Extended Tree Automata Models
for the Verification of Infinite State Systems

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan)

florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

Executive Summary

» several models extending tree automata

» extension with global/local constraints

» extension with auxiliary memory

» different kinds of trees (ranked / unranked)
» modulo equational theories

» application to different verification problems

Concurrent readers/writers

Example from [Clavel et al. 2007 LNCS 4350]

1. state(0,0) — state(0, s(0)) 3.
2. state(r,0) — state(s(r),0

(1) writers can access the file if nobody else is accessing it
(2) readers can access the file if no writer is accessing it

(3,4) readers and writers can leave the file at any time

Properties expected:
» mutual exclusion between readers and writers

» mutual exclusion between writers

state(r, s(w)) — state(r, w)
) 4. state(s(r),w) — state(r, w)

{Concurrent readers/writers)

state(z g, zw) reflects the state of a file, currently accessed by x g
readers and xy, writers

e equation: applied in direction left-to-right = rewrite rules
Réécriture: formalisme de calcul symbolique par remplacement de
sous termes défini par une ensemble fini d'équations orientées.

Concurrent readers/writers: reachable configurations
1. state(0,0) — state(0,s(0)) 3. state(r,s(w)) — state(r,w)
2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,w)

initial configuration:

state(0, 0)

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0,s(0)) 3. state(r,s(w)) — state(r,w)
2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,w)

reachable configurations:

state(0, 0)

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0,s(0)) 3. state(r,s(w)) — state(r,w)
2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,w)

reachable configurations:

/lﬂ
state(0, 0) state(0, s(0))

3

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0, s(0)) 3. state(r, s(w)) — state(r, w)
2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,w)

reachable configurations:

1
A

state(0, 0) state(0, s(0))

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0,s(0)) 3. state(r,s(w)) — state(r,w)

s
2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,w)
reachable configurations: tree automaton:

- 4o
state(0, 0) state(qo,q0) — ¢

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0,s(0)) 3. state(r,s(w)) — state(r,

2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,
reachable configurations: tree automaton:
N 0 — q
state(0, 0) state(0,5(0)) state(q,q0) — ¢
3 s(e) — @
state(qo, 1) — ¢

w)
w)

Concurrent readers/writers: reachable configurations

1. state(0,0) — state(0, s(0)) 3. state(r, s(w)) — state(r,

2. state(r,0) — state(s(r),0) 4. state(s(r),w) — state(r,
reachable configurations: tree automaton:
L 0 —
state(0, 0) state(0,5(0)) state(q,q0) — ¢
(j D s(q@) — @
2(4 3
state(go,q1) — ¢
state(s(0),0) state(q1,90) — ¢
2(, s(a) — @
state(q2,q0) — ¢
state(s(s(0)),0) s(@z) — @

System Timbuk [Genet Tong 2004 JAR].
Automated construction, guess the acceleration s(q2) — o

w)
w)

{Concurrent readers/writers: reachable configurations)

reachable states characterized by a tree automaton:

set of productions rules = recursive definitions

every states in red = variable representing set of terms

if go contains terms t1 and tg, then ¢ contains state(t1, t2)

least solution: the variable in lhs is the smallest set containing union
of sets defined in rhs

Concurrent readers/writers: verification

Properties expected:

1. mutual exclusion between readers and writers
excluded pattern: state(s(x), s(y))

2. mutual exclusion between writers
excluded pattern: state(z,s(s(y)))

Set of excluded configurations = union of
By = {state((¢1 | 02), (01 | 42))}
B, = {state((q0 | 91| 42), 42)}
with 0 — qo, s(q0) — a1, 8(¢1) = g2, 8(q2) = 2.

Verification: The intersection between the set of reachable
configurations and excluded configurations is empty.

Regular Model Checking

composition (Boolean closure)

g
~::..‘
*s, s, decision procedures (emptiness)
% \‘ ’o'
v ¥ L"

qRﬁ(E1UE2)=®

forward closure (term rewriting)
infinite (but regular) configuration set

Non-Regular Configuration Set

two files, configurations of the form: state(x1,y1,x2,y2)

» both files have the same number of readers

State(y Y1, 7?/2)

This set cannot be represented by tree automata
(pumping lemma)

Type Definition for XML Data

phonebook
card*
name phone* email

/ \ | / \

first last char* login dom

char® char™ char™ char™

Defines an unranked ordered tree automata language.

Tree automata capture all type formalisms in use for XML data.

Static Typechecking
[Milo Suciu Vianu 2003 JCSS]

forward closure
(T tree transformation)

A3
.
A
L 2

~..)T(Lin) < Lout

F‘
’~ - .
*eu..gw==decision procedures
*
backward closure ===~ Rad
Q:J ".0
—1 _
Lin ka (Lout) =g
N ®
v 4
A .

e

composition (Boolean closure)

(Static Typechecking)

e verification that a program defining tree transformations always
converts valid input data into valid output data,

e input and output types are defined by tree automata

e reduction to inclusion decision if the image of L;, by T can be
characterized by a tree automaton

e if this is not the case, a second option is to consider the inverse
image of the complement of Lyut. For instance, in the above article
(where T is expressed in a fragment of XSLT) the inverse image is a
tree automata language, and type checking is done by testing that
the intersection with the input type is empty.

XML Integrity Constraints

phonebook
card*
name phone* email

/ \ | / \

first last char® login dom

char® char™ char™ char™

» email is a (ID)

Cannot be expressed with unranked tree automata

Overcoming the Limitations of Tree Automata

find extensions of standard tree automata
preserving the good properties (as much as possible)

» closure under Boolean operations
» decision procedures (in particular emptiness)

» effective forward or backward closure by transformations

several models

» extension with global/local constraints

> extension with auxiliary memory

» different kinds of trees (ranked / unranked)
» modulo equational theories

motivated by different applications in verification

Extended Models: Outline

static properties: composition and decision (constraint solving)

Tree automata Tree automata Horn Clauses
with with with
local constraints global constraints equality
FO Th. Proving XML integrity
constraints

dynamic properties: forward/backward closure (regular model checking)

Ranked Unranked
tree rewriting tree rewriting
XML updates
Rewriting XML r/w ACP

strategies

Ranked Tree Automata: Definition
A (ranked) tree automaton is a tuple (X, Q, F, A) where

is a ranked signature,

by

() is a finite set of states,

F' < Q is the subset of final states,
A

is a set of transitions of the form f(q1,...,q,) — q.

(0 — q)
state(qo, q0) — ¢
) {0:0,s:1,state : 2} state(q (ZO; : gl
— A: 0,41
g — gﬁ’qu} | state(si.0) — ¢
(fh) - Q2
state(¢q2,q0) — ¢
L s5(q2) — 92)

Ranked Tree Automata: Definition

ranked) tree automaton is a tuple (X, Q, F, A) where

is a ranked signature,

A (

by

() is a finite set of states,

F' < @ is the subset of final states,
A

is a set of transitions of the form f(q1,...,q,) — q.

Regular languages

L'(.A,q) = {aezo‘a—)qEA}

res,
Y f(tl”tn) ‘tl e‘C(Av(II)?""tn E'C(-A,(]n)
| f(q1,-- qn) > g€ A

) = [JL g

qeF

Ranked Tree Automata: Main Properties

» Boolean closure of regular languages

» membership ¢ € L(A) is decidable in PTIME

» emptiness L(A) = J is decidable in linear time

» finiteness is decidable in PTIME

» emptiness of intersection L(A1) n...n L(A,) = F is
EXPTIME-complete

» universality L(A) = T(X) is EXPTIME-complete

» inclusion L£(A1) € L(A2) is EXPTIME-complete

» equivalent to
» parse trees of a context-free grammar
» well-formed terms over a sorted signature
> regular tree grammars
» sentences of monadic second-order logic of the tree

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Tree Automata with Local Constraints (Siblings)

» both files have the same number of readers

state(.r, y1, 7, Y2)

0 — qo state(qi,90,91,90) — ¢

state(qo, 90, 90, %0) — ¢ s(g1) — @
s(qo) — @ state(q2,q0,2,90) — ¢

state(qo, q1,90,71) — ¢ s() - @

Tree automata with sibling = and # constraints
[Bogaert Tison 1992 STACS]

Tree Automata with Local Constraints

» both files have the same number of readers

pair(state(;Y1) state(’y2))

0 - 4 state(q1, qo) - p1 | p2
Y s(q1) - q
state(qo,q0) — p1 | p2 state(¢2, qo) - pi | p2
slw) = @ s(2) = @
state(qo,q1) — p1|p2
pair(pi,p2) ——— ¢

Tree automata with = and # (path) constraints

[Mongy 1981 PhD], [Caron 1993 PhD]

Tree Automata with Local Constraints: Definition
A (ranked) tree automaton with local constraints is a tuple
3, Q, F,A) where
> is a ranked signature,
@ is a finite set of states,
F' < Q is the subset of final states,
A is a set of transitions of the form f(q1,...,q,) — q.
where ¢ is a conjunction of equalities p = p’ and disequalities
p # p', for paths p, p'.

