
Rewrite Closure and
CF Hedge Automata

Florent Jacquemard1 Michael Rusinowitch2

1Ircam, INRIA Paris-Rocquencourt

2LORIA, INRIA Nancy

April 4, 2013

LATA 2013 – Bilbao

Static Typechecking [Milo Suciu Vianu 03 JCSS]
Consider a tree transformation modeled by a rewrite system R.

Typechecking:
Iteration of R always converts valid input data from a tree set Lin
into valid output data from a tree set Lout

..R∗(Lin)⊆ Lout.

Lin ∩ (R−1)∗
(
Lout

)
= /0

.

composition (Boolean closure)

.

decision procedures

.

forward
rewrite closure

.

backward
rewrite closure

..

Static Typechecking [Milo Suciu Vianu 03 JCSS]
Consider a tree transformation modeled by a rewrite system R.

Typechecking:
Iteration of R always converts valid input data from a tree set Lin
into valid output data from a tree set Lout

..R∗(Lin)⊆ Lout.

Lin ∩ (R−1)∗
(
Lout

)
= /0

.

composition (Boolean closure)

.

decision procedures

.

forward
rewrite closure

.

backward
rewrite closure

..
20

13
-0

6-
04

Rewrite Closure and CF Hedge Automata 2/ 33

Static Typechecking [Milo Suciu Vianu 03 JCSS]

• hence TA are also useful for XML reasoning tasks
• like for instance the problem of typechecking.
• It is the verification that a tree transformations T defined by a

program in a language like XSLT always converts valid input
data into valid output data,

• input and output types are defined by tree automata
• and if the forward closure by T of input data Lin is regular, then

type checking is reduced to the problem of inclusion for TA
(decidable in EXPTIME)

• if this is not the case, like in the cited paper, a second option is
to consider the backward closure of the complement of the
output data Lout, and, if it is regular, typechecking is reduced to
testing the emptiness of the intersection with the input type Lin.

Consistency of R/W Access Control Policies

atomic r/w access (updates) modeled by rewrite rules

.

......

An ACP is defined by two rewrite systems:
▶ R+: authorized operations,
▶ R−: forbidden operations.

It is
▶ inconsistent if one rule of R− can be simulated through a

sequence of rules of R+.
▶ locally inconsistent for a document t if there exists u such

that t −−→
R−

u and t −−→∗
R+

u, i.e. R1
−(t)∩R∗

+(t) ̸= /0.

Rewrite Closure & Tree Automata

if the closure R∗(L) is effectively regular (for L regular)
▶ reduce typechecking and local inconsistency

to tree automata decision problems

if not
▶ approximate
▶ extend the tree automata model

..

Rewrite Closure & Tree Automata

if the closure R∗(L) is effectively regular (for L regular)
▶ reduce typechecking and local inconsistency

to tree automata decision problems

if not
▶ approximate
▶ extend the tree automata model

..
20

13
-0

6-
04

Rewrite Closure and CF Hedge Automata 4/ 33

Rewrite Closure & Tree Automata

- plan: introduce new model automata for unranked trees, given 2
results of automata construction for rewrite closure
- here: we consider unranked - but start with case of ranked trees
(better known and simpler)

(parenthesis)

The Case of Ranked Trees

The Case of Ranked Trees

Σ is a ranked alphabet, every symbol has a fixed arity

A Term Rewriting System R is a finite set of rewrite rules ℓ→ r,
where ℓ and r are ranked trees (terms) with variables.

Rewriting:
▶ pattern matching of ℓ and replacement by r
▶ substitution of variables by ranked trees

Rewrite relation denoted s −→
R

t,
reflexive transitive closure s −→∗

R
t.

Rewrite closure of a term set L: R∗(L) = {t | ∃s ∈ L,s −→∗
R

t}

Ranked Tree Automata

.
Ranked Tree Automata..

......

