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general perspective
music symbolic representations 
in particular traditional western music notation 
processing of tree structured representations 
!
general long term goal: symbolic MIR problems  
                                       http://music-ir.org/mirex 
• querying bases of music scores 
• transformations,  
• melodic similarity detection,  
• genre classification, recommendation, 
• detection of repetitions, automatic segmentation,  

musicological analysis 
!
one particular target application: rhythm transcription 



target application

plan of the talk 
• context: computer assisted (Music) composition 
• problem: rhythm transcription  
• data structure: rhythm trees 
• term rewriting approach 
• weighted tree automata

rhythm transcription: automatic generation of notation



Assisted 
Composition
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hardware and software tools for authoring music,  
production of music scores



music notation editors

score printing 
import/export MIDI and MusicXML 
• Finale (MakeMusic) 
• Sibelius (Avid)



algorithmic composition environments
solving musical problems 
visual programming languages based on Lisp 
• PWGL (Sibelius Academy) 
• OpenMusic (Ircam)



Automatic 
Music 

Transcription
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automatic music transcription: goal

acoustical recording 
(audio file)

symbolic timed trace  
(MIDI file, piano roll)

notation 
(MusicXML…)

(71,0.0)(74,1.18)(46,1.73)(52,2.09)(5



automatic music transcription: tasks

acoustical recording 
(audio file)

symbolic timed trace  
(MIDI file, piano roll)

notation 
(MusicXML…)

beat tracking

tempo/metric extraction

pitch tracking

onset detection

structural segmentation

audio 
MIR

symbolic 
MIR



automatic music transcription: applications

acoustical recording 
(audio file)

symbolic  
timed trace  
(MIDI file)

notation 
(MusicXML…)

recorded 
performance

algorithmic 
composition  

(OpenMusic…)
MIDI keyboard 
(score edition)

model of performance 
= score + deviations agnostic

this work, 
with focus on rhythm quantization



rhythm quantization (symbolic)

1. segmentation of the input timed trace  
each segment with constant tempo  
or known acceleration 

2. identification of tempo / beat positions 
3. local quantization on each segment  

(on-the-beat quantization)
• input: one segment = timed trace:  

sequence s of pairs (onset,duration) in 𝐑2 (ms) 
• output: sequence t of pairs (onset, kind), with 

 onsets in 𝐃, small discrete set  
(admissible subdivisions of beat) 
 kind = ‘note’ or ‘silence’ 
 number of ‘notes’ = |s |



rhythm quantization : measures of quality

timed trace

transcription 1: high precision, high complexity 

transcription 2: lower precision, low complexity 



This rather simple looking “formula” has surprisingly
far reaching consequences. One reason is the interpreta-
tion of Eq. 3 as:

(4)
posterior likelihood prior (5)

which combines “the amount of fit” (the likelihood) with
the initial “subjective belief” (prior) to give the new (pos-
terior) belief into the model after we see the data. In par-
ticular, if the model is an element of a class of models
indexed by some parameters finding the most probable
model is equivalent to finding the most probable set of
parameters.

4 Rhythm Quantization Problem
4.1 Definitions
In this section we will give formal definitions of the terms
that we will use in derivations to follow. A performed
rhythm is denoted by 1 where is
the time of occurrence of the ’th onset (measured in sec-
onds). The time between two consecutive onsets is de-
noted as an inter onset interval (IOI) which is defined as

. For example, the rhythm in Figure 1 is
represented by , , , and

, , , .
We found it convenient to make a distinction between

a score and a performance, although a score corresponds
directly to a mechanical performance when played with a
constant tempo. We define a score
as a sequence of occurrence times of onsets as a multiple
of some basic unit (e.g quarter note, eight note etc.).
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Figure 3: Representation

Figure 4: Two equivalent representations of the notation
in Figure 3 by a code vector sequence

1We will denote a set with the typical element as . If the
elements are ordered (e.g. to form a string) we will use .

A score can also be viewed as a concatenation of
some basic buildingblocks , which
we call code vectors. For example, the notation in Fig-
ure 3 can be represented by a code vector sequence as in
Figure 4. Note that the representation is not unique, both
code vector sequences represent the same notation. We
call a set of code-vectors a codebook.
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Figure 5: Depth of by subdivision schema

In music, notations are usually generated by regular
subdivisions of a time interval so the locations of onsets
(in a score) can be described by simple rational numbers.
For this reason, it is also convenient to generate code-
vectors by regular subdivisions. This subdivision schema
is usually related to the time signature of the bar. As an
example, consider a codebook which contains only one
onset code-vectors generated according to a 3/4 time sig-
nature. A possible subdivision schema could be

