a topological collection is a chain that assigns
a value to each cell of an abstract cellular complex. These
notions have been formalized in algebraic topology [25] and
the necessary definitions are recalled in Section 4.

2.2. Local evolution, rewriting rules and transformation

The concept of logical neighborhood in a data structure
is not only an abstraction perceived by the programmer and
vanishing at the execution. Indeed, the computation usually
complies with the logical neighborhood of the data elements
so as some primitive recursion schemes can be automatically
defined from the data structure organization. These recursion
primitives are global computations entailed by the iteration
of local operations. For example, in the context of functional
programming, a map is a global operation that applies a function
to each element of a list, a fold processes locally each element
of the list (in direct or in reverse order) and incrementally builds
up a return value, etc.

We call transformation a function f which associates to a
topological collection c a topological collection c′

= f (c)
computed by iterating some local changes on c. A change is
local when it only impacts a subset of neighbor elements in
the collection. The iteration of the local changes is spatial (i.e.

parallel) and simultaneously affects several distinct parts of the
collection.

Transformations represent only a specific class of functions
that can be defined on topological collections. However, this
class is particularly relevant in the context of spatial computing.
The simultaneous iterations of the local changes can be used to
implement data parallelism. The computation expressed by a
transformation is often generic and can be used on arbitrary
topological collection (this property is called polytypism in
the context of algebraic data type, see [39]). On the contrary,
arbitrary global operations on topological collection can be very
difficult to implement.

The specification of the local computations of a transfor-
mation can take several different styles. We advocate that the
declarative style is very relevant because it focuses on what
should be computed instead of how it must be done. Thus,
a declarative program is an executable specification not bur-
dened by the implementation details. In MGS, a local change
is declaratively specified by a rule

r ⇒ s

which separates the description of the subobject(s) to be
transformed (the left-hand side r of the rule) from the
calculation s of its evolution: s is an expression that depends on
r . Such a rule describes an elementary local interaction between
some elements r of a system whose state is described by a
topological collection (agents in multi-agent systems, cells in
cellular automata, molecules in chemical reactions, etc.).

An MGS transformation is an ordered set of such rules. In
MGS, the iteration of the application of the transformation’s
rules relies on a two stages process. First, instead of specifying
precisely a set of connected cells r , a pattern can be used. A
pattern is a specification that selects the parts of the system
that are potentially able to change. A variable in a pattern
denotes an unknown but specific cell and its associated value.
Variables in r can appear in the expression s. We have
investigated several kinds of pattern languages which differ by
the classes of subcollections they can specify. Here, we use
only basic patterns that do not require a formal description
of these languages. The next section introduces the main idea
of the MGS pattern syntax on some examples. In the second
stage, a rule application strategy is used to control the spatial
iteration and to decide which parts selected by the pattern r
are replaced by s. The rule application strategy is not part of
the transformation itself and can be specified at the application
time.

This general picture is very similar to the device of
rewriting systems [18]. However, rewriting systems are used
to manipulate terms that are tree-like structures. The challenge
is to define a notion of rule able to rewrite fields on arbitrary
spaces. MGS transformations are an answer to this problem.

3. Examples of applications in MGS

In this section, we briefly describe some examples of
applications along with some fragments of the MGS trans-
formations syntax. Each example is paradigmatic of an
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unconventional programming model (Gamma, L system, cel-
lular automata). MGS has also been involved in sophisticated
simulation applications in biology, like neurulation [49], cell
mobility [50], the growth of the plant meristem at a cellular
level developed by [7], or the simulations at various scales of
a synthetic multi-cellular bacterium [30]. Classical algorithms
(various sorting procedures, graph algorithmics, optimization
processes, surfaces subdivisions algorithms, etc.) have also
been easily developed, see [40].

3.1. A quick look at MGS

MGS embeds a complete, impure, dynamically typed,
strict, functional language (for notions related to functional
programing languages like purity, strictness, λ-expressions,
etc., cf. to a general reference like [16]). MGS provides usual
scalar values (like integers, floats, symbols, λ-expressions, . . . )
and aggregate types of values based on the notion of topological
collection. Collection types can range in MGS from totally
unstructured with sets (corresponding to a complete graph
topology) to more structured with sequences (linear 1D space),
labeled Cayley graphs and arbitrary labeled abstract cellular
complexes. The abstract cellular complex subsumes all other
collection types, that is, any topological collection can be
translated as a labeled abstract cellular complex.

The following syntax

trans name = { ... ; pattern => exp ; ... }

defines a transformation named name where the set of rewriting
rules is given between braces. We will only consider simple
patterns that we will comment on the fly. Nevertheless, the
notion of pattern variable is important. A variable x in a pattern
matches a cell σ of the collection together with the value v

associated with σ . This variable can be used in any expression
in the rule. When expressions are evaluated, the variable pattern
x refers to the value v and not to σ . The cell σ can be
referred through the special variable ^x. The right-hand side
(r.h.s.) of a rule is an MGS expression that has to evaluate
to a new subcollection. The following examples illustrate how
transformations work, on simple but paradigmatic applications.

