Confluence: decidability results & what to do without

Florent Jacquemard

5th International Workshop on Confluence - IWC'16

1.(un)decidability of confluence

- map of results on (un)decidability
 of confluence and Uniqueness of Normal Forms
- importance of linearity
- open problems
- links to regularity preservation

2.enumeration of equivalent terms

- case study: terms-based representation of durations in music western notation
- non-confluent TRS
- automata-based representation of equivalent terms sets
- lazy ordered enumeration of equivalence classes
- links to regularity preservation

decidability

confluence

ground TRS
[Oyamaguchi 87]
[Dauchet Tison 88]

left-linear right-ground TRS [Dauchet et al 90]

conflu

linear TRS (depth 2) [Verma et al 01]

EXPTIME

PTIME

ground TRS
[Comon et al 01]
[Tiwari 02]

left-shallow-linear right-ground TRS [Tiwari 02]

linear-shallow TRS
[Tiwari 02]
[Godoy et al 04]

every variable occurs at most once in each rule and at depth at most 1 length 2 SRS [Sakai 07]

undecidability

flat TRS [03, 06, 09]

linear and shallow TRS [Godoy et al 03]

every variable occurs at most once and at depth at most 1 in each side of rule decidability

undecidability

confluence

ground TRS
[Oyamaguchi 87]
[Dauchet Tison 88]

left-linear right-ground TRS [Dauchet et al 90] linear TRS (depth 2) [Verma et al 01]

EXPTIME

regularity preserving:

closureR(L) is regular when L is regular

PTIME

ground TRS [Comon et al 01] [Tiwari 02]

left-shallow-linear right-ground TRS [Tiwari 02]

linear-shallow TRS [Tiwari 02] [Godoy et al 04]

every variable occurs at most once in each rule and at depth at most 1 length 2 SRS [Sakai 07]

flat TRS [03, 06, 09]

Inear and shallow TRS
[Godoy et al 03]

every variable occurs at most once and at depth at most 1 in each side of rule

undecidability of confluence for flat TRS

[Jacquemard 03, Mitsuhashi, Oyamaguchi, J. 06]

- undecidability of reachability:
 PCP encoding (shifted pairing technique)
- 2. reduction of reachability to confluence

simpler proofs in [Godoy Hernandez 09]

undecidability of confluence for flat TRS

[Jacquemard 03, Mitsuhashi, Oyamaguchi, J. 06]

- undecidability of reachability:
 PCP encoding (shifted pairing technique)
- 2. reduction of reachability to confluence

simpler proofs in [Godoy Hernandez 09]

decidability

undecidability

confluence

(non-linear TRSs)

right-ground TRS [Kaiser 05]

shallow and right-linear TRS [Godoy, Tiwari 05]

flat TRS [03, 06, 09]

uniqueness of NF

uniqueness of NF (UN=):

no two distinct normal forms can be equivalent modulo the TRS.

confluence ⇒ UN=

unique normalization (UN):

every term can reach at most one normal form using the TRS.

 $UN= \Rightarrow UN$ (the converse is not true)

decidability

UN=

ground TRS [Verma 08]

shallow and linear TRS [Verma, Zinn 06]

shallow TRS [Radcliffe, Verma 10]

UN

ground TRS
[Verma, Hayrapetyan 05]

shallow and linear TRS [Godoy, J. 09]

undecidability

right-ground (right-flat) TRS [Verma 08,09]

linear, non-collapsing, var-preserving, depth 2 TRS [Verma 08]

lihear, left-flat, right-depth 2 TRS [Radcliffe, Verma 10]

right-ground TRS [Verma 08]

flat TRS

[Godoy, Hernández 09]

linear and right-flat TRS [Godoy, Tison 07]

flat and right-linear TRS [Godoy, J. 09]

confluence and UN under rewrite strategies

new [Ishizuki, Sakai, Oyamaguchi IWC 16] conditions for confluence of innermost-terminating TRS

for bottom-up term rewriting? [Durand, Sénizergues 07]

open questions: decidability of confluence for

flat and non-collapsing TRS?

$$\Pi_{1} := \begin{cases} \langle a, b \rangle(x) \to a(x) \mid a \in \Sigma, b \in \Sigma \cup \{ _ \} \} \\ \cup \{ \langle _, b \rangle(x) \to x \mid b \in \Sigma \} \end{cases} \\
\Pi_{2} := \begin{cases} \langle a, b \rangle(x) \to b(x) \mid a \in \Sigma \cup \{ _ \} b \in \Sigma \} \\ \cup \{ \langle a, _ \rangle(x) \to x \mid a \in \Sigma \} \end{cases}$$

(collapsing rules in PCP reduction by shifted pairing)

regularity preserving TRSs

- regularity preservation used in decision of confluence, e.g.
 - local confluence:

$$s_1 \stackrel{\longleftarrow}{\longleftarrow} t \stackrel{\longrightarrow}{\longrightarrow} s_2 \Rightarrow \{s_1' \mid s_1 \stackrel{*}{\longrightarrow} s_1'\} \cap \{s_2' \mid s_2 \stackrel{*}{\longrightarrow} s_2'\} \neq \emptyset$$