. The interval is divided first to 3, then resulting
three intervals into 2 and etc. At each iteration, the end-
points of the generated intervals, which are not already
in the codebook are added to the codebook. The result-
ing codebook is depicted in Figure 5. The filled circles
correspond to the code-vectors and are arranged by the
location of the onset (horizontal) and by their depth (ver-
tical). The depth of an onset (with respect to a subdivision
schema ) is the index of the iteration at which it
is added to a codebook as . A code-vector with N
onsets can be build by combining of such one onset code-
vectors. For such a code-vector we define the depth as the
sum of the depths of its onsets:

(6)

For simplification of notation, we will represent a perfor-
mance as a sequence of non-overlapping segments. The
length of the ’th segment is denoted as and the onsets
in this segment are denoted as . The segmentation of a
performance is given in Figure 6. The onsets are normal-
ized by so an onset at the beginning of the segment is
mapped to zero and one at the end to one.

4.2 Performance Model
In general terms, a performance model describes how a
score is mapped into a performance. (Figure 3). As de-

alignment to grid
Desain, Honing, de Rijk 

Quantization of musical time 
Music and Connectionnism, MIT Press 1991

Longuet-Higgins 
Mental Processes: Studies in Cognitive Science, 1987

grid of depth 3 and subdivision schema (3, 2, 2)



which grid for this?

which grid for that?

Mexican Waltz
www.traditionalmusic.co.uk .
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choice of the grid
according to depth, number of divisions… 
 with user parameters or heuristics



heuristics for grid selection
Pressing, Lawrence 

Transcribe: A comprehensive autotranscription program 
ICMC 1993

• given a predefined set T of template grids  
 (user parameters) 

• align the input segment s  to grids of T 
• select the best grid g ∈T according to distance to s 
• return alignement of s to g  
 (converted to a score)

Agon, Assayag, Fineberg, Rueda 
Kant: A critique of pure quantization 

ICMC 1994

Meudic 
OMquantify 

PhD Ircam, 2005



local quantization workflow

OMquantify 
!

• generation of several grids 
• select best grid g 

(according to 3 distances) 
• align input seq. s to g 
• convert the alignement  

into OpenMusic Rhythm Tree  
return as score

RT based approaches 
!
• convert input seq. s  

into RT 
• computations on RT(s) 
!
• return RT result as score 



Rhythm 
Trees
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rhythms and durations

durations (ms)tempo (frequency)

rhythmic values  
(fractions of the period) 

= symbolic notation



rhythm trees (RT)

in traditional western music notation:  
durations are defined by recursive subdivisions of units



Lee 
The rhythmic interpretation of simple musical sequences 

Musical Structure and Cognition, 1985

rhythm CF grammars

CHAPTER 3. MUSIC SIMILARITY WITH TREES
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Figure 3.2: Duration hierarchy for note figures. From top to bottom: whole (4 beats),
half (2 beats), quarter (1 beat), and eighth (1/2 beat) notes.

Fig. 3.2). Those two kinds of tree structures have been widely used in the domain of the
rhythm perception. As noted in (Linster, 1992), the simplest rhythm patterns have a
regular pulse, and multiples of this pulse are stressed in a hierarchical way, leading to the
tree in Fig. 3.2. In order to describe formally the perception of more complex rhythms, a
number of grammars and parsing strategies have been proposed. In (Lee, 1985) a review
of the research of (Longuet-Higgins, 1978; Martin, 1972; Sundberg and Lindblom, 1992)
shows di↵erent grammars to model the perceived rhythm from notational figures, under
the assumption that a listener performs an unconscious grammar parsing (see Fig. 3.3).
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(c) Parse tree of score with 3/4 grammar

Figure 3.3: Longuet-Higgins grammars (from (Lee, 1985) pages 54-55).
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(c) Some possible parses of (a) using
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(d) Some possible parses

Figure 3.5: Longuet-Higgins grammar for meter 4/4 (from (Lee, 1985) pages 54-55) and
some possible parses.
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Arbres de rythme dans OpenMusic

Des rapports hiérarchisés
Les nombres représentent une durée relative par rapport aux
autres nombres de la mesure : c’est un rapport de durée.

Le chiffrage est intégré à la notation.