A = ⟨Σ,Q,F,∆⟩ with
▶ ranked alphabet Σ, every symbol has a fixed arity
▶ finite state set Q,
▶ final states F ⊆ Q,
▶ set ∆ of transitions a(q1, . . . ,qn)→ q with

▶ a ∈ Σ, a of arity n
▶ q1, . . . ,qn,q ∈ Q

Language L(A ,q) = {t | t −→∗∆ q}

L(A) =
∪
q∈F

L(A ,q)

Rewrite closure of Ranked Tree Automata Languages

Ranked tree automata completion:
▶ given A = ⟨Σ,Q,F,∆0⟩ and R over Σ,
▶ compute A ∗ such that L(A ∗) = R∗(L(A)

)
.

For linear and right-flat TRS R:
superposition of R’s rules into A ’s transitions

for a(b(x1),c(x2))→ c(x2,x1) ∈ R ..a(b(q1),c(q2)). q.

c(q2,q1)

.
∆i

. ∗.

R

.

∗

.

∆i+1

.

∗

Application to static analysis of functional programs:
Tree Regular Model Checking [Bouajjani et al 2002]

(end of parenthesis)

Unranked Trees

Unranked Ordered Trees and Rewriting

Σ unranked alphabet

hedge = finite sequence of unranked trees (possibly ε)
unranked tree = variable

a(hedge) with a ∈ Σ

Rewrite System: finite set of rewrite rules ℓ→ r,
where ℓ and r are hedges with variables.

Rewriting:
▶ pattern matching and replacement
▶ replacement of variables by hedges

Hedge Automata and CF Hedge Automata

A = (Σ,Q,F,∆) with
▶ alphabet Σ,
▶ finite state set Q,
▶ final states F ⊆ Q,
▶ set ∆ of transitions a(L)→ p with

▶ a ∈ Σ,
▶ p ∈ Q,
▶ L:

HA [Murata 00]: L is a regular language over Q∗,
CF-HA [Ohsaki et al 01]: L is a CF language over Q∗.

Language L(A ,q) = {t | t −→∗∆ q}

L(A) =
∪
q∈F

L(A ,q)

Regular set of unranked tree = HA language.

Rewriting Example 1: node renaming

c(x)→ d(x)

..a.

c

.

n

.

a

.

ph

.

0

.

e

.

d

.

c

.

n

.

b

.

e

.

d

→

..a.

d

.

n

.

a

.

ph

.

0

.

e

.

d

.

c

.

n

.

b

.

e

.

d

.

......Closure with rules of this form effectively preserve regularity.

for c(L)→ q ∈ ∆, add d(L)→ q to ∆.

..

Rewriting Example 1: node renaming

c(x)→ d(x)

..a.

c

.

n

.

a

.

ph

.

0

.

e

.

d

.

c

.

n

.

b

.

e

.

d

→

..a.

d

.

n

.

a

.

ph

.

0

.

e

.

d

.

c

.

n

.

b

.

e

.

d

.

......Closure with rules of this form effectively preserve regularity.

for c(L)→ q ∈ ∆, add d(L)→ q to ∆.

..
20

13
-0

6-
04

Rewrite Closure and CF Hedge Automata 12/ 33

Rewriting Example 1: node renaming

• the rule can be applied to any node labeled by c
• the variable x represents a finite sequence of trees (hedge)

Rewriting Example 2: insert

n(x)→ n(x).ph(1)

..c.

n

.

a

.

e

.

b

.

0

.

e

.

c

.

e

.

d

.

1

→

..c.

n

.

a

.

e

.

b

.

0

.

ph

.

1

.

e

.

c

.

e

.

d

.

1

.

......Closure with rules of this form effectively preserves regularity.

by transformation of languages in transition rules
(add a loop with qph recognizing {ph(1)}) [RJ PPDP 2010]

..

Rewriting Example 2: insert

n(x)→ n(x).ph(1)

..c.

n

.

a

.

e

.

b

.

0

.

e

.

c

.

e

.

d

.

1

→

..c.

n

.

a

.

e

.

b

.

0

.

ph

.