- original decidability proofs for ground TRS
- decidability for other regularity preserving TRSs?
 - right-linear and finite-path-overlapping TRS [Takai et al 00]
 - layered traducing TRS [Seki et al 02]

1.(un)decidability of confluence

- map of results on (un)decidability
 of confluence and Uniqueness of Normal Forms
- importance of linearity and flatness
- open problems
- links to regularity preservation

2.enumeration of equivalent terms

- case study: terms-based representation of durations in music western notation
- non-confluent TRS
- automata-based representation of equivalent terms sets
- lazy ordered enumeration of equivalence classes
- links to regularity preservation

notation of durations in music

in common western music notation, durations are defined relative to a periodic pulse (beat) and hierarchically, by recursive subdivisions (nested fractions)

survey in

Rizo

Symbolic music comparison with tree data structures PhD thesis U. Alicante, 2010

rhythms as syntax trees

Longuet-Higgins
The perception of music
I.S.R., 1978

Lee

The rhythmic interpretation of simple musical sequences Musical Structure and Cognition, 1985

$$\mathbf{c} \rightarrow \mathbf{o} \mid \mathbf{-} \mid \frac{2}{4} + \frac{2}{4}$$

$$\frac{2}{4} \rightarrow \frac{1}{4} + \frac{1}{4}$$

$$\frac{1}{4} \rightarrow J \mid \xi \mid \frac{1}{8} + \frac{1}{8}$$

$$\frac{1}{8} \rightarrow 1$$
 $|$ $|$ $|$ $|$

- → symbolic constraints (e.g. sum = 1)
- definition of schemas for rhythm notations as regular tree languages
- definition of syntactic transformations or equations

rhythm trees (RT): syntax (simplified version)

Laurson

Patchwork: A Visual Programming Language Helsinki: Sibelius Academy, 1996

hierarchical encoding of durations as terms over a finite (and small) signature Σ

- one symbol p of arity p for each 1 bound (typically 13)
- constant symbols: n (note), r (rest), o (tie=composition)

rhythm trees (RT): semantics

we associate a duration to every node:

```
dur(root) = 1 \text{ beat or 1 measure}
dur(node) = \frac{dur(parent)}{arity(parent)} + pdur(node)
pdur(node) = dur(next-leaf)
if next-leaf \text{ exists and is labeled with } \mathbf{o}
pdur(node) = 0 \text{ otherwise}
```

rhythmic value = sequence of rational numbers = duration of leaves (in dfs traversal) labelled **n** or **r**

rhythm trees (RT): semantics

we associate a duration to every node:

```
dur(root) = 1 \text{ beat or 1 measure}
dur(node) = \frac{dur(parent)}{arity(parent)} + pdur(node)
pdur(node) = dur(next-leaf)
if next-leaf \text{ exists and is labeled with } \mathbf{o}
pdur(node) = 0 \text{ otherwise}
```

rhythmic value = sequence of rational numbers = duration of leaves (in dfs traversal) labelled **n** or **r**

rhythmic value

notes

rests

rhythmic value

rhythmic value (nested tuplets)

rhythmic value

$$\frac{1}{5} \frac{1}{5} \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{5} \frac{1}{5}$$

ties and dots

we sum durations for subsequences of leafs of the form **n o ... o**

rewrite rules

Structural Theory of Rhythm Notation MEI'15, MCM'15

addition of rests

$$p(\mathsf{r},\ldots,\mathsf{r}) \to \mathsf{r}$$

$$p(\mathsf{r},\mathsf{o},\ldots,\mathsf{o}) \to \mathsf{r}$$

normalization of ties

$$p(\mathsf{o},\ldots,\mathsf{o})\to\mathsf{o}$$

$$p(\mathsf{n},\mathsf{o},\ldots,\mathsf{o}) \to \mathsf{n}$$

arity switch

peak example

peak example

peak example

peak example switch n $n \circ o$ n oo no o switch n oo no o n o ties noonoo o n n n

representation and enumeration of equivalence classes

given:

1.a finite description of a set L of allowed RT as CF grammar (RT schema)2.a RT t

return.

a finite description of the set L' of RT in L
 of same rhythmic value as t

variant:

- L associates to every RT a weight in an ordered semiring
- lazy enumeration of L'according to weight