4

3 1 2 1 1

2 1 1 1 1

FIGURE : L’arbre de rythme (? (((4 4) ( 3 (1 ( 2 1)) 2 1 (1 ( 1 1
1)) ))))

Pierre Donat-Bouillud (ENS Cachan Bretagne) Quantification rythmique dans OpenMusic 4 Juillet 2013 4 / 18

OM rhythm trees (OMRT)

Agon, Haddad, Assayag 
Representation et rendu de structures rythmiques 

JIM, 2002

Laurson 
Patchwork: A Visual Programming Language 

Helsinki: Sibelius Academy, 1996

trees are the standard data structure for OpenMusic

list (4 (3 (1 (2 1)) 2 1 (1 (1 1 1)))) 
• labels in 𝐍 = durations 
• ∑ children = equal subdivisions of parent  
• notes = leaves 
• for numerical computations (not symbolic)

Arbres de rythme dans OpenMusic

Des rapports hiérarchisés
Les nombres représentent une durée relative par rapport aux
autres nombres de la mesure : c’est un rapport de durée.

Le chiffrage est intégré à la notation.

4
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2 1 1 1 1

FIGURE : L’arbre de rythme (? (((4 4) ( 3 (1 ( 2 1)) 2 1 (1 ( 1 1
1)) ))))

Pierre Donat-Bouillud (ENS Cachan Bretagne) Quantification rythmique dans OpenMusic 4 Juillet 2013 4 / 18



symbolic RT

 terms over the following signature: 
• inner nodes: labelled with arity = prime numbers 2-13 
• leaves: 

• n : note 
• r : rest 
• s : slur. Sum with previous leaf in dfs ordering 
• 1+ : add to next sibling

• all sibling represent equal durations 
• for symbolic computations (unary notation)

2

2

n n

2

n n

G ˇ ˇ ˇ ˇ



G 4
4 ˇ`

—fl3fl—ˇ ˇ ˇ ˇ —flfl3flfl—ˇ ˇ ˇ
.

1+ 1+ n 3

1+ n n

1+ n n 3

n n n

symbolic RT (example 2)



symbolic RT (example 3)

.

1+ n 1+ 3

n n n

G 4
4 ˘

—flfl3flfl—ˇ ˇ ˇ



advantage of RT representation

• close to traditional music notation 
!

• keep the integrity constraint  
sum of durations = 1 
!

• groups of correlated events  
reflected in the tree structure  
= sequences of siblings 
→ preserved in local transformations

over string representation



Local Quantization  
by RT Rewriting

4



principle

1. generate an initial tree t0 from input s  
with maximum precision, maximum complexity 

• t0  complete 
• closest to s given maximum depth, signature 
• alignment to a complete grid 

!
2. simplify t0  into t using a set of rewrite rules  

of 2 kinds: 
• conservative rules (preserve durations) 
• simplifying rules (do not preserve durations) 

!
3. return score corresponding to t



conservative rules

p(n, s, . . . , s) ! n ˇ 8 ˇ �! ˇmerge-ns

? ? �! >merge-r p(r, . . . , r) ! r

merge-s p(s, . . . , s) ! s r 8 ˇ 8 ˇ �! r 8 ˇ
replace-s p(x1, . . . , xm, t, 1+, . . . , 1+| {z }

k

, n, y1, . . . , yn)

! p(x1, . . . , xm, t, n, s, . . . , s| {z }
k

, y1, . . . , yn)

t = n or t = r or t = s, t = p(z1, . . . , zp)



conservative rules (2)

3(n, 2(s, n), s) ! 2(n, n)

5(n, s, 2(s, n), s, s) ! 2(n, n)

3/2

5/2

7/2, 11/2,…

ˇ 8 3ˇ ˇ 8 ˇ �! ˇ ˇ
ˇ 5ˇ = ˇ ˇ ˇ = ˇ �! ˇ ˇ

4/3

5/3

…

2
�
2(n, 3(s, n, s)), 2(3(s, s, n), s)

�
! 3(n, n, n)

ˇ 3

8 ˇ ˇ ˇ
3ˇ> ˇ ˇ 8 ˇ �!

3ˇ ˇ ˇ
5(n, 3(s, s, n), s, 3(s, n, s), s) ! 3(n, n, n)

ˇ
5

3ˇ; ˇ ˇ ˇ 3

= ˇ ˇ ˇ ; ˇ �!

3ˇ ˇ ˇ



equational theory of rhythm notation

the set of conservative rules is 
• confluent and terminating 
!
it can be used as a tool for 
• simplifying rhythm notations 
• identify equivalent rhythm notations

conservative rules (application)



simplifying rules

p(s, n, x1, . . . , xm) ! p(n, s, x1, . . . , xm)
p(s, r, x1, . . . , xm) ! p(r, r, x1, . . . , xm)

reduce

inflate
p(s, . . . , s| {z }

m

, r) ! p(s, . . . , s| {z }
m+1

)

p1

�
p(s, . . . , s| {z }

m

, n), p0(s, x1 . . . , xk)
�
! p1

�
p(s, . . . , s| {z }

m+1

), p0(n, x1 . . . , xk)
�

p2

p1

x

p(s, . . . , s| {z }
m

, n)

p

0(s, x1, . . . , x`) !

