Formal Timed Analysis of Mixed Music Scores

Léa Fanchon, Florent Jacquemard

Ircam & INRIA

ICMC 2013 - Perth

Writing Mixed Music

Antescofo (Anticipatory Score Following, Ircam 2007-2013)

http://repmus.ircam.fr/antescofo

Antescofo (Anticipatory Score Following, Ircam 2007-2013)

http://repmus.ircam.fr/antescofo

interpretation trace =

interleaving of input events and output actions with dates

"Ideal" Trace

http://repmus.ircam.fr/antescofo

ideal trace \simeq the mixed score

Real Trace

http://repmus.ircam.fr/antescofo

real trace \neq ideal trace

Example

Microscore

Ideal performance

Example

Microscore

Unexpected performance

Objective: Parameter Synthesis

Static Analysis of Mixed Music Scores

Compute a linear constraint K on δ_1 and δ_2 , ensuring that

- trace = ideal trace, or
- ▶ on after off in trace.

K = indication of the robustness of mixed scores to the tempo variations during performances.

Computed using software verification techniques developed for realtime embedded software based on timed automata model.

Outline

- 1. Timed Automata: an abstract model for realtime systems
- 2. Compilation of mixed scores into timed automata
- 3. Parameter Synthesis
- 4. Perspectives

1. Timed Automata

Timed Automata

[Alur & Dill 1990]

- $+\,$ describes logical ordering of events of the system
- + quantitative timing info (duration and time between events)

modeling realtime systems: transport, embedded systems, communication networks, manufacturing, circuits... for

- ightarrow simulation
- \rightarrow verification
- ightarrow optimization
- ightarrow controller synthesis

Timed Automata Example

► x is a clock

► transitions: location₁ <u>guard, symbol, {clocks to reset}</u> location₂

- symbol belongs to a finite alphabet
- ▶ clock constraints $e := x\{<, \leq, \geq, >\}c \mid e \land e \mid true, c \in \mathbb{Z}$, for
 - transitions' guards
 - locations' invariants (condition to stay)

Timed Automata Example

1	$\xrightarrow{40}$ 1	$\xrightarrow{\text{click}} 2$	$\xrightarrow{25}$ 2	$\xrightarrow{\text{click}}$ 3	$\xrightarrow{\text{double}}$ 1
x = 0	40	0	25	25	25
t = 0	40	40	65	65	65

untimed trace: click click double

trace:

Timed Automata Networks

 $\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n$ with disjoint locations and clocks non-disjoint alphabets $\Sigma_1, \ldots, \Sigma_n$.

Timed Automata Networks

 $\mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n$ with disjoint locations and clocks non-disjoint alphabets $\Sigma_1, \ldots, \Sigma_n$.

Cartesian product: $\langle \ell_1, \ldots, \ell_n \rangle \xrightarrow{g,a,R} \langle \ell'_1, \ldots, \ell'_n \rangle$ such that

For all 1 ≤ i ≤ n, if a ∉ Σ_i, then ℓ'_i = ℓ_i otherwise there exists g_i and R_i such that ℓ_i ^{g_i,a,R_i}→ ℓ'_i ∈ A_i
g = ∧ g_i and R = ⋃ a∈Σ_i R_i

Timed Automata

infinite state model

state: $\langle \ell, v \rangle$ where ℓ location and $v : \text{clocks} \to \mathbb{R}^+$

but... region abstraction: transformable into NFA

- + decision of reachability in EXPTIME, PSPACE-complete
- + symbolic algorithms (zones): Uppaal, HyTech
- \subseteq of traces languages undecidable
- no closure under complement
- not determinizable

2. Compilation of Antescofo Scores into Timed Automata Automata Networks

Compilation: Antescofo Scores \rightarrow Timed Automata

note $e_1 1.0$ $0.0 \text{ group } g_1 \quad \left\{ (0.5 \text{ init}) \right\} \qquad e_1 \xrightarrow{1.0} e_2$ $0.25 \text{ group } g_3 \quad \left\{ (0.5 \text{ msg}) (0.5 \text{ off}) \right\} \qquad \left| \begin{array}{c} 0.5 \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_3 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5} \\ g_1 \xrightarrow{0.5} \\ g_2 \xrightarrow{0.5$