3.2. Computing the prime numbers in gamma

Banâtre and Le Métayer [4] introduce Gamma, a
programming model where computation is seen as chemical
reactions between data represented as molecules floating in
a chemical solution. Formally, this model is represented by
the rewriting of a multi-set where rewriting rules model the
chemical reactions. A multi-set is a collection of elements like
a set where elements may have repeated occurrences [44].

A Gamma program is a collection of reaction rules acting
on a multi-set of basic elements. A reaction rule is made of
a condition and an action. Execution proceeds by replacing
elements satisfying the reaction condition by the elements
specified by the action. The result of a Gamma program is
obtained when a stable (or inert) state is reached, that is to
say, when no reaction can take place anymore. For example,
the reaction

primes = replace x, y by y if x div y

replaces any couple of elements x and y such that the reaction
condition x div y holds (that is, if and only if x is divided
by y). This process goes until a stable state is reached, i.e.
when there is no couple of elements x and y such as x is
divided by y. In other words, when applied to the multi-set
of all numbers between 2 and N , this reaction computes the
prime numbers lower or equal to N . Note that programs can
be expressed without artificial sequentiality (i.e. unrelated to
the logic of the program). If several disjoint tuples of elements
satisfy the condition, the reactions can be performed in parallel.
A long series of examples (string processing problems, graph
problems, geometry problems, etc.) illustrating the Gamma
programming style can be found in [5].

It is straightforward to translate multi-set and Gamma rules
in MGS: the topology of a multi-set corresponds to a complete
connected graph (each node is neighbor of any other one)
and the matching of a tuple of ` elements in a Gamma rule
corresponds to the matching of a subcollection of ` elements.
For instance, the previous rule is translated in MGS as:

trans Prime = {x, y/(x div y) => y}

where p/exp is a guarded pattern that selects the subcollections
matched by p that fulfill the condition exp. The comma means
that elements matched by x and y are neighbors, i.e. they are
connected by an edge in the multi-set topology. The fixed-point
iteration of the Prime transformation is a particular application
strategy specified at application time:

Prime[fixpoint](. . .).

Other qualifiers exist in MGS to apply a transformation (or an
ordinary function) a given number of time or until an arbitrary
condition is satisfied.

3.3. Anabaena growth in L systems

L systems are parallel string rewriting systems introduced
by [36] in order to simulate the development of multi-
cellular organisms. The parallel derivation process used in
the L systems is useful to describe processes evolving
simultaneously in time and space like plant growth. It has since
become a formalism used in a wide range of applications from
the description of cellular interactions to a model of parallel
computation [48].

We consider here the development states of a filamentous
organism (a one-dimensional organism) where each biological
cell can be in two states a and b. The cells in the state a are
dividing themselves, whereas the b state is a waiting state of
one division step. In addition, a biological cell is left or right
polarized. The four production rules and the first 5 derivation
steps are:

ω : br t0 : br
p1 : ar → al br t1 : ar
p2 : al → bl ar t2 : al br
p3 : br → ar t3 : bl ar ar
p4 : bl → al t4 : al al br al br .
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Fig. 1. Fixed point reached by the DLA transformation applied on three arbitrary surfaces. The darker cells represents aggregated particles. The initial configuration
is given by a unique fixed cell and some mobile cells randomly spreaded over the surface. The pictures show a final situation when each initial mobile particle has
been aggregated.

The cell polarity is given with the l and r suffix. The
polarity changing rules of this example are very close to those
found in the blue-green bacterium Anabaena catenula [42].
Nevertheless, the timing of the cell division is not the same.
Each derivation step will represent a state of development of
the organism. The production rules allow each cell to remain in
the same state, to change its state, to divide into several cells
or to disappear. The implementation of the production rules in
MGS is straightforward:

trans Anabaena = {

‘Ar => ‘Al, ‘Br;
‘Al => ‘Bl, ‘Ar;
‘Br => ‘Ar;
‘Bl => ‘Al;

}.

The four symbols ‘Ar, ‘Al, ‘Br and ‘Bl are MGS symbols
that represent the different states. The Anabaena transforma-
tion is applied on a sequence of symbols. In a maximal parallel
iteration strategy, each symbol s in the argument is matched by
the l.h.s. of one of the four rules and produces a sequence of
one or two elements that are substituted to s.

3.4. DLA in lattice-gas automata

Multi-sets and sequences are special cases of associative-
commutative and associative-only trees. Thus, the previous
examples can be achieved by using standard rewriting
techniques. The example presented in this section shows that
the MGS topological approach handles uniformly sophisticated
spatial organizations. Cellar automata and lattice-gas automata
can be easily handled in MGS by defining the underlying
lattice. We sketch here an example of a Diffusion Limited
Aggregation (DLA) process. DLA is a fractal growth model
studied in [56]: a set of particles randomly diffuse on a given
spatial domain. Initially some particles, the seeds, are fixed.
When a mobile particle collides a fixed one, they stick together
and stay fixed. For the sake of simplicity, we suppose that they
remain stuck forever and that there is no aggregate formation
between two mobile particles. This process leads to a simple

cellular automaton with an asynchronous update function or a
lattice-gas automata with a slightly more elaborated rule set.