p2

p1

x

p(s, . . . , s| {z }
m+1

)

p

0(n, x1, . . . , x`)



TRS with regexp constraints

• there is an exponential number of simplifying rules 
• currently implemented as LISP functions  

(1 function represents a family of rules) 
• studying other compact rule-based representation, with 

• tree, context and function variables 
• regular constraints (variable in regular tree language) 

!
!
!
!
problems: 
• matching 
• rewriting strategies (bottom-up) 
• characterization of set of descendants 

Kutsia, Marin 
Matching with Regular Constraints, 2005



example

0.45 10
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initial tree (complete)



example

0.45 10

normalize 
(conservative)
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normalize 
(conservative)

reduce 
(non-conservative)



example (2)

0.45 10

other initial tree (complete)
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example

0.45 10

normalize 
(conservative)

normalize 
(conservative)

inflate 
(non-conservative)
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summary and questions

1. generate an initial tree t0 from input s 
→ several possibilities of t0   

2. simplify t0  into t 
• simplifying rules diverge 
→ (symbolic) exploration of space of reachable t 
→ choice of best t according to  

• complexity and  
• distance to s 

3. return score corresponding to t"
  → conversion of RT into notation (through OMRT) 



Weighted Tree 
Automata
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→ the set of initial trees,  given an input sequence s 
     is a regular tree language Ls,  
     recognized by a tree automaton As. 
!
→ exploration: the closure of Ls  under rewriting 
     is characterized by a tree automaton As* 
     constructed incrementally from As "
      and the rewrite rules (tree automata completion) 
!
→ choice of the best t: 
    minimizing complexity and distance to s  
    both computed by weighted tree automata



space exploration, selection best choice

Bayesian approach to quantization

Cemgil, Desain, Kappen 
Rhythm Quantization for Transcription 
Computer Music Journal 24(2), 2000.

Cemgil 
Bayesian Music Transcription 

PhD Radboud University of Nijmegen, 2004

ad hoc performance model s = t / v + ε 
v = tempo (constant) 
ε = expressive timing deviation

p(t | s) = p(s | t ) . p(t )

!
  
(length of Shannon code in bits)

dist(s, t) 
square of a weighted  

Euclidian distance 

1
score complexity 



space exploration, selection of best choice

choice of t  for s minimizing dist(s, t ) . cpty(t ) 
                                          = Aws*(t )    . Ac(t ) 
where 
• Aws* (t ) =  dist(s, t ) if t recognized by As*  

                    =  ∞ otherwise 
(ongoing) construction follows the construction of As* from As"

• Ac is a weighted tree automaton characterizing the user preferred  
notations (independently of s). 
It is learned online by quantization of previous segments.

weighted tree automaton (WTA)  A:  
finite bottom-up tree automaton  
with a weight for each transition. 
associates a weight A(t) to each term t.



construction of Ac (user’s style)

for each segment s 
1. enumerate the k first t candidates  

according to Aws*(t ).Ac(t ) 
(k is a user parameter) 

2. print these t in traditional music notation 
3. the user chooses his preferences, 

Ac is updated accordingly 
using extension of RPNI algorithm to WTA 
(Adrien Maire) 



example

0.45 10

proposition 1: (ˇ ?
proposition 2:

5ˇ 7 ˇ ? ? ? d = 0.05, higher complexity

d = 0.05, low complexity

• if the user chooses proposition 1 for this segment  
then A is left unchanged 

• if the user prefers proposition 2  
then A is updated:  
5-uplets will get higher weights for next segments



enumeration

• there exists a WTA A  
s.t. for all t,  A(t) = Aws*(t ).Ac(t ) 
!

• apply k-best algorithm to the  
weighted hypergraph presentation of A

Huang, Chiang  
Better k-best parsing  

Parsing 2005

improves Knuth extension to hyper graphs  
of Dijkstra’s shortest path algorithm 



conclusion

• approach for local rhythm quantization based on RT,  
involving 
1. term rewriting 
2. weighted tree automata 

!
perspectives 
• joined tempo inference and local quantization 
• application of rhythm trees techniques  

(automata, transformations)  
to other symbolic MIR problems



trees representations in music

Lerdahl and Jackendoff 
A Generative theory of tonal music 

MIT Press, 1983 

structuration of a piece  
in a time-span tree

Gilbert, Conklin 
A probabilistic context- free grammar  

for melodic reduction 
Artificial Intelligence and Music, IJCAI, 2007

Johanna Högberg 
Generating music by means of tree transducers 

CIAA, 2005 


