Term Rewriting with Prefix Context Constraints and Bottom-Up Strategies

Florent Jacquemard¹

Yoshiharu Kojima²

Masahiko Sakai²

¹Ircam, INRIA Paris

²Nagoya University

CADE 25 August 4, 2015 Berlin

Summary

- term rewriting rules extended with context constraints (for node selection)
- properties
 - reachability
 - regular tree model checking
 - preservation of regularity
- bottom-up rewrite strategy for decidability

Rewriting and Verification

for rewrite systems ${\mathscr R}$ modeling:

- the transitions of a distributed system [Bouajjani, Touili 2005]
- a communication protocol [Bouajjani et al 2006]
- a security protocol [Genet et al 2009]
- the evaluation of a functional program [Jones, Andersen 2007]
- ► transformation of rhythms in common western music notation

Reachability Analysis

$$t_{\text{source}} \xrightarrow{*}{\mathscr{R}} t_{\text{target}}$$

Regular Model Checking

Static Typechecking [Milo Suciu Vianu 03 JCSS] The rewrite system *R* models a tree transformation.

Verify that the iteration of \mathscr{R} always converts valid input data from a tree set L_{in} into valid output data from a tree set L_{out} .

Rewrite Closure & Tree Automata

if the closure $\mathscr{R}^*(L)$ is effectively regular when *L* regular (regularity preservation)

 reduce regular model checking or typechecking to tree automata decision problems

 $\mathscr{R}^*(L_{\mathrm{in}}) \cap L_{\mathrm{err}} = \emptyset$

if not

- upper approximations [Genet et al]
- extend the tree automata model [Rusinowitch et al]
- apply rewrite strategies

Standard Term Rewriting Systems (TRS)

Finite set of rewrite rules of the form $\ell \rightarrow r$.

 $a(x) \rightarrow b(x)$

renames a into b.

It can be applied at any position matching a(x) *i.e.* labelled with *a*.

Prefix Controlled Term Rewriting Systems (pCTRS)

unary signatures (word rewriting)

 $\Sigma^* b \Sigma^* : a(x) \to b(x)$

can be applied at any position π matching a(x) such that there is at least one occurrence of b above π .

 $ab\underline{a}c \rightarrow ab\underline{b}c$

 $aaac \not\rightarrow aabc$

Prefix Controlled Term Rewriting Systems (pCTRS)

binary signature (term rewriting)

$$(\Sigma \times \mathbb{N})^* \langle b, 2 \rangle (\Sigma \times \mathbb{N})^* : a(x_1, x_2) \to b(x_1, x_2)$$

can be applied at any position π labelled with *a* such that the path from root to π contains at least one occurrence of *b* and goes right afterwards.

pCTRS: definition

rules of the form $L: \ell \to r$ with

- $L \subseteq \mathscr{D}ir(\Sigma)^*$, regular
- $\mathscr{D}ir(\Sigma) = \{ \langle g, i \rangle \mid g \in \Sigma, 0 < i \le arity(g) \}$
- ℓ , *r* terms over Σ and variables

rewrite relation: $t[\ell\sigma]_{\pi} \xrightarrow{\mathscr{R}} t[r\sigma]_{\pi}$ if $path(t,\pi) \in L$

$$path(g(t_1,...,t_n),\varepsilon) = \varepsilon$$

 $path(g(t_1,...,t_n),i \cdot \pi) = \langle g,i \rangle \cdot path(t_i,\pi)$ (with $1 \le i \le n$)

Related tree transformation formalisms

- standard TRS are a particular case of pCTRS: rules of the form Dir(Σ)* : ℓ → r
- Context Sensitive TRS [Futatsugi, Goguen, Jouannaud, Meseguer OBJ2 1985] [Lucas 1998] are particular cases of *p*CTRS
- XQuery update (W3C) with XPath node selection

Linear and Flat pCTRS

[Nagaya, Toyama 2002]

Right-linear and right-flat (uncontrolled) TRS effectively preserve regularity.

Consequence: reachability and RMC are decidable.

Linear and flat pCTRS do not preserve regularity.

$$\mathscr{R} = \begin{array}{cccc} (1) & c^* : & c(x) & \to & a'(x) \\ (3) & c^* : & a'(x) & \to & a(x) \end{array} \begin{array}{cccc} (2) & c^*a'a^*b^* : & d(x) & \to & b'(x) \\ (4) & c^*a^*b^* : & b'(x) & \to & b(x) \end{array}$$

 $\mathscr{R}^*(c^*d^*) \cap a^*b^* = \{a^nb^m \mid n \ge m\}, \text{ not regular}$

Left-(Linear and Flat) pCTRS

uncontrolled left-(linear and flat) TRS:

- = inverse-monadic
- = production rules of CF tree grammars
- transform CF tree languages into CF tree languages (reachability and RMC decidable)

pCTRS simulate CS grammars *I* in Pentonnen Normal form:

	G		${\mathscr R}$	
Α	:=	BC	$(NT\cup\Sigma)^*: A(x) \to B$	B(C(x))
AB	:=	AC	$(NT\cup\Sigma)^*A: B(x) \to C$	$C(\mathbf{x})$
Α	:=	а	$(NT\cup\Sigma)^*: A(x) \to a$	$\mathbf{u}(\mathbf{x})$
A	:=	ε	$(NT\cup\Sigma)^*: A(x) \to x$	2

- reachability undecidable
- ► without collapsing rules A(x) → x reachability PSPACE-complete and RMC undecidable

Sum up bad news

- good decidability properties for (left-) linear and flat uncontrolled TRS
- no good for pCTRS!
- ► simulation of TM or LBA steps: rewriting in both directions $c\underline{c}dd \xrightarrow{1} c\underline{a'}\underline{d}d \xrightarrow{2} c\underline{a'}\underline{b'}d \xrightarrow{3} c\underline{a}\underline{b'}d \xrightarrow{4} \underline{c}\underline{a}bd \xrightarrow{1} \underline{a'}ab\underline{d} \xrightarrow{2} \underline{a'}ab\underline{b'} \xrightarrow{3} aab\underline{b'} \xrightarrow{4} aab$

restriction to bottom-up rewriting

Bottom-Up Rewrite Strategy

based on marked terms [Durand, Sénizergues 2007] = terms over $\Sigma \cup \overline{\Sigma}$, with $\overline{\Sigma} = \{\overline{g} \mid g \in \Sigma\}$.

for *t* term over Σ :

 \overline{t} over $\Sigma \cup \overline{\Sigma}$ is a partially marked copy of t, \widetilde{t} over $\overline{\Sigma}$ is the fully marked copy of t.

bottom-up rewrite relation:

$$\overline{t}[\overline{\ell\sigma}]_{\pi} \xrightarrow{bu}_{\mathscr{R}} \overline{t}[r\,\widetilde{\sigma}]_{\pi}$$

for $L: \ell \to r \in \mathscr{R}$ if $path(t, \pi) \in L$ and the root symbol of $\overline{\ell}$ is in Σ .

The derivation $s \xrightarrow{*}{\mathscr{R}} t$ is called bottom-up if $s \xrightarrow{bu}{*} \overline{t}$ for some \overline{t}

Bottom-Up Rewriting: Examples

definition: $\overline{t}[\overline{\ell\sigma}]_{\pi} \xrightarrow{bu}{\mathscr{R}} \overline{t}[r\widetilde{\sigma}]_{\pi}$ with root symbol of $\overline{\ell}$ not marked.

$$\begin{aligned} \mathscr{R}_{1} &= \{ \varepsilon : h(x) \to g(x), \ \langle h, 1 \rangle : a \to b \} \\ h(a) \xrightarrow{bu}_{\mathscr{R}_{1}} h(b) \xrightarrow{bu}_{\mathscr{R}_{1}} g(\overline{b}) \\ (\text{i.e. } h(a) \xrightarrow{*}_{\mathscr{R}_{1}} g(b) \text{ is bottom-up}). \end{aligned}$$

$$\mathscr{R}_2 = \{ \varepsilon : h(x) \to g(x), \ \langle g, 1 \rangle : a \to b \}$$

The derivation $h(a) \xrightarrow[\mathscr{R}_2]{*} g(b)$ is not bottom-up: It holds that $h(a) \xrightarrow[\mathscr{R}_2]{bu} g(\bar{a})$ but not $g(\bar{a}) \xrightarrow[\mathscr{R}_2]{bu} g(\bar{b})$ ($\bar{a} \notin \Sigma$) and not $h(a) \xrightarrow[\mathscr{R}_2]{bu} h(b)$.

Main Result

Bottom-up rewriting with linear and right shallow *p*CTRS effectively preserves regularity.

principle of the proof: tree automata completion

Given a linear and right-shallow pCTRS \mathscr{R} and a tree automaton \mathscr{A}

- combine A with the automata defining the control languages in rewrite rules of R (Cartesian product)
- 2. saturate the product automaton by superposition with the rewrite rules of \mathscr{R}

Tree Automata Completion: Example 1

$$\begin{array}{lll} \mbox{Given } \mathscr{R}_1 = & \{ & \varepsilon: h(x) \to g(x), & \langle h, 1 \rangle : a \to b \} \\ & & \mbox{control NFA} & \mbox{control NFA} \\ & & \nu_0 & & \nu_1 \xrightarrow{\langle h, 1 \rangle} \nu_2 \end{array}$$

Given \mathscr{A}_1 recognizing $\{h(a)\}$ with states q_a and q (final) and transitions $a \to q_a$ and $h(q_a) \to q$