The transformation describing the DLA behavior is quite
simple. We use two symbolic values ‘Mobile and ‘Fixed to
represent respectively a mobile and a fixed particle. The symbol
‘Empty is used to represent the label of an empty cell. There
are two rules in the transformation: (1) if a diffusing particle
is the neighbor of a fixed one, then it becomes fixed; (2) if a
mobile particle is the neighbor of an empty place, then it may
leave its current position to occupy the empty neighbor. Note
that the order of the rules is important in MGS because the first
has priority over the second one when they are interfering. The
effect of the corresponding transformation

trans DLA = {

‘Mobile, ‘Fixed => ‘Fixed, ‘Fixed ;
‘Mobile, ‘Empty => ‘Empty, ‘Mobile

}

is illustrated in Fig. 1 on different surfaces (a Klein bottle,
a meshed boat and a sphere). These surfaces have been
constructed using a topological model [43], and then imported
and converted in MGS into topological collections using
abstract cellular complexes.

4. Formalization

The development of a “data structures as data fields” point
of view in programming language naturally raises the question
of the counterpart of differential operators. As a matter of
fact, differential operators are a crucial tool to express field
definitions in physics. An answer is not easy to formulate.
One of the main difficulties is that differential operators have
been developed originally in a continuous setting while the
framework sketched here relies on discrete objects.

To elaborate an answer, we first propose a formal description
of topological collections and their transformations relying
on concepts borrowed from algebraic topology. Our goal is
not to develop a formal semantics of MGS but to define
a usable notion of discrete differential operators as we will
see in the next section. In this section, we introduce the
notions of algebraic topology used to formalize topological
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collections and transformations. The next section is devoted to
the development of a discrete differential spatial calculus.

4.1. Elements of algebraic topology

Topological collections are formalized by topological
chains. Chains are functions that associate values with positions
of a space defined by an abstract cellular complex. Algebraic
topology proposes to deal with these topological chains using
topological cochains, one of the main ingredients of the discrete
differential calculus. The following definitions recall these
notions.

Abstract cellular complexes are a variant of CW-complexes
developed in homotopy theory. Roughly speaking, CW-
complexes are a particular class of topological spaces that are
partitioned into pieces of elementary space called topological
cells. Each cell is homeomorphic to an open ball in Rd . By
the term abstract cellular complex, we mean here that only the
combinatorial structure of CW-complexes is preserved while
the geometric characteristic functions mapping cells to open
balls are left apart [32,33].

Definition 1 (Topological Cells, Abstract Cellular Com-
plexes). Let S be a set of symbols called the universal set of
cells. An element σ ∈ S is called an abstract topological cell
and is characterized by an integer, called the dimension of σ ,
denoted by dim(σ ). If a cell σ is of dimension n, σ is also
called an n-cell. An abstract cellular complex K is a partially
ordered subset of S, that is a couple (S, �) such that S ⊂ S
and � is a partial order over S (i.e. a reflexive, transitive and
antisymmetric binary relation on S) with

∀σ, τ ∈ S σ � τ ⇒ dim(σ ) ≤ dim(τ ).

The relation � is called the incidence relationship of the
complex K. A complex K is of finite dimension if the integer
N = max{dim(σ ) | σ ∈ S} is defined. In such a case, N is
called the dimension of K. We denote K the set of all abstract
cellular complexes.

An example of abstract cellular complex of dimension 2 is
given in Fig. 2. In the following, we will often drop the term
abstract because we only consider abstract cellular complexes
and abstract topological cells. Cells will also be called positions
as they are used as the spatial localization of values. All
set operations are extended to abstract cellular complexes. In
particular, we will use the unionK1 ∪K2 = (S1 ∪S2, �1 ∪ �2)

and the difference K1 − K2 = (S1 − S2, �1|S1−S2) of two
abstract cellular complexes.

Intuitively, the incidence relationships are related to the
notion of boundary. For example, for any cell τ ∈ K such
that τ � σ , τ belongs to the boundary of σ in K (examples
are given Fig. 2). We now define operators using the incidence
relationship to specify particular neighborhoods.

Definition 2 (Faces, Cofaces, 〈n, p〉-neighborhood). Let K be
an abstract cellular complex, σ, τ ∈ K. The cell τ is a face of σ

if τ ≺ σ and dim(τ ) = dim(σ ) − 1. The cell σ is then called a

Fig. 2. On the left, an abstract cellular complex composed of three 0-cells (v1,
v2, v3), of three 1-cells (e1, e2, e3), and of one 2-cell f . The cells v1, v2, v3,
e1, e2 and e3 are the boundary of f . Especially, the three edges are faces of f ,
and then, f is a coface of e1, e2 and e3. Cells v1 and v2 are 1-neighbors by
e1, and e2 and e3 are 2-neighbors by f . On the right, the complex is labeled by
data defining a topological chain (collection).

coface of τ . This relation is denoted by τ < σ . Two n-cells σ1
and σ2 of K are 〈n, p〉-neighbors if

∃τ ∈ K, (dim(τ ) = p) and{
(σ1 � τ) ∧ (σ2 � τ) if n ≤ p
(τ � σ1) ∧ (τ � σ2) otherwise.

