Confluence: decidability results & what to do without

Florent Jacquemard

5th International Workshop on Confluence - IWC’16
1. (un)decidability of confluence
 - map of results on (un)decidability of confluence and Uniqueness of Normal Forms
 - importance of linearity
 - open problems
 - links to regularity preservation

2. enumeration of equivalent terms
 - case study: terms-based representation of durations in music western notation
 - non-confluent TRS
 - automata-based representation of equivalent terms sets
 - lazy ordered enumeration of equivalence classes
 - links to regularity preservation
undecidability

decidability

confluence

ground TRS
[Oyamaguchi 87]
[Dauchet Tison 88]

left-linear
right-ground TRS
[Dauchet et al 90]

linear TRS (depth 2)
[Verma et al 01]

flat TRS
[03, 06, 09]

EXPTIME

PTIME

ground TRS
[Comon et al 01]
[Tiwari 02]

left-linear
right-ground TRS
[Dauchet et al 90]

length 2 SRS
[Sakai 07]

ground TRS
[Comon et al 01]
[Tiwari 02]

left-shallow-linear
right-ground TRS
[Tiwari 02]

linear-shallow TRS
[Tiwari 02]
[Godoy et al 04]

every variable occurs at most once in each rule and at depth at most 1

every variable occurs at most once in each rule and at depth at most 1 in each side of rule

linear and shallow TRS
[Godoy et al 03]
Undecidability

Decidability

Confluence

Ground TRS
[Oyamaguchi 87] [Dauchet Tison 88]

Left-linear right-ground TRS
[Dauchet et al 90]

Linear TRS (depth 2)
[Verma et al 01]

Linear and shallow TRS
[Godoy et al 03]

Linear-shallow-linear right-ground TRS
[Tiwari 02]

Left-shallow-linear right-ground TRS
[Tiwari 02]

Linear-shallow TRS
[Tiwari 02]

Ground TRS
[Comon et al 01] [Tiwari 02]

PTIME

EXPTIME

Flat TRS
[03, 06, 09]

Length 2 SRS
[Sakai 07]

Every variable occurs at most once in each rule
and at depth at most 1

Every variable occurs at most once in each side of
rule

Regular closure preserves:
$\text{closure}_R(L)$ is regular when L is regular
undecidability of confluence for flat TRS

[Jacquemard 03, Mitsuhashi, Oyamaguchi, J. 06]

1. undecidability of reachability:
 PCP encoding (*shifted pairing* technique)
2. reduction of reachability to confluence

\[\begin{array}{c}
 \text{u}_1 \\
 \vdots \\
 \text{u}_m \\
\end{array} \quad \overrightarrow{\Pi_1} \quad \begin{array}{cc}
 \text{u}_1 & \text{V}_1 \\
 \vdots & \vdots \\
 \text{u}_m & \text{V}_m \\
 _ & \text{V}_{m+1} \\
 _ & _ \\
 _ & \text{V}_n \\
\end{array} \quad \overrightarrow{\Pi_2} \quad \begin{array}{c}
 \text{V}_1 \\
 \vdots \\
 \text{V}_m \\
 _ \\
 _ \\
 _ \\
 _ \\
 \text{V}_n \\
\end{array} \]

simpler proofs in [Godoy Hernandez 09]
undecidability of confluence for flat TRS

[Jacquemard 03, Mitsuhashi, Oyamaguchi, J. 06]

1. undecidability of reachability:
 PCP encoding (*shifted pairing* technique)
2. reduction of reachability to confluence

\[
0 \rightarrow f(q_A^{(3)}, q_A^{(4)}, q_A^{(5)}, q_B^{(13)}, q_B^{(14)}, q_A^{(15)}, q_B^{(16)})
\]
\[
T_A^{(3)} T_A^{(4)} T_A^{(5)} T_B^{(13)} T_B^{(14)} T_A^{(6)} T_B^{(15)} T_B^{(16)}
\]
\[
P^{(3,1)} P^{(4,2)} P^{(5,1)} S^{(13,11)} S^{(14,12)} P^{(6,2)} S^{(15,11)} S^{(16,12)}
\]
\[
f(x_1, x_2, x_1, y_{11}, y_{12}, x_2, y_{11}, y_{12})
\]
\[
g(x_1, x_2, x_1, y_{11}, y_{12}, x_2, y_{11}, y_{12})
\]
\[
P^{(1,0)} P^{(2,0)} \Pi_1^{(1,17)} S^{(11,17)} S^{(12,18)} \Pi_2^{(2,18)} S^{(11,10)} S^{(12,10)}
\]
\[
g(x_0, x_0, y_{17}, y_{17}, y_{18}, y_{18}, y_{10}, y_{10}) \rightarrow 1
\]

simpler proofs in [Godoy Hernandez 09]
decidability

confluence
(non-linear TRSs)

right-ground TRS
[Kaiser 05]

shallow and right-linear TRS
[Godoy, Tiwari 05]

flat TRS
[03, 06, 09]

undecidability
uniqueness of NF

uniqueness of NF (UN=): no two distinct normal forms can be equivalent modulo the TRS.

confluence \Rightarrow UN=

unique normalization (UN): every term can reach at most one normal form using the TRS.