Languages
L(Aq) = {aeEo‘a—u]eA}
fex,
t1€ L(A,q1),...,tn € L(A, q,)
v f(tl,,tn) f((]l,,q,,)i)qu

| [t tn) Ec
LA = |JcAa

qeF

Tree Automata with Local Constraints: Emptiness Decision

» emptiness is undecidable in general [Mongy 1981 PhD],
[Bogaert 1990 PhD], for cousins: [Tommasi 1992 MT]

» emptiness EXPTIME-complete for sibling constraints
[Bogaert Tison 1992 STACS]

» emptiness is decidable for deterministic and complete
reduction automata (RA): ordering < on states, for all
f(a1,---,q,) = q, q upper bound of {q1,...,q,}
[Dauchet et al 1995 JSC]

» emptiness is undecidable for reduction automata

J Rusinowitch Vigneron 2006 [JCAR

» emptiness is in EXPTIME with restriction to #

o(|Q].|1A|1FM) Comon-Lundh J 2003 IC

» emptiness decidable when arbitrary #, no overlap between =
[Godoy et al 2010 STOC]

(Tree Automata with Local Constraints: Emptiness Decision)

e RA: strict upper bound if ¢ contains an equality constraint

e the number of equalities tested along a computation path in a run
of A is bounded (by the number of states of .A)

e P(A) is a polynomial in the size of the constrains of A

Tree Automata with Local Constraints: Regularity

regularity is undecidable
» for RA (reduction of universality)
» for TA (local # constraints only) (id)

» for TA_ (local = constraints only) (reduction of emptiness)

First Order Theorem Proving

Term Rewriting System (TRS) R: finite set of rewrite rules £ — 7.

rewrite relation %x smallest relation containing R closed under

application of substitution and contexts.

» FO encompassment theory, predicate Ey(s) if s embeds t:
compilation into deterministic reduction automata
[Dauchet et al 1995 JSC]

» FO of % decidable for R ground, or ¢, r linear and don't
share variable for all ¢ — r [Dauchet Tison 1990 LICS]

» FO of <—> <—> decidable with same assumptions on
Ri,. .. Rn apphcatlon to model-checking problem of AnL

a spatial equational logic for the applied 7-calculus)
J Lozes Treinen Villard 2011 TOSCA

Inductive Theorem Proving

automatic proof of FO conjectures in Herbrand structures

ex: x + 0 = x inductive th. of {0+ 2 = z,s(z) + y = s(x + y)}.

» inductionless induction / proof by consistency
[Huet Hullot 1982 JCSS], [Jouannaud Kounalis 1986 LICS],
[Kapur Musser 1987 AlJ].
inductive completion [Fribourg 1989 JSC]|:
condition for consistency is ground reducibility

» g.r. is EXPTIME-complete {@e1yleliHRiTyel;BER20[0CH (@

based on emptiness decision for TA with local # constraints

{Inductive Theorem Proving)

e Herbrand structure: quotient of 7(X)
e inductive th. = FO sentences : for all Herbrand structure, Horn
clauses : smallest Herbrand structure

Inductive Theorem Proving

» implicit induction: automatic computation of induction
schemes
» cover-sets [Kapur Zhang 1995 RRL]
» test-sets [Bouhoula Rusinowitch 1995 JAR]
» normal-form (standard) tree automata [Bouhoula Jouannaud
2001 IC] Horn clauses specifications with equational left-linear
constructor relations

s(p(z)) = =, p(s(x)) -«

> NF constrained TA Rl telNIERR2L0[0fs N B IO\ 28,

Bouhoula J 2007 FCS-ARSPA M Bouhoula J 2011 JAL

specifications with constrained constructor relations
(axioms for complex data structures).

cons(z, cons(z,y)) — cons(z,y)
cons(zy,cons(za,y)) — cons(ze,cons(z1,y)) || x1 > 22

constrained TA are also decision tool (inconsistency detection)

{Inductive Theorem Proving)

e procedure sound and refutationally complete when R is sufficiently
complete and the constructor subsystem RC is terminating

e refutationally complete: any conjecture that is not valid in the
initial model will be disproved

e without the above hypotheses, it still remains sound and
refutationally complete for conjectures, where all the variables are
constrained to belong to the language of NF

e if R is strongly complete (a stronger condition for sufficient
completeness) and ground confluent, then when the procedure fails,
it follows that the conjecture is not an inductive theorem

Automata Based Inductive Theorem Proving

iTP
termination

.. termination
sufficient completeness .
sufficient completeness
confluence

Bouhoula J 2008 LJCAR Bouhoula J 2007 FCS-ARSPA

joinable iTP

completeness decision

termination simultaneous decision
confluence completeness / confluence
(iTP as oracle) termination

Bouhoula J 2011 JAL

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Unranked Ordered Trees & Hedges

> unranked alphabet

hedge = finite sequence of unranked trees (possibly ¢)
unranked tree = variable
a(hedge) with a € X2

{Unranked Ordered Trees & Hedges)

e the term 'hedge’ was introduced by Courcelle
e ¢ is the empty hedge

Unranked Tree Automata: Definition
A hedge automaton (HA [Murata 2000]) is a tuple (3, Q, F, A)
where
Y is an (unranked) alphabet,
is a finite set of states,
C (is the subset of final states,
is a set of transitions of the form f(L) — ¢ where L is a
regular word language over Q™.

B> = O

Regular languages

L'(.A,q) = {aezo‘a—)qEA}
fen

U R flt,.tn) [tie L(A 1), ..ot € L(A, q0)
| f(L)>qeA, qi...q,€L
Ly = e
qeF

Equivalent to ranked tree automata via binary encodings

Type Definition for XML Data

DTD
phonebook
card*
name phone* email

/\ | /\

first last char® user dom

char® char® char™® char®

phonebook(pc

Hedge Automaton

card(pn Ph* Pm
name(ps p)

L 2 I

Po
Pc
Pn
pr
b
Pn
Pm
Pu
Pd

Hedge Automaton Run

name
/
card
S~
email
name
/
phonebook — card
S~
email
name
/
card
email

_—first
last

____ user

om

_—first

—
last

_____ user
om
__—first
last

____ user

om

——Homer

—Simpson

——homer
—gmail.com
John
To
—dito
—gmail.com
Beth
—Ditto
—dito

—blip.fm

Hedge Automaton Run

cardPe

phonebookPb — cardPe

cardPe

namePn

\

/

emailPm

namePn
/

~
emailPm

namePn

\

/

emailPm

_— firstPr HPoPmPePrP
T last? —— SPiPmPpPsPoPn?
____— userPu hPo’mPePrP
T domPd — gPmPaliPIP PcPoPmP
__ first?t ——— JPoPhPn?
T last? ———— TPoP
___ userPu dPiPtPoP
domPd — gPmPaliPIP PcPoP mP
_ first?t ——— BPeltPh?
i lastPt ——— DPiPtPtPoP
___— userPv —— dPi’tPo’
T domP¢ bP1PiPp? PEPmP

Key Constraint

email is a key: pm % pm V2, y pm(2) Apm(y) AT #y =ty # 1ty

namePn

cardPe

[\

emailPm

namePn

phonebookP? — cardPe

[\

emailPm

namePn

cardPe

[\

emailPm

P
___ userPu

_— first¥f

P
. userPu

_ first¥f

yY
. userPu

_— first’® ——— HPo’mPelr”

SPiPmPpPsPol n?
—— hPoPmPePrP

— g’mPaPiPIP PcPoPmP

JPoPhPn?
Tro?
dPiPtPor

— gPmPaPiPIP PcPoPmP

— BPePtPh?