RT schemas

acyclic CF grammars defining allowed divisions defined RTs = derivation trees without n.t. = tree automata language

ex: division by 2 or 3, then 2 then 2

construction of schema for equivalence class

1. schema

- 2. initial RT of rhythm value $\frac{1}{4} \frac{1}{4} \frac{1}{2}$
- target schema for equivalence class

$$\begin{bmatrix} \frac{1}{4} \frac{1}{4} \frac{1}{2} \end{bmatrix}^{q_0} & := & \begin{bmatrix} \frac{1}{4} \frac{1}{4} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{q_1} & & \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{q_1} & ::= & n | r \\ \begin{bmatrix} \frac{1}{4} \frac{1}{4} \end{bmatrix}^{q_1} & := & \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{q_2} \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{q_2} & & \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{q_2} & ::= & n | r \\ \begin{bmatrix} \frac{1}{4} \frac{1}{4} \frac{1}{2} \end{bmatrix}^{q_0} & := & \begin{bmatrix} \frac{1}{4} \frac{1}{12} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{6} , \frac{1}{6} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{3} \end{bmatrix}^{q_1} & & \begin{bmatrix} \frac{1}{3} \end{bmatrix}^{q_1} & ::= & o \\ \begin{bmatrix} \frac{1}{4} \frac{1}{12} \end{bmatrix}^{q_1} & ::= & \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} \begin{bmatrix} \frac{1}{12} \frac{1}{12} \end{bmatrix}^{q_2} & & \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & ::= & n | r \\ \begin{bmatrix} \frac{1}{6} , \frac{1}{6} \end{bmatrix}^{q_1} & ::= & \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & & \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & ::= & o \\ \begin{bmatrix} \frac{1}{6} , \frac{1}{6} \end{bmatrix}^{q_1} & ::= & o \\ \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & ::= & o \\ \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & ::= & o \\ \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} & ::= & o \\ \end{bmatrix}$$

schema for equivalence class and derivation trees

$$\begin{bmatrix} \frac{1}{4} \frac{1}{4} \frac{1}{2} \end{bmatrix}^{q_0} := \begin{bmatrix} \frac{1}{4} \frac{1}{4} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{q_1} \\ \begin{bmatrix} \frac{1}{4} \frac{1}{4} \end{bmatrix}^{q_1} := \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{q_2} \begin{bmatrix} \frac{1}{4} \end{bmatrix}^{q_2}$$

$$\begin{bmatrix} \frac{1}{4} \frac{1}{4} \frac{1}{2} \end{bmatrix}^{q_0} & := \begin{bmatrix} \frac{1}{4} \frac{1}{12} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{6}, \frac{1}{6} \end{bmatrix}^{q_1} \begin{bmatrix} \frac{1}{3} \end{bmatrix}^{q_1} \\ \begin{bmatrix} \frac{1}{4} \frac{1}{12} \end{bmatrix}^{q_1} & := \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} \begin{bmatrix} \frac{1}{12} \frac{1}{12} \end{bmatrix}^{q_2} \\ \begin{bmatrix} \frac{1}{12} \frac{1}{12} \end{bmatrix}^{q_2} & ::= \begin{bmatrix} \frac{1}{12} \end{bmatrix}^{q_3} \begin{bmatrix} \frac{1}{12} \end{bmatrix}^{q_3} \\ \begin{bmatrix} \frac{1}{6}, \frac{1}{6} \end{bmatrix}^{q_1} & ::= \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} \begin{bmatrix} \frac{1}{6} \end{bmatrix}^{q_2} \\ & \text{on} \end{bmatrix}$$

weights and lazy enumeration

- add weights to CFG production rules
 - → defines a notion of complexity of RT (size, penalty for tuples...)
- size of derivation tree = product of weights or rules
- size of RT = sum of sizes of weights of matching derivation trees
- lazy enumeration of k best derivation trees
 k-best parsing (dynamic programming) [Huang, Chiang 05]
 table based on the target schema (1 row for each NT).

O(|target schema| + cmax . k . log(k)) cmax: max number of production rules for one NT

rhythm dags (RD)

- no symbol o
- sum of durations represented by node sharing (the data is in the structure)
- captures ratio notation (p in the time of q)

$$\frac{1}{4}$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{4}$

$$\mathbf{c} \ \mathbf{z} \$$

$$\frac{3}{16}$$
 $\frac{3}{16}$ $\frac{3}{16}$ $\frac{3}{16}$ $\frac{1}{4}$

RD schemas

acyclic CS grammars define lang. of dag automata of [Kamimura, Slutzki 1981]

$$arepsilon$$
 ::= q_1q_1 q_1 ::= q_2q_2 q_2q_2 ::= $q_3q_3q_3$ (3:2) incoming outgoing edges (ordered)

OpenMusic Rhythm Trees

OpenMusic: graphical programming environment for algorithmic composition developed at Ircam

OM RT (nested lists) are a first class data structure for the representation of rhythms in OM

a library for rhythm transcription [Ycart et al ICMC'16]

Rhythm Trees Applications

- algorithmic composition, music score editors transcription, assistance, transformations...
- computational musicology analysis of score corpora, data mining
- digital music score databases information retrieval, indexing, query by tapping
- metrical phonology in speech production

automata-based representations of rewrite closure (regularity preservation)

given:

- a tree automaton (TA) A recognizing a set of terms L
- a TRS *R*

return:

a tree automaton A' recognizing the forward closure of L by R

Used as theoretical tool in some proofs of decidability of confluence

Used as practical tool for enumeration of reachable terms

- e.g. counter examples, error configurations in verification...

Thank You