Timed Automata Network

Nested Groups

Loops

0 loop $\ell \{(1 a) (2 b)\}$ until κ

roup Attribute "tight" Score note e1 1.0	Almost equivalent note $e_1 1.0$	score
0.0 group $g_1 \{(0.5 \text{ init})\}$ 0.25 group $g_3 \{(0.5 \text{ msg})\}$	0.0 group g[tight]	$\{(0.5 \text{ init}) \\ (1.0 \text{ on}) \}$
(0.5 off)	0.25 group g_3	$\{(0.5 \text{ msg})\}$
note e_2 1.0		(0.5 off) }
$0.0 groupg_2 ig\{(0.5 \; on)ig\}$	note e_2 1.0	
note $e_3 \ 0.5$	note $e_3 0.5$	

Timed Automaton for g

(-

3. Parameter Synthesis

Parametric Timed Automata

[Alur, Henzinger, Vardi 1993]

parameters δ for (unknown) time bounds in guards and invariants.

Valuation of Parameters δ_1 , δ_2 = performance

Good Parameters Problem

[Frehse, Jha, Krogh 2008]

Find a set of parameter values within a rectangular domain $\subseteq \mathbb{R}^m_+$ for which the behavior of \mathcal{A} is acceptable.

i.e. find a linear constraint K on parameters such that every for valuation of parameters π satisfying K, the behavior of \mathcal{A} instantiated by π ($\mathcal{A}[\pi]$) is acceptable.

3.1 Naïve Approach

3.2 Inverse Method

Symbolic Semantics of Parametric Timed Automata

 $\mathcal{A}(K)$: PTA with a constraint K over parameters.

symbolic states $\langle \ell, C \rangle$ where ℓ location, C constraint over clocks and parameters.

initial state
$$\langle \ell_0, C_0 \rangle$$
 with $C_0 = K \wedge inv(\ell_0) \wedge \bigwedge_{i=1}^{p-1} x_{i+1} = x_i$,

transitions $\langle \ell, C \rangle \xrightarrow{a} \langle \ell', C' \rangle$ such that $\exists \ \ell \xrightarrow{g,a,Reset} \ell' \text{ in } \mathcal{A}(K)$ and

$$C'(\boldsymbol{x}') = \exists \boldsymbol{x}, d \quad C(\boldsymbol{x}) \land g(\boldsymbol{x}+d) \\ \land \qquad \bigwedge_{x_i \in Reset} x'_i = 0 \land \bigwedge_{x_i \notin Reset} x'_i = x_i + d \land inv(\ell')(\boldsymbol{x}')$$

where $\boldsymbol{x} = x_1, \ldots, x_p$, and $\boldsymbol{x}' = x_1', \ldots, x_p'$.

3.2 Naive Approach

Definition of acceptable behavior by a control automaton $\ensuremath{\mathcal{C}}$

Naive Algorithm

Depth first exploration of the symbolic state space of $\mathcal{A} \parallel \mathcal{C}$. Prune branches with unsatisfiable constraints.

constraint K = disjunction of the constraints of final symbolic states reached.

untimed trace: constraint: 1

$$\begin{array}{c} \text{idle} & \underbrace{e_1, x:=0}_{x \le \delta_1} \xrightarrow{x=\delta_1, e_2, x:=0}_{x \le \delta_2} \xrightarrow{x=\delta_2, e_3} \text{stop} \\ \\ \text{idle} & \underbrace{e_1, y_1:=0}_{y_1 \le 0.5} \xrightarrow{y_1=0.5, \text{ init}}_{y_1=0.5, \text{ init}} \text{stop} \\ \\ \text{idle} & \underbrace{e_1, y_3:=0}_{y_3 \le 0.75} \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0}_{y_3 \le 0.5} \xrightarrow{y_3=0.5, \text{ off}} \text{stop} \\ \\ \text{idle} & \underbrace{e_2, y_2:=0}_{y_2 \le 0.5} \xrightarrow{y_2=0.5, \text{ on}} \text{stop} \end{array}$$

untimed trace: e_1 constraint:

2

untimed trace: e_1, e_2 constraint: $\exists y_1, y_3 . y_1 = \delta_1 \le 0.5 \land y_3 = \delta_1 \le 0.75$ 3

untimed trace: e_1, e_2 constraint: $\delta_1 \leq 0.5$ 4

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

untimed trace: e_1, e_2 , init constraint: $\delta_1 \leq 0.5 \land \exists x \, . \, x = 0.5 - \delta_1 \leq \delta_2$ 5

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

untimed trace: e_1, e_2 , init constraint: $\delta_1 \leq 0.5 \land 0.5 - \delta_2 \leq \delta_1$ 6

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} \text{stop} \\ \text{idle} \xrightarrow{e_1, y_1:=0} y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} \text{stop} \\ \text{idle} \xrightarrow{e_1, y_3:=0} y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} \text{stop} \\ \text{idle} \xrightarrow{e_2, y_2:=0} y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} \text{stop} \end{array}$$

 $\begin{array}{ll} \text{untimed trace:} & e_1, e_2, \text{init, msg} \\ \text{constraint:} & \delta_1 \leq 0.5 \wedge 0.5 - \delta_2 \leq \delta_1 \wedge \\ & \exists x, y_2 \, . \, x = 0.75 - \delta_1 \leq \delta_2 \wedge y_2 = 0.75 - \delta_1 \leq 0.5 \end{array}$

untimed trace: e_1, e_2 , init, msg constraint: $\delta_1 \leq 0.5 \land 0.75 - \delta_2 \leq \delta_1 \land 0.25 \leq \delta_1$ 8

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

 $\begin{array}{ll} \text{untimed trace:} & e_1, e_2, \text{init, msg, off} \\ \text{constraint:} & \delta_1 \leq 0.5 \wedge 0.75 - \delta_2 \leq \delta_1 \wedge 0.25 \leq \delta_1 \wedge \\ & \exists x, y_2 \, . \, x = 1.25 - \delta_1 \leq \delta_2 \wedge y_2 = 1.25 - \delta_1 \leq 0.5 \end{array}$

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

 $\begin{array}{ll} \text{untimed trace:} & e_1, e_2, \text{init, msg, off} \\ \text{constraint:} & \delta_1 \leq 0.5 \wedge 0.75 - \delta_2 \leq \delta_1 \wedge 0.25 \leq \delta_1 \wedge \\ & 1.25 - \delta_2 \leq \delta_1 \wedge 0.75 \leq \delta_1 \quad \text{unsatisfiable!} \end{array}$

$$\begin{array}{c} \overrightarrow{\text{idle}} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \overrightarrow{\text{idle}} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \overrightarrow{\text{idle}} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \overrightarrow{\text{idle}} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

untimed (ideal) trace: constraint: 1

untimed (ideal) trace: e_1 constraint:

2

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} \text{stop} \\ \\ \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} \text{stop} \end{array}$$

untimed (ideal) trace: e_1 , init constraint: $\exists x . x = 0.5 \le \delta_1$ 3

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \\ \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

untimed (ideal) trace: e_1 , init constraint: $0.5 \le \delta_1$

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} \text{stop} \\ \\ \\ \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} \text{stop} \end{array}$$

untimed (ideal) trace: e_1 , init, msg constraint: $0.5 \le \delta_1 \land \exists x \, . \, x = 0.75 \le \delta_1$ 5