DPiPtPtPoP
dPiPtPoP

bP PP pP PfPmP

Global Equality Constraint

all domain’s coincide py ~ pg Vz,y pa(x) A pa(y) = tle =ty

cardPe

b

phonebook?®

/

py —— firstPf HPoPmPePrP
name” — last?! SPiPmPpPsPoP nP?
emailPm i ser™ hfofmrert
domPd — gPmPaPi’IP PcPoPmP
e — firstPf ———— JPoPhPn?
T last?t ————— TPoP
ermailPm i userPv. ———— dPiPtPo?

Negation

user is a not a key —pm # pm 32,y pu(z) Apu(y) AT #E Yy Aty =ty

namePr

cardPe

[\

emailPm

namePn

phonebookP? — cardPe

[\

emailPm

namePn

cardPe

[\

emailPm

_ firstPr HPoPmPePrP
T Jast? SPiPmPpPsPoln?
____— userPu h”oPmPelr?
T domPd — gPmPali’IP PcPoPmP
_ first?t ——— JPoPhPn?
T last? TPo?

____ userPu d’i’tPo?
T domPd — gPmPaliIP PcPoPm?
__ firstPf BPePt’h?
B last?! DPiPtPtPoP
____ userPu dPiPtPoP

domPd bPIPiPpP PfPmP

{(Negation)

® —pm % pm and P & P have different semantics
® Dm X pm does not hold here

Tree Automata with Global Constraints: Definition

A tree automaton with global constraints (TAGC|~, #])
is a tuple A =(X2,Q, F,A,C) where
» (8,Q,F,A) is a HA,
» (' is a Boolean combination of atomic constraints
C=qa~plaze|-C|CvC[CACwithqg,¢eq

run r of A on t: function dom(t) — @ compatible with A,
successful if r(root) € F'

language: L£(A) = {t | Ir successful run of Aont, {t,r)=C}

&y E g~ g iff Vo, y € dom(t) qi(x) A ga(y) A #y =ty =ty
&)y Eaq # g iff Yo,y € dom(t) gi(z) A ga(y) Az #y =ty #t]y

(Tree Automata with Global Constraints: Definition)

~ and % are symmetric

TAGED

The original model [Filiot et al 2007 CSL], [Filiot et al 2008 DLT]
TAGED = positive TAGC|[~, #ir]
L, restriction to q1 % g2 with ¢1 # ¢
» closure U (polynomial), N (exponential), not —
» membership is NP-complete
» emptiness
» EXPTIME-complete for PCTAGC[~]

» NEXPTIME for PCTAGC[#ir] (set constraints with negation)
» decidable for subclasses of TAGED bounding # of tests

» universality, inclusion undecidable
» finiteness EXPTIME for PCTAGC[~]

(TAGED)

TAGED introduced as a tool for deciding satisfiability of a fragment of
the spatial logic TQL of Cardelli et al

RTA

Rigid Tree Automata (RTA) = subclass PCTAGC|[=] of TAGED

J Klay Vacher 2009 LATA B J Klay Vacher 2011 IC

[Filiot et al 2008 DLT]: positive TAGC[~] = positive TAGC[~f]
(R ref: restriction to g & ¢) (exponential blowup for —)

» closure U (polynomial), N (exponential), not —

» TA < DRTA ¢ RTA

» membership is NP-complete

» emptiness decidable in linear time

» universality, inclusion undecidable
» finiteness decidable PTIME

Godoy et al 2010 LICS

regularity is undecidable for RTA, TAGED, TAGC[~]

(RTA)

RTA introduced as a tool for reachability analysis of communicating
processes (applied 7-calculus)

Full TAGC

Godoy et al 2010 LICS

emptiness is decidable for TAGC[~, #]

» One tree is accepted iff a tree of “small” height is accepted

» global pumping: replace all subtrees of height h by selected
subtrees of height < h while preserving all the relative =, %

> accepted tree ¢ — sequence of measures ep, €1, ..., €p() St
if e; < ej for i < j then there exists a global pumping

» Higman's Lemma, Konig's Lemma: exists a bound B on the
maximal length of sequences (for any t) without e; < e;, i < j

» every t of height > B can be reduced by a global pumping.

(Full TAGC)

e the decidability of emptiness for the full class TAGED has been
open (and considered difficult) for 3 years

e roughly e; contains tuples on number of occurrences of trees of
height < i for each state ¢

e intuitively, it is a minimal information to keep in order to preserve
the constraints

e ¢; < e; implies that there is an injection of terms of height h(t) — ¢
into terms of height h(t) — j

e Konig's Lemma: finite number of possible e, the tree of all possible
decreasing sequences is finite because branching is finite

Arithmetic Constraints

linear inequality Z aq - lg| = a or Z aqg-|lqll = a, ag,a e Z

qe@ qeQ
forarunronatreet, |q = |r (¢
lal = |{tle |z € dom(t),r(x) = g}]

natural inequality (type 'N") when all ag, a have the same sign

Presburger automata [Seidl et al 2003 PODS, 2008], [Dal Zilio
Lugiez 2006]: count the siblings of unranked trees (local cstr).

» emptiness decidable in NPTIME for TAGC[|.|z]

» emptiness undecidable TAGC[=, |.|z] EClLelYRSAEIRNTINE (G

» TAGC[~, #, |.|N, |- |n] = TAGC[~, %] m

(Arithmetic Constraints)

e actually, the emptiness decision algorithm is for positive TAGC

e PCTAGC[~, %, |.|n, |-|n] is used as an intermediate class, for the
elimination of — in global constraint

e the complete equivalence result is TAGC[~, %, N] = positive
PCTAGC[~, #,N] = positive TAGC[=~, %], where N stands for
s -

Other Decidable Extensions

Godoy et al 2010 LICS
and extended version

on ranked trees, emptiness is still decidable for

» TAGC[~, #] extended with local = and # constraints
between siblings, a la [Bogaert Tison 1992 STACS]

» TAGC[~, %] where ~ and % are interpreted modulo flat
equational theories

(Other Decidable Extensions)

e it must be mentioned that emptiness decision for these extensions
work with the same technique as before
e this shows the robustness of the decision procedure

TAGED and DAG Automata

DA: tree automata computing on DAGs representing ranked trees
emptiness is NP-complete for DA [Charatonik 1999]

[Vacher 2010 PhD]

» positive TAGC[%] = DA (exponential blowup for —)
» positive TAGC[~, Zir] = DA[~]
» emptiness is decidable in NEXPTIME for TAGED

Ongoing work with A. Muscholl, C. Vacher, |. Walukiewicz:
generalization to PCTAGC|~, #]
(elementary upper bound for emptiness decision)

(TAGED and DAG Automata)

e DA: arun is a labeling of DAG nodes with states: one note can only
receive one state when TA is ND

e definition DA[~]: for run r on DAG d {d,r) |= ¢1 ~ ¢ iff
Ve,y € dom(d) 1(z) A g2(y) =>x =y

e the goal of ongoing work is the definition of a further extension of
DA DA[=, %] = TAGC[~, %]

Monadic Second Order Logic
MSO[+1, =, #, |.|z, |-|z] monadic second-order with predicates

a(x) (z labeled by a € ¥ in t)
+1 Sy(z,y) (y child of 2) and S_,(z,y) (y next sibling of x)
~ X~Y (forallze X, yeY, t|, =t|y)
X~Y (forallze X, yeY, t|, #t|y)
.| Zai | Xi| = a a;,a € Z, same sign (|X;| is cardinality of X;)

s Dai - |1Xi] = a (|1 X, is cardinality of {t], | = € X})

» MSO[+1] = tree automata [Thatcher Wright 1968]

» MSO[+1, ~] undecidable

» MSO[+1, Z] undecidable [Klaedtke Ruess 2002]

» EMSO[+1, Z] decidable [Klaedtke Ruess 2002]

» fragment of EMSO[+1, ~, %] decidable [Filiot et al 2008 DLT]

» EMSO[+1, ~, %, |.|n, |- |n] decidable KeelsleASSE| RN R @S]

{Monadic Second Order Logic)

jump to last line

decidability of a fragment of MSO logic interpreted on tree
(interpretation domain for formulas is set of position in a tree)
the predicates are the following

navigation S...