1. start with \mathscr{A} with transitions: $a \rightarrow \langle q_a, s \rangle$ for all $s \subseteq \{\nu_0, \nu_1, \nu_2\}$ $h(\langle q_a, \{\nu_2\}\rangle) \rightarrow \langle q, s \rangle$ for all s with $\{\nu_1\} \subseteq s \subseteq \{\nu_0, \nu_1, \nu_2\}$ $h(\langle q_a, \emptyset \rangle) \rightarrow \langle q, s \rangle$ for all $s \subseteq \{\nu_0, \nu_2\}$

2. add transitions (superposition of \mathscr{R} into \mathscr{A}): $b \rightarrow \langle q_a, s \rangle$ for all *s* with $\{v_2\} \subseteq s \subseteq \{v_0, v_1, v_2\}$ $g(\langle q_a, \{v_2\} \rangle) \rightarrow \langle q, s \rangle$ for all *s* with $\{v_0, v_1\} \subseteq s \subseteq \{v_0, v_1, v_2\}$ $g(\langle q_a, \emptyset \rangle) \rightarrow \langle q, s \rangle$ for all *s* with $\{v_0\} \subseteq s \subseteq \{v_0, v_2\}$

bottom-up $\mathscr{R}^*({h(a)})$: and

$$g(a) \xrightarrow{\mathcal{A}} g(\langle q_a, \{\nu_2\}\rangle) \xrightarrow{\mathcal{A}_*} \langle q, \{\nu_0, \nu_1\}\rangle$$
$$g(b) \xrightarrow{\mathcal{A}_*} g(\langle q_a, \{\nu_2\}\rangle) \xrightarrow{\mathcal{A}_*} \langle q, \{\nu_0, \nu_1\}\rangle$$

Tree Automata Completion: Example 2

Given
$$\mathscr{R}_2 = \{ \begin{array}{c} \varepsilon : h(x) \to g(x), & \langle g, 1 \rangle : a \to b \} \\ \text{control NFA} & \text{control NFA} \\ \nu_0 & \nu_1 \xrightarrow{\langle g, 1 \rangle} \nu_2 \end{array}$$

Given \mathscr{A}_2 recognizing $\{h(a)\}$ with states q_a and q (final) and transitions $a \to q_a$ and $h(q_a) \to q$

1. start with \mathscr{A} with transitions: $a \rightarrow \langle q_a, s \rangle$ for all $s \subseteq \{v_0, v_1, v_2\}$ $h(\langle q_q, \emptyset \rangle) \rightarrow \langle q, s \rangle$ for all $s \subseteq \{v_0, v_1, v_2\}$ 2. add transitions (superposition of \mathscr{R} into \mathscr{A}): $b \rightarrow \langle q_a, s \rangle$ for all s with $\{v_2\} \subseteq s \subseteq \{v_0, v_1, v_2\}$ $g(\langle q_a, \emptyset \rangle) \rightarrow \langle q, s \rangle$ for all s with $\{v_0\} \subseteq s \subseteq \{v_0, v_2\}$ bottom-up $\mathscr{R}^*(\{h(a)\})$: $g(a) \longrightarrow g(\langle q_a, \emptyset \rangle) \longrightarrow \langle q, \{\nu_0, \nu_1\} \rangle$ and not $h(b) \xrightarrow{\sim} h(\langle q_a, s \rangle)$ if $v_2 \in s$, stuck! $g(b) \xrightarrow{\sim} g(\langle q_a, s \rangle)$ if $v_2 \in s$, stuck! and not

Bottom-up rewriting with linear and right shallow *p*CTRS effectively preserves regularity.

Corollary 1

Reachability and RMC wrt bottom-up rewriting are decidable for linear and right shallow *p*CTRS.

Consequences: left-linear and right-ground pCTRS

Corollary 2

Reachability and RMC are decidable for left-linear and right-ground *p*CTRS.

proof: because every rewrite sequence with a right-ground *p*CTRS is bottom-up.

Reachability is PSPACE-hard for ground *p*CTRS.

proof: reduction of the intersection emptiness problem for regular string languages L_1, \ldots, L_n $(n \ge 2)$ over Σ .

$$\begin{aligned} \mathscr{R} &= \{\Sigma^* : \sharp_1 \to a(\sharp_1) \mid a \in \Sigma\} & \cup \quad \{L_i : \sharp_i \to \sharp_{i+1} \mid 1 \le i \le n\} \\ & \cup \quad \{\Sigma^* : a(\sharp_{n+1}) \to \sharp_{n+1} \mid a \in \Sigma\} \end{aligned}$$

It holds that $\sharp_1 \xrightarrow{*}{\mathscr{R}} \sharp_{n+1}$ iff $L_1 \cap \cdots \cap L_n \neq \emptyset$

Conclusion

- prefix Controlled Term Rewriting Systems
- decidability of Reachability and Regular Model Checking:
 - wrt bottom-up rewriting for linear and right shallow pCTRS
 - for left-linear and right-ground pCTRS

Perspectives

- for right–(linear and shallow) pCTRS?
- over-approximating constructions handling larger classes of pCTRS's
- unranked tree rewriting

Thank You!