This relation is denoted by σ1 ,n
p σ2 (or simply σ1 ,p σ2).

Abstract cellular complexes provide a way to specify
sophisticated spatial structures composed of positions together
with a neighborhood. Therefore, we are able to elaborate
data fields from these topological organizations by defining
functions from the set of cells of a complex to an arbitrary
set of values. Associating values with the cells of a complex
is a basic notion in algebraic topology that is called topological
chain [45].

Definition 3 (Topological Chains). Let K be a complex and G
be an abelian group. The set of functions from K to G, null
almost everywhere, is called the set of topological chains of K
to G, and is written CK(G).

The elements of CK(G) are easily representable by finite
formal sums:

∀c ∈ CK(G), c =

∑
σ∈K

c(σ ).σ

where c(σ ).σ is the formal product that represents the
association of the value c(σ ) ∈ G with the cell σ . Thanks to
the abelian group structure imposed on G, the set CK(G) is an
abelian group considering the addition +CK(G) defined by:

∀c1, c2 ∈ CK(G), c1 +CK(G) c2 =

∑
σ∈K

(c1(σ ) +G c2(σ )).σ

where +G is the group operation in G. If the context is clear,
the subscript in the notation of the group operation will often be
dropped. The group structure allows us to distinguish different
topological spaces when the abstract cellular complex alone
is not expressive enough (for instance to deal with multi-
incidence, see [9] for some examples). While they seem useless
in our context, the group structure on the set of values and the
induced group structure on chains are really meaningful to deal
with data fields:

• the neutral element represents the lack of value (the empty
data structure),
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• the operator +CK(G) adds a new association of a value v ∈ G
with a cell σ ∈ K in a data structure c: c + v.σ ,

• the opposite −CK(G) removes an association: c − v.σ =

c + (−v).σ .

Functions are used to manage data fields represented by
chains. Some functions on chains deserve a special attention:
chain morphisms. They are called topological cochains. We
will see that some MGS transformations are cochains and, in
the next section, that differential operators can be defined using
cochains.

Definition 4 (Topological Cochains). Let K be an abstract
cellular complex, G and G ′ two abelian groups. The topological
cochains of chains in CK(G) with values in G ′ are group
homomorphisms from CK(G) to G ′. The set of cochains is
written CK(G, G ′).

It is immediate to show that CK(G, G ′) is an abelian
group and when K is finite, this group is isomorphic
to CK(Hom(G, G ′)), the group of topological chains with
coefficients in Hom(G, G ′), the homomorphisms from G to G ′.
From now on, we assume that the abstract cellular complexes
are finite. Therefore, for any cochain T of CK(G, G ′), T can
be represented by a finite formal sum

T =

∑
σ∈K

fσ .σ

where each fσ is an element of Hom(G, G ′). Using this
representation, the application of a cochain T on a chain c is
written:

[T, c] =

∑
σ∈K

( fσ ◦ c)(σ )

where the symbol
∑

processes additions in G ′.

4.2. Formalization of MGS features

The previously defined topological context allows us to
formally specify the concepts of topological collection and
transformation.

A topological collection c is a data structure represented by
a topological chain of CK(V ). The complex K describes the
structure of c, and the group V gathers the data contained by
c. In practice, the set of values V does not always exhibit a
group structure. Nevertheless, it is always possible to extend an
arbitrary set of values to an abelian group considering Abel(V ),
the abelian group finitely generated by the elements of V . For
the sake of simplicity, we assume in the following that V has a
group structure.

Definition 5 (Topological Collections). Let K be a complex
and V an arbitrary group of values. A topological collection on
K with values in V is an element c of CK(V ). The complex
K is called the shape of c and is denoted by Shape(c). |c|
denotes the set of cells of c with a nonzero coefficient. We
have |c| ⊂ Shape(c). The set of all topological collections with
values in V is

TopoColl(V ) =

⋃
K∈K

CK(V ).

On the right of Fig. 2, an example of topological collection is
given. Positions are associated with vertices, lengths with edges
and areas with 2-cells.

We want now to give a formalization of the notion of local
computation. A transformation is a rewriting mechanism that
substitutes a subpart of a collection by another collection. The
definition of this rewriting mechanism requires:

• the notion of subcollection, that is a way to cut out a subpart
of a collection;

• the merging of collections, that is a way to rebuild a col-
lection from the resulting elements of local transformations;
and finally,

• a strategy to apply a rewriting rule somewhere in a
collection.

Definition 6 (Subcollections). Let c be a collection of
TopoColl(V ). A subcollection s of c is an element of
TopoColl(V ) such that Shape(c) = Shape(s), |s| ⊆ |c| and
∀σ ∈ |s|, s(σ ) = c(σ ).

In other words, a subcollection of a collection c is a restriction
of c to a collection (with the same structure) where only
a subpart of the cells remains labeled. Note that if s is a
subcollection of c, then the collection c − s is defined and is
also a subcollection of c.

Merging collections with similar shape obviously corre-
spond to summing them using the addition of topological
chains. Nevertheless, in order to allow local modifications of
the topology, we have to consider that the collections to be
joined may have distinct shapes. In this case, the correspond-
ing abstract cellular complexes are joined and both collections
are extended on this common shape to finally use the standard
addition of chains. Note that merging is commutative.