(dis)equalities...

arithmetic (natural linear inequalities)...

existential quantification of the variables involved in =, %, |.|n, |.||n
proof by compilation of formulas into TAGC

the transformation also works in the other direction

(expression of the existence of a run in logic)

EMSO[+1, ~] strictly more expressive than MSO (express subtree
equality)

no closure under projection under components (see Treinen 2000)
— no Thatcher Wright like construction for quantifiers

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Tree Automata as Horn Clause Sets

[Friihwirth et al 1991 LICS]
Ranked tree automaton (¥, @, F, A)

f(q17"'7q”)_)q6A

Finite set A of Horn clauses over ¥ and @ (monadic)

Q1(x1)7 s 7qn(‘7}n) = Q(f(xla ce axn)) e A

A admit a smallest Herbrand model H 4 (all clauses are definite)

Language L(A,q) ={t | Ha E q(t)}

(Tree Automata as Horn Clause Sets)

e Frithwirth et al: type inference in logic programming

e le plus petit modele de Herbrand #H 4 associe un ensemble de termes
clos a chaque symbole de prédicat

e Cela permet la définition de languages pour les ensembles de
clauses, qui coincident avec les langages d’automates

e there are several advantages of this Horn clause representation of TA

e one is that it permits to describe several different TA models in one
uniform formalism

Clauses/Automata Models

standard tree automata (z1,...,x, pairwise distinct)
G (1), gn(xn) :>q(f(a;1,...,mn)) (reg)
e-transitions
01(z) = () ()
alternating clauses
@ (x), ..., qn(z) = q(x) (alt)
2-ways (bidirectional) clauses (z1,...,x, pairwise distinct)
q(f(z1,. ., 20)) = qi(z:) (bidi)
Tree automata with sibling = constraints (z1, ..., 2, may have

duplicates)

q1(21), - o (@) = q(f(z1, ... 20)) (sibling)

(Clauses/Automata Models)

e-transitions can be suppressed with polynomial procedure

les clauses alternantes sont aussi appelées clauses intersection

elle définissent I'état () comme contenant I'intersection de Q1,...,Q»
cela (I'état Q) correspond a une conjonction dans une transition
d’automate alternant

automates alternants = (reg) + (alt)

e i.e. they can be suppressed too but at price of exponential blowup
e clauses bidirectionelles: introduites pour I'analyse de programme

logiques dans [Frithwirth, Shapiro, Vardi, Yardeni. Logic programs
as types for logic programs. LICS 1991]

cet article propose la représentation d'automates d'arbres par
clauses de Horn

e lien également avec contraintes ensembliste (projection)
e automates bidirectionnels = (reg) + (bidi)
o il existe d’autres définitions des automates bidirectionnels

strictement plus expressifs que les automates d'arbres

les automates bidirectionnel alternants, définis par union de clauses
des 4 types ci-dessus sont équivalents en expressivité aux automates
d'arbres finis

i.e. J transformation reg+alt+bidi — reg seul

Decision Problems, Satisfiability

TA A = finite set of Horn clauses (reg)

>

>

>

membership: t € L(A, q) iff AU {q(t) = L} is unsatisfiable
emptiness: L(A,q) # & iff Au {¢(x) = L} is unsatisfiable

emptiness of intersection: L(A,q1) n...n L(A,qr) # & iff
Au{qi(x),...,q:(x) = L} is unsatisfiable

MIl: membership to the intersection of instances
3 substitution o s.t. o(t;) € L(A,g;) for all 1 < i < k iff
A {qi(t1),...,q:(ty) = L} is unsatisfiable

MI: membership of an instance = MIl with £ =1

use automated deduction techniques for these problems

{Decision Problems, Satisfiability)

another advantage of representing TA as Horn clause is that is permits to
reduce many decision problems on TA to Horn clauses satisfiability

Decision by Saturation

[Goubault-Larrecq 2005 IPL]

ordered resolution with selection and e-splitting terminates on
an instance of MII with (reg) clauses

» number of step at most exponential
» exact complexity for Ml

This technique also permits to cast alternating and 2-way TA into
TA (reg + alt + bidi = reg) with exponential blowup

J Rusinowitch Vigneron 2006 1JCAR
J Rusinowitch Vigneron 2008 JLAP

» tree automata clauses with
» positive equalities (equational theories)
» negative equalities (constraints)

» saturation with basic ordered paramodulation with selection
and e-splitting

(Decision by Saturation)

e ordering and selection function are parameters of the calculus
e careful choices for these parameters can ensure termination
e Resolution:

Cv +Q(s) —Q() vD

Co v Do

where o is the most general unifier (mgu) of s and ¢

e unificateur de s et ¢t = subtitution o telle que so =to 0 <o’ (o
plus général que ¢’) si 30 0’ = o6 deux termes unifiables ont un
unificateur le plus général, unique modulo renomage de variables

e correction: si S’ obtenu de S par résolution, alors tout modele de S
est un modele de S’.

e doncsi S’ n'a pas de modele, alors S n'a pas de modele.

e donc si | est déduit a partir de S par résolution, S est insatisfiable.

e complétude: si S insatisfiable, alors on déduit la clause vide a partir
de S en un nombre fini d'étapes de résolution.

e la résolution seule n’est pas compléte pour les clauses générales.
e dans le cas des clauses générales, il faut ajouter une regle de

factorisation:
C v +P(s) v +P(t)

TA with Equality Constraints modulo Equational Theories

={=r (eq)
G(x1), g (@n),ur =01, up = v = q(f(a:l, . ,wn)) (test)
foralli <n,q > g
QI(xl)’ s)qn.(a_:n) = (](f(l’l, s 73371)) (regl)
4415 -, qn minimal or ¢; = ¢, q1,...,¢i—1,Gi+1,- - -, ¢, Minimal

no clauses (eq)

I
(empty eq. theory) clauses (eq)

std TA TA TAE
(reg)
TA with constraints TAD TADE

(test)+(reg’)

TA with Equality Constraints modulo Equational Theories

={=r (eq)
G(x1), g (xn),ur =01, up = v = q(f(a:l, . ,xn)) (test)
foralli <n,q > g
(Il(ajl)’ s)qn.(a_:n) = (](f(l’l, s 73371)) (regl)
4,415 -, qn minimal or ¢; = ¢, q1,...,¢i—1,Gi+1,- - -, ¢, Minimal

no clauses (eq)

I
(empty eq. theory) clauses (eq)

std TA TA TAE
(reg)
TA with constraints TAD TADE

(test)+(reg’)

for equational theory >-convergent, and monadic: ¢ = x or
C=g(z1,...,2n), 21, ., 2, distinct

eq(s(z),s(y)) eq(z,y)
cons(z,cons(x,y)) = cons(z,y)

TA with Equality Constraints modulo Equational Theories

={=r (eq)
G(x1), g (xn),ur =01, up = v = q(f(a:l, . ,xn)) (test)
foralli <n,q > g
(Il(ajl)’ s)qn.(a_:n) = (](f(l’l, s 73371)) (regl)
4,415 -, qn minimal or ¢; = ¢, q1,...,¢i—1,Gi+1,- - -, ¢, Minimal

no clauses (eq)

I
(empty eq. theory) clauses (eq)

std TA TA TAE
(reg)
TA with constraints TAD TADE

(test)+(reg’)

for equational theory >-convergent, collapsing: ¢ = x, and
sublinear: f(fq,...,0,) =, {1,..., £y linear

car(cons(z,y)) =z, cdr(cons(x,y)) =y, cons(car(x),cdr(z)) =z
dec(enc(z,y),y) = =, adec(enc(z,pub(y)), rlv() ==