UN= \Rightarrow UN (the converse is not true)
undecidability

ground TRS [Verma 08]

shallow and linear TRS [Verma, Zinn 06]

shallow TRS [Radcliffe, Verma 10]

ground TRS [Verma, Hayrapetyan 05]

shallow and linear TRS [Godoy, J. 09]

right-ground (right-flat) TRS [Verma 08,09]

linear, non-collapsing, var-preserving, depth 2 TRS [Verma 08]

linear, left-flat, right-depth 2 TRS [Radcliffe, Verma 10]

right-ground TRS [Verma 08]

flat TRS [Godoy, Hernández 09]

linear and right-flat TRS [Godoy, Tison 07]

flat and right-linear TRS [Godoy, J. 09]
confluence and UN under rewrite strategies

[Durand, Sénizergues 07]

new

[Ishizuki, Sakai, Oyamaguchi IWC 16]

conditions for confluence of innermost-terminating TRS

for bottom-up term rewriting?

[Durand, Sénizergues 07]
open questions: decidability of confluence for flat and non-collapsing TRS?

\[
\Pi_1 := \left\{ \langle a, b \rangle(x) \to a(x) \mid a \in \Sigma, b \in \Sigma \cup \{_\} \right\}
\cup \left\{ \langle _, b \rangle(x) \to x \mid b \in \Sigma \right\}
\]
\[
\Pi_2 := \left\{ \langle a, b \rangle(x) \to b(x) \mid a \in \Sigma \cup \{_\} b \in \Sigma \right\}
\cup \left\{ \langle a, _ \rangle(x) \to x \mid a \in \Sigma \right\}
\]

(collapsing rules in PCP reduction by shifted pairing)

regularity preserving TRSs
- regularity preservation used in decision of confluence, e.g.
 - local confluence:
 \[
 s_1 \xleftarrow{\mathcal{R}} t \xrightarrow{\mathcal{R}} s_2 \Rightarrow \{ s'_1 \mid s_1 \xrightarrow{\mathcal{R}} s'_1 \} \cap \{ s'_2 \mid s_2 \xrightarrow{\mathcal{R}} s'_2 \} \neq \emptyset
 \]
 - original decidability proofs for ground TRS
- decidability for other regularity preserving TRSs?
 - right-linear and finite-path-overlapping TRS [Takai et al 00]
 - layered traducing TRS [Seki et al 02]
1. (un)decidability of confluence
 • map of results on (un)decidability of confluence and Uniqueness of Normal Forms
 • importance of linearity and flatness
 • open problems
 • links to regularity preservation

2. enumeration of equivalent terms
 • case study: terms-based representation of durations in music western notation
 • non-confluent TRS
 • automata-based representation of equivalent terms sets
 • lazy ordered enumeration of equivalence classes
 • links to regularity preservation
notation of durations in music

In common western music notation, durations are defined relative to a periodic pulse (beat) and hierarchically, by recursive subdivisions (nested fractions).

Rizo
Symbolic music comparison with tree data structures
PhD thesis U. Alicante, 2010
rhythms as syntax trees

Longuet-Higgins
The perception of music
I.S.R., 1978

\[c \rightarrow \circ | - | \frac{2}{4} + \frac{2}{4} \]
\[\frac{2}{4} \rightarrow \underline{\text{d}} | - | \frac{1}{4} + \frac{1}{4} \]
\[\frac{1}{4} \rightarrow \underline{\text{q}} | 8 | \frac{1}{8} + \frac{1}{8} \]
\[\frac{1}{8} \rightarrow \underline{\text{q}} | 7 | \ldots \]

Lee
The rhythmic interpretation of simple musical sequences
Musical Structure and Cognition, 1985

\[\text{music notation} \]

▶ symbolic constraints (e.g. sum = 1)
▶ definition of schemas for rhythm notations as regular tree languages
▶ definition of syntactic transformations or equations
rhythm trees (RT): syntax
(simplified version)

hierarchical encoding of durations
as terms over a finite (and small) signature Σ