Definition 7 (Collections Merging). Let c and c′ be two
topological collections of TopoColl(V ). The merging of c and
c′, denoted c ] c′, is defined by:

c ] c′
= c|K +CK(V ) c′

|K

where K = Shape(c) ∪ Shape(c′), the addition +CK(V ) is the
group addition on the topological chains of K to V and c|K is
defined for any collection c and any complex K by

∀σ ∈ K, c|K(σ ) =

{
c(σ ) if σ ∈ Shape(c)
0V otherwise.

We are now able to define a basic transformation step.

Definition 8 (Rewriting Rule, Global Transformation). A
rewriting rule r is a couple of topological collections (α, β) ∈

TopoColl(V )2 written α → β. Let c and c′ be two collections
of TopoColl(V ), and K = Shape(c). The collection α matches
in c if Shape(α) ⊂ K and α|K is a subcollection of c. The
collection c′ is the result of the application of the rule α → β to
c and we write c Br c′ if c′

= β ] c|K− Shape(α) when α matches
in c or if c′

= c when α does not match in c.
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A global transformation (or simply a transformation)
corresponds to the simultaneous applications of some non-
interfering rules. Two rules α1 → β1 and α2 → β2 are non-
interfering if |α1|∩ |α2| = ∅. We extend the notation Br to a set
R of non-interfering local rules, writing BR .

In this definition, when α matches in c, the application of
α → β:

(1) removes the cells of α (only the elements of c that do not
appear in the shape of α remain with their coefficient), and

(2) adds the cells of β.

In order to rebuild a coherent collection, the r.h.s. β may refer
to some cells of K− Shape(α). These references correspond to
the standard and explicit invariant (or gluing graph) in graph
rewriting [20]. If the l.h.s. α cannot be found in c, then the
application of the rule is void and the local transformation is
the identity.

It is interesting to clarify the relations between cochains of
CK(V, CK′(V )) and transformations of collection. Let T =∑

fσ .σ be such a cochain, where fσ are homomorphisms
from V to CK′(V ). Then, the application of T on a collection
c ∈ CK(V ) can be represented by the following diagram:

where ci = fσi (vσi ). It is easy to elaborate another
representation of T based on a transformation using the set
of rules R = {v.σ → fσ (v) | v ∈ V, σ ∈ K}. In
other words, we have c BR[T, c]. This relation shows that
transformations can be used to encode cochains, and thus, that
MGS provides a good framework to study the contribution of a
discrete differential calculus in spatial computing.

5. Differential spatial calculus

In the continuous framework, differential operators are
used to manipulate fields. Thus, a discrete counterpart of
these operators would be an essential ingredient for spatial
computing. In this section, we propose a discrete version of
the differential operators and show their relationships with the
notions of cochain and transformation. We would like to stress
how a discrete description of differential calculus operators
can be interpreted as some elementary moves of values on
the underlying discrete space. These operators lead to the
development of a discrete field algebra that can be directly
translated in MGS. As an illustration of the approach, we
establish a discrete Stokes’ theorem and rely on the discrete
differential operators to define a generic discrete Laplacian
operator.

5.1. Differential operators and elementary data movements

It is interesting to see that the homomorphisms defining a
cochain T =

∑
fσ .σ of CK(G, CK(G)) allow to move values

from each σ to its neighborhood. As an example, we propose to

define T so that it transports coefficients within a chain using
the 1-neighborhood:

fσ : G → CK(G)

g 7→

∑
τ ,1 σ

g.τ (1)

(cf. Definition 2 for the relation ,1 ). When T will be applied on a
chain c, each homomorphism fσ associates with the coefficient
c(σ ) of σ , a chain only defined on the 1-neighbors of σ . Then,
the group structure of CK(G) combines all these local moves
into the expected result. Fig. 3 pictures these moves.

Surprisingly, the discrete boundary operator ∂ can be defined
in the same way. Usually, the boundary operator is defined as
a chain morphism satisfying ∂ ◦ ∂ = 0. This last property
corresponds to the idea that the boundary of something has
itself no boundary, cf. [45]. For example, the boundary of
a disk is a circle and a circle has itself no boundary. The
boundary operator is a possible starting point for developing a
discrete differential calculus [27,19]. In the context of chains,
it corresponds to a cochain of CK(G, CK(G)), that is, an
endomorphism of CK(G) such that ∂ ◦ ∂ = 0. It can be defined
as follow:

∂ =

∑
σ∈K

∂σ .σ with ∀σ ∈ K, ∂σ (g) =

∑
τ<σ

oστ (g).τ. (2)

In other words, the operator ∂ transports values from cells to
their faces. In this definition, the transported value is not exactly
g but oστ (g). These functions are endomorphisms of G; they
encode the relative orientation of cells. Different oστ give raise
to different boundary operators but they must be chosen such
that ∂ ◦∂ = 0. A comparison of the possible relative orientation
functions exceeds the scope of this paper. We simply assume
that they can be defined by oστ (g) = g if σ and τ are positively
oriented, oστ (g) = −g if they are negatively oriented, and
0 otherwise (i.e. when σ and τ are not incident). Here the
orientation is the usual notion used in geometry: a point is
positively oriented, an oriented 1-cell is a directed edge, the
orientation of a surface is specified by choosing a normal vector,
etc. From now on, we assume that all considered complexes can
be oriented in such a way that ∂ ◦∂ = 0. Fig. 3 shows the action
of the boundary operator on a chain in terms of value transports.