TA with Equality Constraints modulo Equational Theories

=>l=r (eq)
q1(x1), oy qn(xn),up =v1,. 0 up = v = q(f(xl, ... ,xn)) (test)
foralli <n,q> g
(J1($1)7--~7(]n(fﬂn) :q(f(xluaxn)) (reg,)
qsq1,---,qn minimalor ¢; =q, q1,.--,¢i-1,Gi+1,---,qn Minimal
no clauses (eq)
clauses (eq)
(empty eq. theory)
std TA TA TAE
(reg)
TA with constr'alnts TAD TADE
(test)+(reg’)

prototype http://tace.gforge.inria.fr/

http://tace.gforge.inria.fr/

(TA with Equality Constraints modulo Equational Theories)

o (reg’) similar to the condition of RA, after patch for the problem for
ND
e proof TAE by finite (exponential) invariant type. saturation steps:
1. superposition of equations into (reg) clauses — 2-way like clauses
2. elimination of 2-way clauses
i.e. closure is regular
use of basic strategy is crucial
e proof TAD: every paramodulation step returns either a clause
smaller than its premises (because of the state ordering >)
or a clause of an invariant finite type
e proof TADE: same principle as TADE
more involved (count number variables, unification lemma for sub
linear)
(negative) equations are eliminated first
e CSQ: MII decidable

TA with Equality Constraints modulo Equational Theories
J Meyer Weidenbach 1998 RTA

TA with sibling equalities constraints = finite set of Horn clauses

a1(x1)y .oy gn(an) = q(f(xl, . ,xn)) (sibling)

» languages not closed under rewriting with flat TRS
ex. closure of {f™(a) | n = 0} by f(z) — g(x,)
» solution: sibling constraint modulo

p1(t), .y pm(t), q1(x1)y ooy qn(zn) = q(s) | £=1r (fb)

(t, s, ¢, r flat)

» sorted superposition terminates on finite a set of clauses (fb). J

(TA with Equality Constraints modulo Equational Theories)

o (fb) is a generalization of (sibling)

e csq termination: unification decidable in (fb) theories

e and generalization semi-linear theories (transformable into (fb)
theories)

Disequality Constraints

[Reuss Seidl 2010 LPAR]
tree automata with term constraints (TCA)

q1(x1), - qu(@n), Ty = S1,..., 24 = Sk,
xj A,z #4 :q(f(xl,...,xn)) (tca)

vars(sl,... 3 Sk, b1y .- ,tl) c {.231,... ,Jin}

» generalize the tree automata with sibling constraints of
[Bogaert Tison 1992 STACS]

» Boolean closure

» emptiness decidable

question: combination of TCA with (test) and (eq)?

(Disequality Constraints)

Pushdown Automata
Extension des automates de mots finis (NFA) avec une mémoire non
bornée = pile.

A=(2,T,Q,Q"Qf,5), where X: alphabet d'entrée, I': alphabet de pile.

S QxIxQxD U QxExI'xQ u QxXZufexQ
(push) (pop) (internal)

On peut généraliser les 3 types de transitions a
dcQxZufepxIx@QxTI*

transition (¢, a,v,q’,u): dans |'état ¢, lisant a, avec v en haut de la pile,
I'automate: passe dans |'état ¢’, passe aucaractere suivant dans le mot
d’entrée, retire ~y, pousse u sur la pile.

acceptation: en arrivant dans la pile vide.

Example: ¥ = {a,b}, T = {a]}. push: ¢ % ¢,
internal : ¢ L, q

pop: q ——¢q
reconnait: {a"ba™ | n = 0}.

(Disequality Constraints)

Automates a pile (propriétés)
e expressivité 2 NFA

e méme expressivité que les grammaires hors-contexte (N := Ny Na,
N :=a)

e vide décidable
e pas clos par intersection, complément

e la restriction visibly: 3 = Yp,un @ Xpop & Ling
a les clotures Booléennes.

restriction visibly clos par intersection, complément

Le langage des piles accessibles est régulier.

{Disequality Constraints)

Pushdown Tree Automata with One Tree Memory [[Guessarian 83,
Schimpf Gallier 85, Coquidé et al 94]]

e . input signature; on input: terms of T(X)

e I': stack alphabet; the auxiliary memory is a stack of I'*

Ql(xla 51)7 .. an(xna sn) = Q(f(f)7h(y1a .. aym)) (read)
where feX, hel, s1,...,8. €T, {y1,---,Ym})

Q1(z,s) = Q(ac, Ry, ... 7ym)) (pda-¢)
where he T, se T(L, {y1,..-,Ym})-
{Disequality Constraints)

equivalent to the pushdown tree automata with stack

(Disequality Constraints)

il s'agit d'un cas particulier des automates de [Guessarian 83] qui
sont descendants avec un arbre comme mémoire auxiliaire et des
transitions:

(e, ym)) = flar(s1),-- -, an(sn))
ol s1,...,8, € T {y1, -, Ym})
Il'y a équivalence en expressivité entre
ces automates d'arbres (top-down) avec un arbre en mémoire,
les automates d’arbres (top down) a pile du transparent et

les grammaires d'arbres hors-contexte (cf. chap. 2 TATA).

top-down transitions

il Ll

Tree Automata with One Memory
[Guessarian 83 MST], [Schimpf Gallier 85 JCSS],
[Coquidé et al 94 TCS], [Comon Cortier 05 TCS]

(11(9517211)7(12(902&2) = (I(f(wl?xQ)vh(ylvy?)) (pUSh)

a1 (21, h(y11, 112)), a2(2, y2) = q(f (@1, 22), y11) (popy1)
q1(z1, L), (22, y2) = ¢(f (21, 22), 1)

... (pop12), (Popa1), (PoOpP22)

= q(a, L) (into)
q1(x1,91), G2(x2,y2) = ¢ (f (21, 22), 1) (int1)
a1(z1,91), 222, y2) = a(f (21, 22), 92) (int2)

where h € T'y (memory signature) a € Xy, f € 3o (input sig.)

(Tree Automata with One Memory)

e on se limite ici aux symboles d'arité 0 ou 2 pour X et I'

e | €Ty est le symbole de mémoire vide

e generalize pushdown automata but not pushdown tree automata
(with a stack)

e orthogonal en expressivité avec les automates descendante de
[Guessarian 83] présentés ci-dessus

e transitions q(e(y1, ..., ym)) = f(qi(s1),...,qn(sn)) with
S1y...,8n € T(F, {yl,.. ,ym})

Tree Automata with One Memory: Languages and Closure

(input) language
L(A q) = {t]alt,s) € Ha}

memory language

M(A,q) = {s|q(t,s) e Ha}

» closure of languages: v, N, -

Visibly Tree Automata with One Memory
Comon-Lundh J Perrin 2007 FOSSACS

visibly condition a la [Alur Madhusudan 2004 STOC]

Y = Ypush W Xpopyy W+ W Xintg W Xinty W Ding,

the input symbol determines the possible operations on
memory

» closure of languages under U and n and —

» emptiness is PTIME-complete

L(A,q) = iff M(A,q) =T
M(A,q) is in H3 language [Nielson Seidl 02 SAS] O(n?)

» universality and inclusion are EXPTIME-complete J

related: [Chabin Réty 2007 FroCoS]

(Visibly Tree Automata with One Memory)

e visibly: the computation depends on the shape of the input tree
e for all A, q, M(A,q) is a language of bidirectional alternating
automata (clauses reg + alt + bidi = reg)
e definition by " projection” of clauses on second component of states
o def Hi: B=nh
— h linear
— variables connected in B (in literals sharing variables) are
siblings in h
e 713 decidable in cubic time
e def Hy: B=h
— h and all literal of B are linear
— variable dependence graph for B h is acyclic, adjacent literals
have at most one variable in common

Visibly Tree Automata with One Memory and Contraints
Comon-Lundh J Perrin 2008 LMCS

extension with constraints testing the contents of the memory
a1(z1,91), @2 (22, y2), R(y1,y2) = a(f (21, 22), 1) (inty)
a1(z1,91), @2 (22, ¥2), R(y1,y2) = a(f (21, 22), 42) (int3)

definition of constraints:

Y1=y1, Y2=y> = 9(y1,y2)=9(y1,Y2) (=)
y1=y1, ¥2=y> = 9(y1, y2)=h(y}, v5) =)
Ri(y1,91), Ra(y2, y5) = Rs(g(y1,y2), h(y1, v5)) (reg)
| constraints | membership | emptiness | n, — |
none PTIME PTIME yes

= NP-complete | EXPTIME no
= PTIME 2-EXPTIME | vyes
(reg) NP-complete undec. yes

combination with local sibling constraints in input tree (z; = z2)

