Term Rewriting
with Prefix Context Constraints
and Bottom-Up Strategies

Florent Jacquemard! Yoshiharu Kojima? Masahiko Sakai?
Hrcam, INRIA Paris

2Nagoya University

CADE 25 August 4, 2015 Berlin

Summary

» term rewriting rules extended with context constraints
(for node selection)
» properties
» reachability

» regular tree model checking
» preservation of regularity

» bottom-up rewrite strategy for decidability

Rewriting and Verification

for rewrite systems &% modeling:

» the transitions of a distributed system
[Bouajjani, Touili 2005]

» a communication protocol [Bouajjani et al 2006]
» a security protocol [Genet et al 2009]

» the evaluation of a functional program
[Jones, Andersen 2007]

» transformation of rhythms in common western music

3

notation s es — o »

Reachability Analysis

*
tsource ‘glj) ttarget

Regular Model Checking

composition (Boolean closure)
"~,‘ decision procedures (emptiness)

‘.‘.l L’,’
B %*(Lin) mLerr =0

4
.

LIS

forward closure
of infinite (but regular) configuration set

Static Typechecking [Milo Suciu Vianu 03 JCSS]

The rewrite system % models a tree transformation.

Verify that the iteration of # always converts valid input data
from a tree set L, into valid output data from a tree set Lqyt.

forward
rewrite closure

A3
A\]
A
A d

o)%* (Lin) - Lout
’.;Q

~

*~~...y= decision procedures
’4

backward R
rewrite closure R .
¥ v
LinN (%71)* (Lout) =0
%S @~
‘Q ¢
~ gy .‘O

composition (Boolean closure)

Rewrite Closure & Tree Automata

if the closure #*(L) is effectively regular when L regular
(regularity preservation)

» reduce regular model checking or typechecking
to tree automata decision problems

%*(Lm) mLerr — @

if not
» upper approximations [Genet et al]
» extend the tree automata model [Rusinowitch et al]
» apply rewrite

Standard Term Rewriting Systems (TRS)

Finite set of rewrite rules of the form ¢ — r.

a(x) — b(x)
renames a into b.

It can be applied at any position matching a(x)
i.e. labelled with a.

Prefix Controlled Term Rewriting Systems (pCTRS)

unary signatures (word rewriting)
L*bE* :a(x) — b(x)

can be applied at any position # matching a(x)
such that there is at least one occurrence of b above 7.

abac — abbc

aaac 4 aabc

Prefix Controlled Term Rewriting Systems (pCTRS)

binary signature (term rewriting)
(ExN)*(b,2) (ExN)*:a(x,x2) — b(x1,Xx2)

can be applied at any position & labelled with a
such that the path from root to & contains at least one
occurrence of b and goes right afterwards.

a a
/ '\ 7/ N\
b C b C
/7 N\ — /7 \
C a C b
/ N\ / N\

pCTRS: definition

rules of the form L : ¢ — r with
» L C 2ir(X)*, regular

> 2ir(X) ={(g.,i) |g§ € £,0 <i<arity(g)}
» ¢, rterms over X and variables

rewrite relation: t{lo]z —» t[ro] if path(t,) € L

path(g(ty,... tn),€) =€
path(g(ty,...,tn),i-®) = (g,i) -path(t;,w) (with 1 <i<n)

Related tree transformation formalisms

» standard TRS are a particular case of pCTRS:
rules of the form Zir(X)*: ¢ —r
» Context Sensitive TRS
[Futatsugi, Goguen, Jouannaud, Meseguer OBJ2 1985]
[Lucas 1998]
are particular cases of pCTRS
» XQuery update (W3C)
with XPath node selection

Linear and Flat pCTRS

[Nagaya, Toyama 2002]

Right-linear and right-flat (uncontrolled) TRS
effectively preserve regularity.

Consequence: reachability and RMC are decidable.

Linear and flat pCTRS do not preserve regularity.)
7 (1) c¢*: cx) = dx) (2) cda*b*: dx) — Db'(x)
- (3) ¢ dx) — alx) (4) c*a*b*: b'(x) — b(x)

Z*(c*d*) Na*b* = {a"b™ | n > m}, not regular

cedd - ca'dd - ca'b'd 3 cab'd i cabd 3 a’abd - a’abb’ 3 aabb’ i aabb

Generalizable to {a"b™c? |n > m > p}...

Left—(Linear and Flat) pCTRS
uncontrolled left—(linear and flat) TRS:

inverse-monadic

production rules of CF tree grammars

transform CF tree languages into CF tree languages
(reachability and RMC decidable)

v

pCTRS simulate CS grammars ¢ in Pentonnen Normal form:

g R
A = BC| (NTuX)*: A(x) — B(C(x))
AB := AC|(NTUX)*A: B(x) — C(x)
A = a (NTUD)*: A(x) — a(x)
A = ¢ (NTUX)*: A(x) — x

» reachability undecidable

» without collapsing rules A(x) — x
reachability PSPACE-complete and RMC undecidable

Sum up bad news

» good decidability properties for (left—) linear and flat
uncontrolled TRS

» no good for pCTRS!