As we move values from cells to cells in chains, it is also
possible to define operators that move homomorphisms from
cells to cells in cochains. The discrete coboundary operator d is
defined in this way:

d =

∑
τ∈K

dτ .τ with ∀τ ∈ K, dτ ( f ) =

∑
τ<σ

( f ◦ oστ ).σ. (3)

This operator transports cochains homomorphisms from cells
to their cofaces. We can note that this definition also needs the
relative orientation.

Stokes’ theorem is a classical and fundamental theorem
that relates what happens on the boundary of a chain to what
happens inside the chain. We just see that discrete differential
operators can be used to transport values from cell to cell. Thus,
establishing a Stokes-like theorem consists in the definition
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Fig. 3. Transport of values under the actions of operators. On the top line, the operator defined by Eq. (1) is applied on a structure where both the 2-cells, one
edge and one vertex are labeled. This operator transfers values from cells to their 1-neighbors. The result is given on the right. The bottom line presents transports
associated with the boundary operator (on the left where only the 2-cells are labeled) and the exterior derivative (on the right where only some 1-cells are labeled).

of an operator op that satisfies the equation [op(T ), c] =

[T, ∂c]. The coboundary operator fulfills this equation and then
coincides with the classical exterior derivative.

Theorem 9 (Stokes’ Theorem). Let c be a chain of CK(G) and
T be a cochain of CK(G, G ′), the coboundary operator defined
by Eq. (3) satisfies

[dT, c] = [T, ∂c].

The proof comes straightforwardly with the unfolding of the
equation using Eq. (2), (3) and the linearity of homomorphisms:[∑

τ

fτ .τ, ∂

(∑
σ

gσ .σ

)]

=

[∑
τ

fτ .τ,
∑
σ

∑
τ<σ

oστ (gσ ).τ

]
by def. of ∂

=

[∑
τ

fτ .τ,
∑
τ

∑
τ<σ

oστ (gσ ).τ

]
by def. of oστ

=

∑
τ

fτ

(∑
τ<σ

oστ (gσ )

)
by def. of [, ]

=

∑
σ

∑
τ<σ

( fτ ◦ oστ )(gσ ) by linearity of fσ

=

[∑
σ

∑
τ<σ

( fτ ◦ oστ ).σ,
∑
σ

gσ .σ

]
by def. of [, ]

=

[∑
τ

∑
τ<σ

( fτ ◦ oστ ).σ,
∑
σ

gσ .σ

]
by def. of oστ

=

[∑
τ

dτ ( fτ ),
∑
σ

gσ .σ

]

=

[
d

(∑
τ

fτ .τ

)
,
∑
σ

gσ .σ

]
.

5.2. Differential operators for spatial computing

We have seen that differential calculus operators can be
understood in our framework as operators moving values in
the underlying space. We now propose to implement this
set of operators in MGS in order to provide the tools of
differential calculus available at the level of programming.
The implementation uses transformations for the cochains and
higher-order functions to combine all the pieces. We finally
illustrate this proposition by implementing and using a generic
Laplacian operator (i.e. a dimension independent operator).

Looking back on the example of the operation specified
by Eq. (1), each element of the field “sends” its own value
to its neighbors with respect to the 1-neighborhood. In other
words, each element “receives” values from its 1-neighbors and
combines them using the group operations +G . MGS provides
primitives to query these values from specific neighborhoods.
In the case of the p-neighborhood and considering a
pattern variable x, the primitive NeighborsFold( f,z,p,^x)
computes f (y1, f (. . . f (yN , z) . . .)) where yi are the values
labeling the p-neighbors of the collection position bound to
^x. The function f combines the values yi and z initializes the
reduction. Eq. (1) is then encoded in MGS:

trans Eq1 = { x => NeighborsFold(+G,0G,1,^x) }

where +G and 0G have to be instantiated by expressions
that respectively represent the group operation and the neutral
element of G. MGS provides alternative primitives to cover
different neighborhoods like the set of faces (FacesFold) or
cofaces (CofacesFold). Operators ∂ and ∂co (defined as doing
the reverse transport of ∂) are pictured in Fig. 3 and are
implemented in MGS by two transformations:

trans Boundary = {

x => CofacesFold(fun y acc -> o^y^x(y) +G acc,0G,^x) }

trans Boundaryco = {

x => FacesFold(fun y acc -> o^y^x(y) +G acc,0G,^x) }.

Symbols o, +G and 0G have to be instantiated by the
corresponding MGS expressions. Then, Stokes’ theorem is
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Fig. 4. Transports of values associated with the application of the Laplacian on a 1D structure. Two steps are processed and move values from vertices to edges and
from edges to vertices with respect to the orientation.

used to program operators d and dco (the adjoint operator of
∂co with respect to Stokes’ theorem):

let Derivative T = fun c -> T (Boundary c)

let Derivativeco T = fun c -> T (Boundaryco c).