1

.

e

.

c

.

e

.

d

.

1

.

......Closure with rules of this form effectively preserves regularity.

by transformation of languages in transition rules
(add a loop with qph recognizing {ph(1)}) [RJ PPDP 2010]

..
20

13
-0

6-
04

Rewrite Closure and CF Hedge Automata 13/ 33

Rewriting Example 2: insert

• the right hand side of this rule is an hedge of length 2
(not a tree)

Rewriting Example 3: collapse
R = {c(x)→ x}, Lin = { ..c.

a

.

c

.

a

.

...

.

c

.

a

.

b

.

b

.

b

} (regular)

R∗(Lin) ∩ c
(
{a,b}∗

)
= {c(an.bn) | n ≥ 0}

.

......The rewrite closure is a CF-HA language.

also for inserts R = {c(x)→ c(a.x.b)}
and R = {c0(x)→ c1(a.x), c1(x)→ c0(x.b)}

Rewriting Example 4: T-patterns

R =

{
p0(x) → a.p1(x), p1(x) → p2(x).c,
p2(x) → p0(b(x)), p2(x) → b(x)

}
p0 −→∗

R
a.p1 −→

∗
R

a.p2.c −→
∗
R

a.p0(b).c −→
∗
R

a.a.p1(b).c
−→∗
R

a.a.p2(b).c.c −→
∗
R

a.a.p0(b(b)).c.c −→
∗
R

. . .

R∗({p0}
)

without p0, p1, p2 is the set of trees

a . . .a. ..b.

...

.

b

.

b

.c . . .c

with the same number of a, b and c.
.
......The rewrite closure is not a CF-HA language.

CF2HA

A = (Σ,Q,F,∆) with
▶ alphabet Σ,
▶ finite state set Q,
▶ final states F ⊆ Q,
▶ set ∆ of transitions of the form,
p1(x1) . . .pn(xn) → q(x1 . . .xn) horizontal transitions,

p1
(
p2(x)

)
→ q(x) vertical transitions.

where p1, . . . ,pn ∈ Q∪Σ, q ∈ Q and n ≥ 0

equivalent form:

p1(δ1) . . .pn(δn) → q(δ1 . . .δn)
p1(p2(δ1)) → q(δ1)

n > 0

where every δi is either a variable xi or ε.

CF2HA: T-patterns

a . . .a. ..b.

...

.

b

.

b

.c . . .c

⟨{a,b,c},{q0,q1,q2},{q0},∆⟩ with

∆ =

{
b(x1)→ q2(x1), a.q1(x2)→ q0(x2),

q2(x1).c → q1(x1), q0(b(x))→ q2(x)

}

CF2HA ⊃ HA and CF-HA

CF-HA with variable-free transitions

q1 . . .qn → q
a(q1) → q2

where a ∈ Σ and q1, . . . ,qn,q are states.

HA with Q = Qh ⊎Qv, transitions:

ε → qh
qh.qv → q′h
a(qh) → qv

where a ∈ Σ, qh,q′h ∈ Qh, qv ∈ Qv.

CF2HA: properties

.

......Membership is decidable for CF2HA.

PSPACE procedure

.

......Emptiness is decidable in PTIME for CF2HA.

State marking with 2 marks.

Rewrite Closure under
Inverse-Monadic and 1-childvar

Rewrite Systems

Inverse-Monadic and 1-childvar Rewrite Systems

.

......

Rewrite closure of CF2HA is CF2HA for rules of the form
a(x)→ r where x

▶ is the only variable in r,
▶ has at most 1 occurrence in r,
▶ has no siblings in r.

example: T-patterns

R =

{
p0(x) → a.p1(x), p1(x) → p2(x).c,
p2(x) → p0(b(x)), p2(x) → b(x)

}

Inverse-Monadic and 1-childvar Rewrite Systems
.

......
Rewrite closure of CF2HA is CF2HA for rules of the form
a(x)→ r where x only var., has 1 occ. and no siblings in r.