• one symbol p of arity p for each $1 < p \leq$ bound (typically 13)
• constant symbols: n (note), r (rest), o (tie=composition)
rhythm trees (RT) : semantics

we associate a duration to every node:

\[
dur(root) = 1 \text{ beat or 1 measure}
\]

\[
dur(node) = \frac{dur(parent)}{arity(parent)} + pdur(node)
\]

\[
pdur(node) = \begin{cases}
\text{dur(next-leaf)} & \text{if next-leaf exists and is labeled with o} \\
0 & \text{otherwise}
\end{cases}
\]

rhythmic value = sequence of rational numbers
= duration of leaves (in dfs traversal) labelled n or r
we associate a **duration** to every node:

\[
\text{dur}(\text{root}) = 1 \text{ beat or 1 measure}
\]

\[
\text{dur}(\text{node}) = \frac{\text{dur}(\text{parent})}{\text{arity}(\text{parent})} + \text{pdur}(\text{node})
\]

\[
\text{pdur}(\text{node}) = \text{dur}(\text{next-leaf})
\quad \text{if } \text{next-leaf} \text{ exists and is labeled with } n
\]

\[
\text{pdur}(\text{node}) = 0 \text{ otherwise}
\]

rhythmic value = sequence of rational numbers
= duration of leaves (in dfs traversal) labelled **n** or **r**
rhythmic value

rests

notes

\[
\begin{bmatrix}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{bmatrix}
\]
rhythmic value (nested tuplets)

\[
\begin{array}{c}
 5 \\
 3 \\
 n \\
\end{array}
\]

rhythmic value

\[
\frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{15} \quad \frac{1}{15} \quad \frac{1}{15} \quad \frac{5}{15} \quad \frac{5}{15}
\]

\[
\begin{array}{c}
 5 \\
 3 \\
\end{array}
\]
ties and dots

we sum durations for subsequences of leafs of the form \(n o \ldots o \)
rewrite rules

Structural Theory of Rhythm Notation MEI’15, MCM’15

addition of rests

\[p(r, \ldots, r) \rightarrow r \]
\[p(r, o, \ldots, o) \rightarrow r \]

normalization of ties

\[p(o, \ldots, o) \rightarrow o \]
\[p(n, o, \ldots, o) \rightarrow n \]

arity switch

\[\begin{array}{c}
p \\
q \\
\ldots \\
q
\end{array} \quad \rightarrow \quad \begin{array}{c}
q \\
\ldots \\
p
\end{array} \]

\[\begin{array}{c}
x_1 \\
\ldots \\
x_q \\
\ldots \\
x_{pq}
\end{array} \quad \rightarrow \quad \begin{array}{c}
x_1 \\
\ldots \\
x_p \\
\ldots \\
x_{pq}
\end{array} \]
peak example
peak example

normalise ties

\[\begin{array}{c}
\text{normalise ties} \\
\text{normalise ties}
\end{array} \]
peak example
representation and enumeration of equivalence classes

given:
1. a finite description of a set L of allowed RT as CF grammar (RT schema)
2. a RT t

return:
• a finite description of the set L' of RT in L of same rhythmic value as t

variant:
• L associates to every RT a weight in an ordered semiring
• lazy enumeration of L' according to weight
RT schemas

acyclic CF grammars defining allowed divisions
defined RTs = derivation trees without n.t.
= tree automata language

ex: division by 2 or 3, then 2 then 2

\[
\begin{align*}
q_0 & ::= q_1 q_1 & q_1 & ::= q_2 q_2 & q_2 & ::= q_3 q_3 \\
q_0 & ::= q_1 q_1 q_1 & q_1 & ::= n | r | o & q_2 & ::= n | r | o & q_3 & ::= n | r | o
\end{align*}
\]
construction of schema for equivalence class

1. schema

\[q_0 ::= q_1 q_1 \quad q_1 ::= q_2 q_2 \quad q_2 ::= q_3 q_3 \]
\[q_0 ::= q_1 q_1 q_1 \quad q_1 ::= n \mid r \mid o \quad q_2 ::= n \mid r \mid o \quad q_3 ::= n \mid r \mid o \]

2. initial RT of rhythm value \(\frac{1}{4} \frac{1}{4} \frac{1}{2} \)