(Visibly Tree Automata with One Memory and Contraints)

constraints restricted to transitions int

definition with constraints and negation

for (reg), negation can be defined

for =, =, it must be added (but is still a particular case of (reg)
sibling tests: when combined with =, same results as = alone

TA1M for Verification

Tree automata with one memory and constraints can recognize the
following data-structures

» balanced binary trees

» powerlists

(description and verification of data parallel algorithms)
» red-black trees (binary search trees)

1. every node is black or red

the root is black
all the leaves are black
the 2 children of a red node are black
all paths have the same number of black nodes

aoRr®DdN

(TAIM for Verification)

e remember: language of balanced binary trees is not regular
o powerlists (Misra): lists of length 2", for n > 0, whose elements are
stored in the leaves of a balanced binary tree
e data structure for data parallel algorithms with recursive structure:
Fast Fourier Transform, Batcher's sorting schemes and prefix-sum.
permits succinct descriptions of such algorithms, highlighting the
roles of both parallelism and recursion
— verification of properties of these algorithms, proof of equivalence of
different algorithms that solve the same problem
e red-black = binary search tree well balanced
o efficient traversal, search and sort algorithms associated are
verifiable with TA techniques
e red-black: properties 1-4 are regular
e red-black: property 5 en faisant push a la lecture d'un noeud noir et
testant I'égalité a lecture d'un noeud rouge

Accumulating Parameters

[Affeldt Comon-Lundh 2009 FPS]
Horn clauses with m rigid variables
— Horn clauses with m accumulating parameters

qu(yi’yl’ HE ’ym) = q'u/(yivylv s 7ym)
(Iu(ajlvg)’ s ’qu(xn’y) = qu (f(wl’ HE ’xn)’y)

» termination of ordered resolution
» Horn presentation (and FO techniques) for RTA?

» RTA modulo equational theories?

(write)

(rig)

(Accumulating Parameters)

e set C of clauses with rigid free variables Y7, ...,Y,, and flexible free
variables z1,..., 2,

e satisfiable if 3 X-algebra A st V o : {X1,...,X,,} = A, I FO
model M with domain 2 st M, o = Vz1,...,2,C

e equivalently V o : {X1,..., X} = T(X), 3 Herbrand model H st
HEVry,. ..z, o(C).

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Term Rewriting Systems

TA are often used as decision tool for properties of TRS

key property: effective preservation of regularity
(forward closure of a TA is a TA that can be constructed)

» for ground TRS [Brainerd 1969 SWAT]
(the rewriting relation is regular [Dauchet et al 1987 LICS])

» for linear and right-flat (monadic) TRS [Salomaa 1988 JCSS]

» for linear and right-shallow (semi-monadic) TRS
[Coquidé et al 1994 TCS]

» for generalized semi-monadic TRS [Gyenizse Vagvolgyi 1998 TCS]
for right-linear and right-shallow TRS [Nagaya Toyama 2002 IC]
» for right-linear finite path overlapping TRS [Takai etal 2000 rTa]

Term Rewriting Systems: Decision Problems

decision problems for TRS
reachability given s,t, s = t?
joinability given s,t, Ju s = u % 17
confluence for all s,t,u if s % U % t then v s %» v % t

Jacquemard 2003 IPL
Mitsuhashi Oyamaguchi J 2006 AISC

» reachability,
» joinability,
» confluence are undecidable for flat TRS

(I IERIM Ganzinger J Veanes 1998 ASIAN, 2000 1JFCS]

open question (M. Sakai): for flat non-collapsing TRS?

(Term Rewriting Systems: Decision Problems)

preservation of regularity enables the decision of reachability,
joinability and local confluence (reduction to emptiness decision).
regularity of the rewrite relation (like for ground TRS) permits the
decision of confluence

rule of thumb for preservation of regularity: lhs is not important, rhs
must be flat and linear

right-flatness: simulation TM with a(b(z)) — ¢(d(z)) (words)
right-linearity: f(z) — g(z,x) applied to {f"(0) | n > 0}
commitment: flat TRS

confluence is decidable for shallow right-linear TRS and for
right-(ground or variable) TRS (Godoy and Tiwari)

reachability dec. for symmetric of [Nagaya and Toyama 2002]:
left-shallow, left-linear and non-collapsing

reachability open for shallow and left linear TRS (BT TA modulo?)

Term Rewriting Systems: Unicity of Normal Forms

UN for all s, there is at most 1 NF n st s = n

» PTIME for shallow and linear TRS [€lefs[e\ANR2I0[0[°N 33 2\

» undecidable for right-ground TRS [Verma 2008 Fl|
» undecidable for flat TRS [Godoy Hernandez 2009 AAECS]

» undecidable for linear and right-flat TRS [Godoy Tison 2007
CADE]

» undecidable for flat and right-linear TRS Ne€fofs[c}ANR2AN[0[* N g F-\

{Term Rewriting Systems: Unicity of Normal Forms)

many other natural properties of TRS like reachability, termination,
confluence, weak normalization, etc. are decidable for the last class of
TRS (flat and right-linear)

Rewrite Closure of Tree Automata with Constraints

» TA with sibling equalities constraints not closed under

rewriting with flat TRS J Meyer Weidenbach 1998 RTA
J Klay Vacher 2011 IC

» closure of RTA by linear and collapsing TRS is RTA

» membership to the closure is undecidable for RTA
and linear and collapsing TRS

» membership to the closure is decidable for RTA
and linear and invisibly pushdown TRS

"invisibly”: adec(enc(z, pub(a)), priv(a))) — x
push pop int int

see [Chabin Réty 2007 FroCoS]:

closure of VPTA by linear visibly context-free TRS

» constraints (local or global) modulo and superposition calculi?

(Rewrite Closure of Tree Automata with Constraints)

e the motivation for studying was the decision of reachability
properties

e bad new is that closure of RTA does not hold for very restricted TRS

e however, the weaker problem of decision of membership to the
closure is sufficient for our purpose

e bad new again, it is undecidable for the same TRS

e restriction: invisibly = inverse visibly

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Rewriting Strategies

using rewriting strategies can improve preservation of
ranked tree automata languages

bottom-up strategy inverse-preserve regularity
» for linear TRS [Durand Sénizergues 2007 RTA]

bounded strategy inverse-preserve regularity
» for linear TRS [Durand et al 2010 RTA]
» for left-linear TRS [Durand Sylvestre 2011 RTA|

context-sensitive strategy [OBJ2 1985 POPL]| preserves regularity
» for linear right-shallow TRS [Kojima Sakai 2009 RTA|

Rewriting Strategies (cntd)

Gascén Godoy J 2008 WRS

and extended version

innermost strategy (call-by-value)
TA = regular languages (ranked trees)

TAS = languages of tree automata with sibling constraints

» TA — TAS for shallow TRS
innermost- reachability, joinability decidable for shallow TRS
regularity of innermost-closure is decidable for shallow TRS

» TA — TA for linear and right-shallow TRS
also in [Kojima Sakai 2009 RTA]

» TAS b TAS for linear and flat TRS
» TA $ TA for right-linear and right-flat TRS

(Rewriting Strategies (cntd))

TAS construction

1. reduction to the reachable terms from a constant

2. construction TAS recognizing the reachable terms from a constant
based on a representation of the set of reachable terms by
constrained terms from [Godoy, Huntingford 2007]

contrast with plain rewriting
e reachability (for plain rewriting) is undecidable for shallow TRS
e regularity of (plain rewriting) closure is undecidable for shallow TRS
e right-linear and right-flat TRS preserve regular for plain rewriting

Controlled Term Rewriting

J Kojima Sakai 2011 FroCoS

specification (for each rewrite rule) of rewrite positions with
selection automata [Frick Grohe Koch 2003 LICS]
(= 1 var. MSO & monadic Datalog [Gottlob Koch 2004 JACM])

> 4
> 4

\‘

CntTRS pCntTRS
(prefix control)

{Controlled Term Rewriting)

e SA introduced in the context of evaluating unary (XPath) or
node-selecting (monadic Datalog) queries on compressed unranked
trees

e express innermost strategy for left-linear TRS

e express CS strategy

Controlled Term Rewriting

J Kojima Sakai 2011 FroCoS

» closure of CSTG by monotonic CntTRS

¢ — r with ¢, r linear, vars(¢) = vars(r), |[dom(¢)| = |dom(r)|
» reachability undecidable for flat word CntTRS

a(x) = b(z), b — a(b), a(b) - b
» reachability undecidable for ground CntTRS

» reachability PSPACE-complete for CF nc word CTRS
= CS languages [Dassow et al 1997 handbook FL]

» reachability PSPACE-complete for CF nc word pCTRS
NF of CS AB := AC, A := BC, A := a [Penttonen 1974 IC]

» recursive control: regular model checking EXPTIME
for linear right-shallow pCntTRS

{Controlled Term Rewriting)

e recursive: if you prefix-select a position p in a term ¢, then p is also
selected in the descendants of t.