» simulation of TM or LBA steps: rewriting in both directions
cedd T ca'dd - ca'b’d 3 cab'd - cabd 7 a’abd - da’abb’ 3 aabb’ - aab

unconstrained rewriting pCTRS

» restriction to bottom-up rewriting

Bottom-Up Rewrite Strategy

based on marked terms [Durand, Sénizergues 2007]
=terms over TUE, with L = {g | g € X}.

for t term over X:
t over YUY is a partially marked copy of ¢,
t over X is the fully marked copy of t.

bottom-up rewrite relation:
—— bu — ~
t[lc), % tr o],

forL:¢—re % if path(t,n) € L and the root symbol of 7 is in X.

. . . . bu * - —
The derivation s — t is called bottom-up if s —» for some

Bottom-Up Rewriting: Examples

definition: £[¢c]z — t[r 6]z with root symbol of £ not marked. J

={e:h(x) = gx), (g, 1):a—b}
The derivation h(a) g(b) is not bottom-up:

It holds that h(a) -+ g(@) but not g(@) 5> g(b) (a ¢)

bu

and not h(a) 7 h(b)

Main Result

Bottom-up rewriting with linear and right shallow pCTRS
effectively preserves regularity.

principle of the proof: tree automata completion

Given a linear and right-shallow pCTRS #
and a tree automaton &/

1. combine < with the automata defining the control
languages in rewrite rules of #
(Cartesian product)

2. saturate the product automaton by superposition
with the rewrite rules of #

Tree Automata Completion: Example 1
Given #; = { €:h(x)—g(x), (h,1):a—b}

control NFA control NFA
Vo V1 b, Vo

Given o7 recognizing {h(a)} with states g, and g (final)
and transitions a — q, and h(q,) — ¢
1. start with .« with transitions:
a — {(qq,s) foralls C{vo,vi,va}
h({qa,{v2})) — (q,s) forallswith {vi} CsC {vo,v1,v2}
h({(qa,0)) — (q,s) forallsC{vo,va}
2. add transitions (superposition of Z into «/):
b — (qa,s) forallswith{vy} CsC{vg,vi,va}
g((qa, {v2})) — (g;s) forallswith {vo,v1} CsC {vo,v1,v2}
g((qa,0)) — (g,s) forallswith {vo} CsC {vo,v2}

bottom-up % ({h(a)}): g(a) —» g({da,{v2})) - (@,{vo,v1})
and g(b) - &((da, {v2}) - (. {vo.v1})

Tree Automata Completion: Example 2
Given %, = { €:h(x)—g(x), (g,1):a—b}

control NFA control NFA
Vo V1 L’D Vo

Given <% recognizing {h(a)} with states g, and q (final)
and transitions a — g, and h(q,) — q
1. start with 7 with transitions:
a — {(qq,s) foralls C{vo,vi,va}
h((qa,0)) — {g,s) foralls C {vo,vi,v2}
2. add transitions (superposition of #Z into «7):
b — (qa,s) forallswith {vo} CsC{vg,vi,va}
£((q2,0)) — (q,5) forallswith {vo} Cs C {vo,va}

bottom-up %* ({h(a)}): g(a) - &((qa,0) - (. {vo.v1})
and not h(b) -7 h({ga:s)) if v2 € s, stuck!

and not g(b) —» g((qa,s)) if v2 € 5, stuck!

Main Result and Consequences

Bottom-up rewriting with linear and right shallow pCTRS
effectively preserves regularity.

Corollary 1

Reachability and RMC wrt bottom-up rewriting are decidable for
linear and right shallow pCTRS.

Consequences: left-linear and right-ground pCTRS

Corollary 2

Reachability and RMC are decidable for left-linear and
right-ground pCTRS.

proof: because every rewrite sequence with a right-ground
pCTRS is bottom-up.

Reachability is PSPACE-hard for ground pCTRS.)

proof: reduction of the intersection emptiness problem for
regular string languages L,,...,L, (n > 2) over X.

X = {Z*:ﬁ1—>a(ﬁ1)\a62} U {Li:ti—>ﬁi+1|1§i§n}
U {Z*:a(ﬁn+1)—>ﬁn+1|a62}

It holds that £, —» #,1 iff LiN---NL, # 0

Conclusion
» prefix Controlled Term Rewriting Systems

» decidability of Reachability and Regular Model Checking:

» wrt bottom-up rewriting for linear and right shallow pCTRS
» for left-linear and right-ground pCTRS

Perspectives
» for right—(linear and shallow) pCTRS?

» over-approximating constructions handling larger classes
of pCTRS’s

» unranked tree rewriting

Thank You!