Given a CF2HA Ain = ⟨Σ,Qin,Fin,∆in⟩,
we construct a CF2HA A with state set

Q=Qin⊎{h | h non-var subhedge of a rhs of R}⊎{a | a∈Σ}⊎{q}

and transitions
p1(x1) . . .pn(xn) → p(x1 . . .xn) | p1(x1) . . .pn(xn)→ p(x) ∈ ∆in

p1
(
p2(x)

)
→ p(x) | p1

(
p2(x)

)
→ p(x) ∈ ∆in

t(x).h → t.h(x) | x ∈ t, t.h ∈ Q
t(x).h → q(x) | x ∈ t, t.h /∈ Q
t.h(x) → t.h(x) | x /∈ t, t.h ∈ Q
t.h(x) → q(x) | x /∈ t, t.h /∈ Q

h(x) → a(x) | a(x)→ h ∈ R

a(x) → a(x)
a(h(x)) → a(h)(x) | a(h) ∈ Q
a(h(x)) → a(x) | a(h) /∈ Q
a(q(x)) → a(x)

1-childvar Condition

R = {a(x)→ c.a(e.x.g).d}

R∗({a}
)
= {cn.a(en.gn).dn | n ≥ 1}

seemingly not CF2HA.

Rewrite Closure under
Update Rewrite Systems

Update Rewrite Rules
We assume a fixed HA A = ⟨Σ,Q,F,∆⟩.

a(x) → b(x) node renaming (ren)
a(x) → a(u1.x.u2) u1,u2 ∈ Q∗ insertion (ins.c)

of child nodes

a(x) → v1.a(x).v2 v1,v2 ∈ Q∗ insertion (ins.s)
of sibling nodes

a(x) → b
(
a(x)

)
insertion (ins.p)
of a parent node

a(x) → u u ∈ Q∗ node replacement (rpl)
recursive deletion

a(x) → x node deletion (del)

.

......
Rewrite closure of CF-HA is CF-HA
for every update rewrite system.

Loop-Free Update Rewrite Systems

.

......
R loop-free if there exists no sequence a1, . . . ,an (n > 1)
such that for all 1 ≤ i < n, ai(x)→ ai+1(x) ∈ R and a1 = an.

Transformation of an update rewrite system R
into a loop-free update rewrite system R̂
by selecting a representative â of a in every a’s loop
and suppressing loops.

In the construction of an automaton for R∗,
it is sufficient to consider the rewrite closure by R̂.

Closure under Update Rewrite Systems
.

......
Rewrite closure of CF-HA is CF-HA
for every loop-free update rewrite system.

Initialize, given CF-HA Ain = ⟨Σ,Qin,Fin,∆in⟩

∆0 = ∆in ∪ {qa1 → q}
∪ {an

(
qa1...an

)
→ qa1...an | a1, . . . ,an is a renaming chain}

Completion

R contains ∆i+1 = ∆i∪

(ren) an(x)→ b(x) {qa1...an → qa1...anb | qa1...anb ∈ Q}
∪ {qa1...anb → qa1...an | qa1...anb ∈ Q}

(ins.c) an(x)→ an(u.x.v) {u.qa1...an .v → qa1...an | qa1...an ∈ Q}
(ins.s) an(x)→ u.an(x).v {u.qa1...an .v → qa1...an | qa1...an ∈ Q}
(ins.p) an(x)→ b

(
an(x)

)
{b

(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u → qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

..

Closure under Update Rewrite Systems
.

......
Rewrite closure of CF-HA is CF-HA
for every loop-free update rewrite system.