Outline

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Unranked Tree Rewriting Systems (HRS)

[Loding Spelten 2007 MFCS], [Touili 2007 VECOS]
addressbook(z) — phonebook(z)

» the rule can be applied to any node labeled by addressbook

» the variable x represents a finite sequence of trees (hedge)

addressbook phonebook
RN VRN
card card card card
LR /N 7 N / \
name phone email name email name phone email name email
| I I | I | [I | I
ny P M n2 M2 ny Pn M nz2 M2

~ term rewriting modulo A (via binary encoding)

{(Unranked Tree Rewriting Systems (HRS))

e [LAding and Spelten 2007] works on infinite TRS to unranked tree
rewriting for the case of subtree and flat prefix rewriting which is a
combination of standard ground tree rewriting and prefix word
rewriting on the ordered leaves of subtrees of height 1

HA and CF-HA

[de la Higuera PhD] [Ohsaki 2001 CSL]

Variants of the hedge automata of [Murata 2000]
A HA, resp. CF-HA is a tuple (3, Q, F, A) where

» 3 is an (unranked) alphabet,
» @ is a finite set of states,

» F < @ is the subset of final states,
» A is a set of transitions of the form f(L) — ¢ where

» L is a regular word language over Q*
» L is a context-free CF word language over Q*

HA = ranked tree automata
CF-HA = ranked tree automata modulo A

(HA and CF-HA)

e regular strictly included in A-TA
e A-TA not closed under intersection
o leaf (A(L1) nA(Lg)) = leaf(L1) n leaf(Ly)
(i) leaf(L) = leaf (A(L))
(i) s =4 t implies leaf(s) = leaf(t)
and converse if ¥ = X w {a} (X4 singleton).

(HA and CF-HA)

Correspondences T (X) «» O(X) ¥ = X w {a} where a is the only

associative symbol.

Definitions (g € ,\Xa):

ﬂat(g(tl, cotn
flat(a(ty, t2)

hflat (g(sl, coySp)t
hflat((81, 2)
(

flat™ (g(t .

)
)
2. tm)
2. tm)

-tn))
flat™" (a(ty .. tm)

g(flat(ty) . .. flat(tn))
a(hflat(t1 tg))

flat (g(sl, el sn)) hflat(ts . ..
hflat(slsg tQ .. .tm)

g(flat = (1), ..., flat ™ (tn))
a(flat = (t1), a(flat " (t2), ...,
a(flat™ (t, 1), flat™ (tm))))
(m >2)

tm)

(HA and CF-HA)

A-TA < CF-HA via flattening

N

for all TA A there exists a CF-HA A’ such that
L(A") = flat(L(A)) = flat (A(L(A))).

TA A CF-HA A’

a(Ch,QQ)_’q Nq:: N(I1N(12'N(I =q
glqr,--q) > q | glar---qx) > q

I

for all CF-HA A’ there exists a TA A such that
L(A) = ﬂat_l(L(A’)) (i.e. flat(A(L(A))) = L(A)).

CF-HA A TA A

N = N1N2 a(QN1aQN2)_)qN
I:= NN, alqn,an,) = q
glar--qx) = q | glqr,-- -, qx) = q

Closure Results (1)

J Rusinowitch 2008 RTA

1. inverse CF HRS: rules ¢ — a(z), = € vars({)
users (user(id(y), y1), user(id(y), y2), ¥) — users(z)
preserve HA
exponential construction (needs determinization)

The following rules are preserving HA
» collapsing rules g(a,x,b) - x
» linear & flat rules g(x) — g(a,z,b)
> linear & flat rules g(x, q,a,y) — g(z,b,¢",y)

{Closure Results (1))

encoding of HRS into TRS loose flatness.

e.g. f(x) » f(bzxe) encoded into f(x) — f(a(b,a(zx,e))), not right-flat
(a associative).

and we don’t have TA construction for these kinds of TRS.

Closure Results (2)

J Rusinowitch 2008 RTA

1. restricted CF HRS: rules a(z) — r, r linear, x at depth < 1in r
a(z) = b(z), a(x) - a(card(name),x),
preserve CF-HA
polynomial construction (completion of CF grammars)

The following (CF) rules are preserving CF-HA
» non-shallow rules a(z) — b(a(x,e))

» non-linear linear CF rules g(z) — g(z,)

(Closure Results (2))

e a(x) — b(a(z,e)) produces (starting from a constant c)

b(.... b(a(c, e™)))
——

n

e g(x) = g(x,z) generates g(a?k)

XQuery Update Facility (XQUF)

[W3C recommandation 2011]

extension of XQuery with XML update primitives

» [Fundulaki Maneth 2007 SACMAT] model XACU

» [Bravo Cheney Fundulaki 2008 EDBT] synthesis of schema,
verification tool ACCoN

» [Gardner et al 08 PODS] local Hoare reasoning about W3C
DOM update library (Context Logic).

» [Benedikt Cheney 2009 DBLP] formal model, op. semantics

3 J Rusinowith 2010 PPDP

» [Boneva et al 2011 ICDT] translation of view updates

(XQuery Update Facility (XQUF))

e W3C XQuery UF: content nodes (for insertion, replacement) are
specified by positions within the tree in input (using XPath
expressions)

e approximated by states of a tree automaton (equiv. type names of
regular expression types)

e = parameters in rewrite rules

e (B C 09) the problem of synthesizing an output schema describing
the result of an update applied to a given input schema. They show
how to infer safe over-approximations for the results of both queries
and updates

e [Boneva et al 2011 ICDT]: given an XML view definition and a user
defined view update program, find a source update program that
translates the view update without side effects on the view.
update programs are compatible with the XQuery Update Facility
(XQUF) snapshot semantics, a fragment of XQUF is expressible.

e PPDP 10:

o formal model: parameterized rewrite rules

o forward/backward type inference, typechecking,
reachability verification regular tree model checking

o verification of access control policies

DTD and HA

DTD Hedge Automaton

phonebook phonebook(p.*) —

| card(pn ph* pm) —

. name(ps pi) —

card first(p*) —
N jast(p")
name phone* email phone(p*) —
/ \ | / \ email(p, pg) —
first last char® user dom user(p*) —
| | | | dom(p*) —
char® char™ char® char® a —
b —

Pb
Pc
Pn
pf
pi
Ph
Pm
Pu
Pd

i

XQUF Primitive Rename

"replace a label addressbook by phonebook”

addressbook(z) — phonebook(z)

» the rule can be applied to any node labeled by addressbook

» the variable x represents an hedge

XQUF Primitive Insert First

"insert a tree of type p. (card) as the first children of phonebook”

phonebook(z) — phonebook(pc, x)

> pc is a state of a given HA A
» it stands for an arbitrary tree in £(A,p.)