These MGS operators are essential to develop more complex
differential operations. We propose to use them to program a
Laplacian operator 1. It is customary defined by the equation
1 = δd + dδ where δ is the codifferential operator. The
codifferential operator is defined by δ = (−1)n(k−1)+1 ? d ?

where n is the dimension of the complex and k the dimension
of the cochain. In this equation, the operator ? is the
discrete Hodge star, see [19]. The Hodge star establishes a
correspondence between a space and its dual. The notions of
dual space and Hodge star are related to a metric imposed on
the abstract cellular complex. For the sake of simplicity, we
drop these notions (that could be taken into account, see [27,19]
for an elaboration) and we only focus on their combinatorial
effects. In this context, the operator ?d ? coincides with dco

and we are finally able to define the combinatorial Laplacian
in MGS.

let Laplacian T =

let Sg T’ c’ =

T’(trans {x => -1**((dim c’)*((dim ^x)-1)+1)*x}(c’))

in

fun c -> Derivative(Sg(Derivativeco(T)))(c)

+ Sg(Derivativeco(Derivative(T)))(c).

The construction let F x y = exp specifies a function
named F with two curryfied arguments x and y (currying is a
technique in which a function is applied to its arguments one
at a time, with each application returning a new function that
accepts the next argument, cf. [16]). The functions Laplacian
and Sg are higher-order functions (e.g. Laplacian takes a
transformation as an argument).

In order to illustrate how the Laplacian transports values
in a collection, let consider a structure of dimension 1 (that
is, composed of vertices and edges) where the fields only
associates values with 0-cells. In this case, the Laplacian is
simplified 1 = dcod. Using Stokes’ theorem twice, we note
that this operator consists in applying ∂ ◦ ∂co to a collection.
It is a two-step process that first transports values from cells to

their cofaces, and then from cells to their faces. Fig. 4 shows
these movements.

In this figure the middle vertex is labeled by a + c − 2b
at the end of the application. We recognize here the discrete
Laplacian used in finite difference method to numerically solve
the heat equation for example. In fact, our implementation
can be directly used to compute a diffusion in any dimension.
Nevertheless, the reader must be careful, as we have skipped
all metrics considerations, this statement only holds for regular
and normalized grids. Fig. 5 are simulations using the previous
Laplacian definition in MGS. As Laplacian is polytypic, it
can be used in any dimension and indeed has been used in both
1D and 2D models.

6. Conclusion: Towards a “Geometrization” of program-
ming

Spatial computing is a new domain motivated by the
explicit recognition of the importance of spatial relationships
at the three level of computer architectures, programming
languages and applications. In this context, we have presented
MGS, an experimental programming language that introduces
explicitly spatial notions in data structures and in control
structures. In this language, data structures are fields over
spaces that are specified in an algebraic setting. Functions
can be defined by case (rule) where the case specifies
the local evolution of a subfield. This framework captures
several well-known programming models like chemical
computation, Lindenmayer systems or cellular automata, as
illustrated by simple but paradigmatic examples. Moreover,
let us emphasize the conciseness and the flexibility of
MGS programs: MGS programs are usually very short,
cf. [40]. By parametrizing the rule application strategy in
a transformation, one may vary smoothly from a sequential
to a parallel programming style, and from a deterministic
to a probabilistic one. In addition, topological collections
and transformations are embedded gracefully in a functional
language: for instance, transformation can be higher-order
functions. Finally, MGS programs can be typed and compiled.

The relevance of the MGS concepts in spatial computing
has been validated through various large-scale examples:
simulation of morphogenesis processes, amorphous and
autonomic computing examples and simulation at various
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Fig. 5. Simulations of heat diffusion in 1D (the picture on the left shows the evolution of temperature along a 1D rod divided into 11 blocks during 150 units of
time) and 2D (the three pictures on the right present respectively the temperature distribution on a 11 × 11 square grid at the initial state, after 50 steps and after 300
steps).

levels of the behavior of genetically engineered bacteria [29].
The current MGS implementation, cf. mgs.ibisc.univ-evry.fr,
supports sets, multi-sets, Cayley graphs (that includes the
usual square lattice, circular and twisted lattices and hexagonal
meshes), Delaunay triangulations, arbitrary graphs, as well
as higher-dimensional spaces like G-maps [35] and abstract
cellular complexes. It runs the codes given in the previous
section and has been used to produce the corresponding figures.

In this paper, we have sketched the formal topological setting
that supports the MGS constructs. One of our contributions is
an explicit formulation of the transformation semantics as chain
morphism, which enables a direct implementation, in contrast
to the relational formulation developed in [24].

However, the algebraic device introduced here is mainly
developed as a guide to the design of a set of discrete
differential operators. They are relatively few works developed
in this area [13,27,19] and they are devoted to applications
in mechanics, numerical approximation and solid modelling.
We have shown, through the examples in Section 3, that
the corresponding concepts are also useful for general
programming. Moreover, in contrast to these mathematical
approaches we have focused on combinatorial operators, that is,
we have explicitly neglected the metric structure to focus solely
on the movement of values from position to position in the field.
The resulting operators, introduced in Section 5 and directly
translated as MGS transformations in Section 5.2, deserve to
be called “differential operators” because they satisfy a Stokes
-like theorem, as stated in Section 5.1.