Initialize, given CF-HA Ain = ⟨Σ,Qin,Fin,∆in⟩

∆0 = ∆in ∪ {qa1 → q}
∪ {an

(
qa1...an

)
→ qa1...an | a1, . . . ,an is a renaming chain}

Completion

R contains ∆i+1 = ∆i∪

(ren) an(x)→ b(x) {qa1...an → qa1...anb | qa1...anb ∈ Q}
∪ {qa1...anb → qa1...an | qa1...anb ∈ Q}

(ins.c) an(x)→ an(u.x.v) {u.qa1...an .v → qa1...an | qa1...an ∈ Q}
(ins.s) an(x)→ u.an(x).v {u.qa1...an .v → qa1...an | qa1...an ∈ Q}
(ins.p) an(x)→ b

(
an(x)

)
{b

(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u → qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

..
20

13
-0

6-
04

Rewrite Closure and CF Hedge Automata 27/ 33

Closure under Update Rewrite Systems

principle of proof:
- construction of a new transition set for the rewrite closure,

by iterative completion of ∆in according to R
- insertion rules depend on the label of the current node,
⇒ the automaton must check the label in order to be sure that an
insert was possible
- there can be interleavings of (ren) and (ins) of ̸= kinds (e.g. child
and sibling), ̸= (ins) checked at ̸= levels of bottom-up computation
⇒ store the renaming chains in states.
- R loop-free ⇒ length of every renaming chain is bounded by |R|.
- 2 modes for states:
– push mode for qa1...an : for ins sibling (performed first)
– pop mode for qa1...an : for ins child (performed second)

Synchronized rename and insert

R = {a(x)→ c.a(e.x.g).d}

R∗({a}
)
= {cn.a(en.gn).dn | n ≥ 1}

R ′ =


a(x) → c.a′(x).d, inv-monadic, 1-childvar

∈ (ins.s)+(ren)
a′(x) → a(e.x.g) /∈ 1-childvar

∈ (ins.c)+(ren)



Conclusion
▶ decidable model CF2HA of unranked tree recognizer

extending hedge automata
▶ captures the rewrite closure under

▶ linear, inverse-monadic, 1-childvar rewrite systems
▶ update (parametric) rewrite systems

Perspectives
▶ intersection with regular tree languages
▶ counting constraints on horizontal and vertical paths
▶ closure under (maximal) parallel rewriting

[Solimando, Delzanno, Guerrini Games 2012]

T

Rule based ACPs

.
[Fundulaki Maneth][Bravo et al, ACCOn]
..

......

An access control policy (ACP) given by two finite sets of rules
▶ R+: authorized operations
▶ R−: forbidden operations.

example

▶ R+ =

{
addressbook(x) → addressbook(pec x),

card(x) → ()

}
▶ user can insert card with name, delete card.

▶ R− = {name(x)→ pn}
▶ user cannot change a name.

Closure under Update Rewrite Systems

.

......
Rewrite closure of CF-HA is CF-HA
for every loop-free update rewrite system.

normalized CF-HA ⟨Σ,Q,Qf,∆⟩ for all a ∈ Σ and q ∈ Q, there
exists one unique qa ∈ Q such that a(qa)→ q ∈ ∆, and
moreover, qa does neither occur in a left hand side of an
horizontal transition of ∆ nor in a right hand side of a vertical
transition of ∆.

Q= P∪{qa | qa ∈ Pin}∪
{

qa1...an
∣∣ q ∈ P\Pin,n ≥ 2,

qa1...an

∣∣ a1, . . . ,an is a renaming chain

}

Closure under Update Rewrite Systems

∆0 = Γh ∪ {qa1 → q | qa1 ∈ Q}
∪ {an

(
qa1...an

)
→ qa1...an | qa1...an ,qa1...an ∈ Q,n ≥ 1}

where Γh is the subset of horizontal transitions of Γ.

R contains ∆i+1 = ∆i∪

(ren) an(x)→ b(x) {qa1...an → qa1...anb | qa1...anb ∈ Q}
∪ {qa1...anb → qa1...an | qa1...anb ∈ Q}

(ins.c) an(x)→ an(uxv) {uqa1...an v → qa1...an | qa1...an ∈ Q}
(ins.s) an(x)→ uan(x)v {uqa1...an v → qa1...an | qa1...an ∈ Q}
(ins.p) an(x)→ b

(
an(x)

)
{b

(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u → qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