» this parametrized rule represents an infinity of rules.
see also [Gilleron 91 STACS], [Loding 02 STACS]

XQUF Primitive Insert Into

"insert a tree of type pc as an arbitrary children of phonebook”

phonebook(z,y) — phonebook(z, pc, y)

» each of the variables x and y represents an arbitrary hedge

XQUF Primitive Insert After

"insert a tree of type p, (phone) as sibling following name”

name(z) — name(x), py

» the right hand side of this rule is an hedge of length 2
(not a tree)

card card
N P IR
name email name phone email
/\ /\ - /N 1 /\
first last login dom first last 123 login dom

a b a c a b a C

XQUF Primitive Replace

"replace a subtree (headed by) card by sequence of n trees of
respective types p1,..., pn"

address(z) — p1,...,0n

XQUF Primitive Delete

"delete a whole subtree headed by card”

card(z) — ¢

» ¢ is the empty sequence of trees (empty hedge)

Delete single node (not a XQUF Primitive)

phonebook
/ |
card favorite
name card card
/ N\ | |
first last name name
| 1 /7 N\ /7 N\
Homer Simpson first last first last
| | 1 1
Hannibal Lecter Freddy Krueger
phonebook
~ N
card card card
name name name
/ \ / \ / \
first last first last first last
| | | | I |
Homer Simpson Hannibal Lecter Freddy Krueger

card

name
7/ \
first last

| |
John To

card

name
/7 \
first last

| |
John To

Extended XQUF Primitive Delete Single Node

"delete a single node labeled by favorite”
favorite(x) — x

» the trees in the sequence of children x are moved up to the
position of the deleted node.

» collapsing rule

» useful for constructing security views of documents

Forward and Backward Closure of XQUF Primitives

J Rusinowith 2010 PPDP

a(x) — b(x) REN

(1,(.%') - a(p,x) INSirst CL(.CE) - p,a(x) INSpefore
a(:p) - a(x,p) II\ISIaSt a(x) - a(x),p INSafter
a(r,y) — alz,p,y) INSinto

a(x) — m RPL; a(z) — pi,...,pn RPL
a(x) — () DEL a(z) — = DEL,
preserve HA

preserve CF-HA inverse-preserve HA

polynomial construction exponential construction

Towards XQUF Typechecking
[Benedikt Cheney 2009 DBLP]

u XQueryUpdate

expression Lin input type (HA)
t unranked tree () regexp of primitives
w sequence of Loyt output type (HA)
primitives
u, t - ow o oW oot

uw, Lin = Q = QO — post?(Lin) € Lout

controlled rewriting

» post(Li,) see matrix grammars
[Dassow et al 1997 handbook FL]

» selection of position of application of primitives

Rule Based Access Control Policies

Access Control Policy (ACP)
R authorized operations of eXQUF (HRS)
R_ forbidden operations of eXQUF (HRS)

example

addressbook(z) — addressbook(pc, x)
R+ =
card(z) — ¢

» user can insert card with name, delete card

R_ = {name(z) — pn}
> user cannot change a name

Inconsistency

Inconsistency

An ACP (R, ,R_) is inconsistent
if there exists ¢, t’ such that ¢ = t' and t R*—+> t.

example: changing name in a card is simulated by deleting and
then inserting.

[Fundulaki Maneth 2007 SACMAT] [Moore 11 LATA]
Inconsistency is undecidable for XQUF

Local Inconsistency

Local Inconsistency

An ACP (R, R_) is locally inconsistent for ¢
if there exists u such that ¢ z— w and t 7 — u.

J Rusinowitch 2010 PPDP

Local inconsistency is decidable in PTIME for eXQUF

» using the forward closure construction

(Local Inconsistency)

e compute a HA recognizing L_ = {u |t -— u}

e compute a CF-HA recognizing L, = R% ({t})
e check that L_ n Ly # .

Extended Tree Automata Models

static properties: composition and decision (constraint solving)

Tree automata
with
local constraints

Tree automata
with
global constraints

Horn Clauses
with
equality

FO Th. Proving

XML integrity
constraints

dynamic properties: forward closure (regular model checking)

Ranked
tree rewriting

Rewriting
strategies

Unranked
tree rewriting

XML updates
XML r/w ACP

Perspective 1: Generalizing Local Constraints

tree automata with local constraints other than equality

>

constraints of equality modulo equational theories
forward closure of constrained tree automata languages

structural equality, equal depth:
verification of algorithms on balanced structures (binary
search trees, powerlists...)

reduction ordering and other symbolic constraints
automated induction on complex data structures
languages of normal forms of constrained TRS

hierarchical theories and constraints

separated signatures for constraints (base, e.g. arithmetic)
and input tree

decision procedures for hierarchical first-order theorem proving

(Perspective 1: Generalizing Local Constraints)

a is a well-founded ordering on terms, stable under application of
substitutions and contexts, assumed total on ground terms
ordering: for transforming a non terminating TRS into an equivalent
orientable theory (containing rules with ordering constraints)
inductive theorems: FO conjectures valid in Herbrand structures
(term algebra, and modulo an equational theory for complex
structure, e.g. sets, ordered lists)

NF automata are good representation of these model and can serve
as induction scheme for automated induction, as well as for decision
procedure in " proof by consistency”

(Perspective 1: Generalizing Local Constraints)

hierarchical FO theories: confined to conservative extensions of the
base models

e base signature (3, (2), extended into ¥ c ¥/, Q < &

hierarchical rewrite system: ¢||¢ — r where constraint c over terms
of T(X,Xq) and £,r € T(X\X, Xor)

ex.: sorted lists

CF TA: with constraints over separated signature

Bachmair Ganzinger Waldmann 1994

superposition calculus combine with specialized prover for
constraints refutation (for the primitive base theory) is refutationaly
complete, under the assumption of sufficiently completeness of the
theory with respect to simple instances.

modular combination of a superposition-based theorem prover with
an arbitrary refutational prover for the primitive base theory, whose
axiomatic representation in some logic may remain hidden.
decision of sufficient completeness (sufficient condition for
refutational completeness of above combined procedure)
restrictions on base theory: congruence of finite index (compatible
with constraints) — pumping in equivalence classes for emptiness
decision

Unified Approach: Tree Automata as Horn Clauses

Perspective 2: Tools for XML Reasoning Tasks

» TAGC with key constraints
Va,y p(z) Ap(y) nx #y =ty #t|, (x,y € positions)

» TAGC with inclusion constraints

Ve dy p(x) = (q(y) Atle =t|y) (x,y € positions)
Vudv p(u) = (¢w)Au=v (v, u € subtrees)

» TAGC with constraints in monadic FO over ¢(y) and z =y
interpretation in the domain of subtrees (see automata on

DAGs)

(Perspective 2: Tools for XML Reasoning Tasks)

e domain of subtrees = domain of DAGS
e keys cannot be expressed in this model

Perspective 2: Combining Local/Global Constraints

ranked trees

» combination of TAGC|[~, #] with local = and # constraints
between siblings a la [Bogaert Tison 1992 STACS]

unranked ordered trees

» unranked tree automata with local sibling constraints
UTASC of [Loding Wong 2007 ICALP], [2009 FSTTCS]

Yo,y ¢(x,y) =t =ty ¢ MSO over ¢(z), S_,(x,y)
Vr,y ¢(z,y) = t|. # tly

» combination of TAGC[~, #] with UTASC?

» more generally: global monadic second order constraints

(Perspective 2: Combining Local/Global Constraints)

e UTASC: the interpretation domain is set of sibling positions (below
current computation position)

Perspective 2': Data Trees

unranked ordered trees labeled by ¥ x N
EMSO?[+1, ~] decidable [Bojariczyk et al 2009 JACM]

» encoding of data values as trees
data equality ~ expressed by subtree equality ~

» EMSO?[+1, ~] and TAGC[~, %] uncomparable
> restricting application of ~, % by TAGC (PTIME)
S RACCIETNTI G EYEN | Klay Vacher 2009 LATA M 2011 IC
and register tree automata [Jurdzinski Lazic 2007 LICS]
Horn clauses with accumulating parameters

» TAGC computing on data trees: = interpreted on data values
emptiness TAGC[~, #, |.|z, |.|z] and TAGC[|.|z, |.|z]?
integer programming techniques, [David et al. 2011 ICDT]
key constraint: |g| = ||q||

» unranked/data tree rewriting

(Perspective 2": Data Trees)

application TAGC: verification of consistency of combination of
typing constraints (the HA) and integrity constraints (the global
constraint)

compare subtrees stronger than compare values (cf. HO (i) and (iii)
semi-srtuctured data: data is also in the structure

restricted classes with better complexity: example data only in
leaves

EMSO? not TAGC: inclusion constraints

Vedy a(z) = (b(y) Az ~ y).

TAGC not EMSO? : subtrees equality

(David 2011 ICDT)

linear data constraints |a| and ||a]

key constraint |¢| = ||¢||

set constraints for set of value under a

emptiness NP with integer linear programming techniques