- target schema for equivalence class

\[
\begin{align*}
[\frac{1}{4} \frac{1}{4} \frac{1}{2}]^{q_0} & ::= \left[\frac{1}{4} \frac{1}{4}\right] q_1 \left[\frac{1}{2}\right] q_1 & \left[\frac{1}{2}\right] q_1 & ::= n \mid r \\
[\frac{1}{4} \frac{1}{4}]^{q_1} & ::= \left[\frac{1}{4}\right] q_2 \left[\frac{1}{4}\right] q_2 & \left[\frac{1}{4}\right] q_2 & ::= n \mid r \\
[\frac{1}{4} \frac{1}{4} \frac{1}{2}]^{q_0} & ::= \left[\frac{1}{4} \frac{1}{12}\right] q_1 \left[\frac{1}{6} \frac{1}{6}\right] q_1 \left[\frac{1}{3}\right] q_1 & \left[\frac{1}{3}\right] q_1 & ::= o \\
[\frac{1}{4} \frac{1}{12}]^{q_1} & ::= \left[\frac{1}{6}\right] q_2 \left[\frac{1}{12} \frac{1}{12}\right] q_2 & \left[\frac{1}{6}\right] q_2 & ::= n \mid r \\
[\frac{1}{12} \frac{1}{12}]^{q_2} & ::= \left[\frac{1}{12}\right] q_3 \left[\frac{1}{12}\right] q_3 & \left[\frac{1}{12}\right] q_3 & ::= o \\
[\frac{1}{12}]^{q_3} & ::= [\frac{1}{12}] q_3 & \left[\frac{1}{12}\right] q_3 & ::= n \mid r \\
[\frac{1}{6}, \frac{1}{6}]^{q_1} & ::= [\frac{1}{6}] q_2 [\frac{1}{6}] q_2 & [\frac{1}{6}] q_2 & ::= o \\
[\frac{1}{6}]^{q_2} & ::= [\frac{1}{6}] q_2 & [\frac{1}{6}] q_2 & ::= n \mid r \\
[\frac{1}{6}]^{q_3} & ::= [\frac{1}{6}] q_3 & [\frac{1}{6}] q_2 & ::= n \mid r
\end{align*}
\]
schema for equivalence class and derivation trees

\[
\begin{align*}
[\frac{1}{4} \frac{1}{4} \frac{1}{2}]_{q_0} & := \quad [\frac{1}{4} \frac{1}{4}]_{q_1} [\frac{1}{2}]_{q_1} \\
[\frac{1}{4} \frac{1}{4}]_{q_1} & := \quad [\frac{1}{4}]_{q_2} [\frac{1}{4}]_{q_2}
\end{align*}
\]
weights and lazy enumeration

• add weights to CFG production rules
 → defines a notion of complexity of RT (size, penalty for tuples…)
• size of derivation tree = product of weights or rules
• size of RT = sum of sizes of weights of matching derivation trees

• lazy enumeration of k best derivation trees
 k-best parsing (dynamic programming) [Huang, Chiang 05]
 table based on the target schema (1 row for each NT).

$O(|\text{target schema}| + c_{\text{max}} \cdot k \cdot \log(k))$

c_{max}: max number of production rules for one NT
rhythm dags (RD)

- no symbol \(\bullet \)
- sum of durations represented by node sharing
 (the data is in the structure)
- captures ratio notation (\(p \) in the time of \(q \))

\[
\begin{array}{cccccc}
2 & 2 & r & 3 & r & 2 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\frac{4}{4} & \frac{6}{6} & \frac{6}{6} & \frac{6}{6} & \frac{4}{4} \\
\end{array}
\quad\quad\quad\quad
\begin{array}{cccccc}
2 & 2 & 4 & r & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 1 \\
\frac{3}{16} & \frac{3}{16} & \frac{3}{16} & \frac{3}{16} & \frac{4}{4} \\
\end{array}
\]
RD schemas

acyclic CS grammars define lang. of dag automata of [Kamimura, Slutzki 1981]

\[
\begin{align*}
\varepsilon & ::= q_1q_1 \\
q_1 & ::= q_2q_2 \\
q_2q_2 & ::= q_3q_3q_3 \quad (3:2)
\end{align*}
\]
OpenMusic Rhythm Trees

OpenMusic: graphical programming environment for algorithmic composition developed at Ircam

OM RT (nested lists) are a first class data structure for the representation of rhythms in OM

a library for rhythm transcription [Ycart et al ICMC’16]
Rhythm Trees Applications

- algorithmic composition, music score editors
 transcription, assistance, transformations…
- computational musicology
 analysis of score corpora, data mining
- digital music score databases
 information retrieval, indexing, *query by tapping*
- metrical phonology in speech production
automata-based representations of rewrite closure

(regularity preservation)

given:
• a tree automaton (TA) \(A \) recognizing a set of terms \(L \)
• a TRS \(R \)

return:
• a tree automaton \(A' \) recognizing the forward closure of \(L \) by \(R \)

Used as theoretical tool in some proofs of decidability of confluence

Used as practical tool for enumeration of reachable terms
- e.g. counter examples, error configurations in verification…
Thank You