As the physics of fields is mainly based on the use of
these differential operators, we expect further outcomes in the
simulation of physical systems as well as in natural computing.
Anyway, this result opens the way to a geometric view of
the programming: a computation corresponds to building some
space and to move values in this space. This geometric view
extends the crystalline computing perspective exposed in [38]
and [53] to more general and dynamic spaces which widen the
potential application domains.

This vision is a new way to control and program systems. As
operators, and more generally transformations, are computed
as the uniform and everywhere application of local rules, the
approach must scale up to very large systems and problem
size. The current MGS interpreter is a conventional sequential
program but we are currently working on an MGS version
distributed across a grid. These developments are grounded
on the large amount of existing results for the parallel and

distributed implementation of Gamma [3]. As a matter of fact,
because the multi-set topology is completely connected, any
MGS program implementation can be seen as a specific and
more efficient implementation of a Gamma program.

This vision entails also new tools for the development of
autonomic systems [28]. In this kind of systems, the idea
is to let computing elements be autonomous and implement
local decision mechanisms. One relies on properties like self-
organization (autonomous configuration of the components
into a dynamic architecture dedicated to the satisfaction of
the specified requirements), self-healing (autonomous detection
and correction of hardware and software faults) and self-
optimization (autonomous monitoring, control of resources and
reconfiguration to ensure an optimal functioning), to achieve
self-managing computers and softwares. Engineering self-*
properties is the actual challenge for the development of
systems that are able to adapt themselves to the surrounding
environment in a totally unsupervised but consistent way,
ensuring robustness, fault-tolerance and very high scalability,
while responding to increasing expectation for trustworthy,
dependable and long-lasting systems.

However, emphasizing that computations must be local
with respect to a structural decomposition of the system does
not give any clue to ensure some global properties from
the local changes: how to engineer self-* properties? In the
MGS framework, local evolution rules of autonomic systems
correspond to the rules of a transformation. More importantly,
in the geometric setting, a very large class of MGS programs
compute the fixed point of some transformations. Then, self-*
behaviors can been seen as the stabilization of the system on a
fixed point after transient perturbations [6]. Thus, topological
and geometrical results (fixed-point theorem, existence of
object defined by differential equations, integration theorem)
can be used to design, control and validate global behaviors
from the specification of local ones.
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[6] J.-P. Banâtre, Y. Radenac, P. Fradet, Chemical specification of autonomic
systems, in: IASSE, ISCA, 2004, pp. 72–79.

[7] P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro,
C. Godin, J. Traas, Computer simulations reveal properties of the cell-cell
signaling network at the shoot apex in Arabidopsis, Proc. Natl. Acad. Sci.
103 (5) (2006) 1627–1632.

[8] F. Bergeron, G. Labelle, P. Leroux, Combinatorial species and tree-like
structures, in: Encyclopedia of Mathematics and its Applications, vol. 67,
Cambridge University Press, ISBN: 0-521-57323-8, 1997.

[9] G. Berti, Generic software components for scientific computing, Ph.D.
Thesis, Technical University of Cottbus, June 2001.

[10] M.L. Boas, Mathematical Methods in the Physical Sciences, 2nd edn,
John Wiley and Sons, 1983.

[11] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search
engine, in: Proc. 7th Int. World Wide Web Conf., 14–18 Apr. 1998.

[12] M. Budiu, G. Venkataramani, T. Chelcea, S.C. Goldstein, Spatial
computation, ACM SIGPLAN Notices 39 (11) (2004) 14–26.

[13] J.A. Chard, V. Shapiro, A multivector data structure for differential forms
and equations, Math. Comput. Simul. 54 (1–3) (2000) 33–64.

[14] M. Chen, Y. il Choo, J. Li, Crystal: Theory and Pragmatics of Generating
Efficient Parallel Code, in: B.K. Szymanski (Ed.), Parallel Functional
Languages and Compilers. Frontier Series, ACM Press, New York, 1991,
pp. 255–308 (Chapter 7).

[15] E.G. Coffman, M.J. Elphick, A. Shoshani, System deadlocks, Comput.
Surv. 3 (2) (1971) 67–78.

[16] G. Cousineau, M. Mauny, The Functional Approach to Programming,
Cambridge University Press, ISBN: 0-521-57183-9, 1998.

[17] A. De Hon, J.-L. Giavitto, and F. Gruau (Eds.), Computing media and
languages for space-oriented computation: No. 06361, in: Dagsthul
Seminar Proceedings, Dagsthul.
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=2006361,
3–8 September 2006.

[18] N. Dershowitz, A Taste of Rewrite Systems, in: Lecture Notes in
Computer Science, vol. 693, Springer Verlag, 1993, pp. 199–228.

[19] M. Desbrun, E. Kanso, Y. Tong, Discrete differential forms for
computational modeling, in: P. Schröder, Discrete Differential Geometry:
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