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} \text{stop} \\ \\ \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} \text{stop} \\ \\ \\ \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} \text{stop} \end{array}$$

untimed (ideal) trace: e_1 , init, msg constraint: $0.75 \le \delta_1$ 6

untimed (ideal) trace: e_1 , init, msg, e_2 constraint: $0.75 \le \delta_1 \land \exists y_3 . y_3 = \delta_1 - 0.75 \le 0.5$ 7

untimed (ideal) trace: e_1 , init, msg, e_2 constraint: $0.75 \le \delta_1 \land \delta_1 \le 1.25$ 8

$$\begin{array}{c} \text{idle} \xrightarrow{e_1, x:=0} & x \leq \delta_1 \xrightarrow{x=\delta_1, e_2, x:=0} & x \leq \delta_2 \xrightarrow{x=\delta_2, e_3} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_1:=0} & y_1 \leq 0.5 \xrightarrow{y_1=0.5, \text{ init}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_1, y_3:=0} & y_3 \leq 0.75 \xrightarrow{y_3=0.75, \text{ msg}, y_3:=0} & y_3 \leq 0.5 \xrightarrow{y_3=0.5, \text{ off}} & \text{stop} \\ \hline \text{idle} \xrightarrow{e_2, y_2:=0} & y_2 \leq 0.5 \xrightarrow{y_2=0.5, \text{ on}} & \text{stop} \end{array}$$

untimed (ideal) trace: e_1 , init, msg, e_2 , off constraint: $0.75 \le \delta_1 \land \delta_1 \le 1.25 \land$ $\exists x, y_2 . x = 1.25 - \delta_1 \le \delta_2 \land y_2 = 1.25 - \delta_1 \le 0.5$

untimed (ideal) trace: e_1 , init, msg, e_2 , off constraint: $0.75 \le \delta_1 \land \delta_1 \le 1.25 \land 1.25 - \delta_2 \le \delta_1$ 10

untimed (ideal) trace: e_1 , init, msg, e_2 , off, on constraint: $0.75 \le \delta_1 \land \delta_1 \le 1.25 \land 1.25 - \delta_2 \le \delta_1 \land \exists x . x = 0.5 \le \delta_2$ 11

untimed (ideal) trace: e_1 , init, msg, e_2 , off, on constraint: $0.75 \le \delta_1 \land \delta_1 \le 1.25 \land 0.5 \le \delta_2$ 12

3.2 Inverse Method

[André phd 2010, Soulat phd 2012, Fribourg]

Given a reference valuation π_0 of the parameters, synthesize a constraint K_0 on the parameters guaranteeing the same untimed traces as with π_0 .

start with K := truecomputes iteratively a set S of reachable states of $\mathcal{A}(K)$ when $\langle \ell, C \rangle \in S$ and $\pi_0 \not\models \exists x C(x)$ then $K := K \land \neg J$ for chosen π_0 -incompatible conjunct J.

tool IMITATOR: fixpoint after 6 iterations on example returns $K = 0.75 < \delta_1 \le 1.0 \land 1.25 < \delta_1 + \delta_2$.

Conclusion

- compilation of Antescofo scores into a formal model.
- static analysis to characterize the range of performances for which the reactive engine of Antescofo will behave as expected.
- outcome of analysis: linear constraints on performance delays
 - warn performers about dangerous parts in the score
 - assistance for adjusting delays and structuring groups
 - user friendly presentation on score?

not seen / ongoing / perspectives

- Dealing with error-handling instructions (missed events)
- Non-linear scores
- Game theoretic approach for a quantitative estimation of robustness

Thank you!

Perspectives: Verification

- delays = linear expressions on parameters (variables in scores)
- complexity wrt restrictions
- reachability analysis or timed model checking over the unparametric TA model (verification of properties of idealized performance)
- timed games: controller synthesis, dynamic scheduling open scores (straightforward extension)

Parametric Timed Automata for Circuits

[Alur,Henzinger,Vardi 1993] parameters δ for (unknown) time bounds in guards and invariants

 $x \ge \delta^-, b^\downarrow$