
Unranked tree rewriting and
effective closures of languages

Florent Jacquemard1 Michael Rusinowitch2

1Ircam, INRIA Paris-Rocquencourt

2LORIA, INRIA Nancy

June 27, 2013

IFIP WG 1.6 meeting – Eindhoven

Term and Unranked Tree Rewriting

ranked unranked
finite ranked signature finite alphabet

Σ = {⊥,> : 0,¬ : 1,∨,∧ : 2} Σ = {⊥,>,¬,∨,∧}
term := a(term1, . . . , termn) a ∈ Σn tree := a(hedge) a ∈ Σ

hedge := tree∗

∧(t1,∧(t2, t3)) ∧(t1 t2 t3)

rewrite rules
terms× terms hedges×hedges

substitutions
variables→ terms variables→ hedges

Unranked Tree Rewriting:
[Löding Spelten 07 MFCS], [Touili 07 VECOS]

Unranked Tree Rewriting Node renaming

entree(x)→ entry(x)

I the rule can be applied to any node labeled by entree
I the variable x ins instantiated by a finite sequence of trees

(hedge)

book

entree

n

a

ph

0

m

b

entry

n

c

m

d

→

book

entry

n

a

ph

0

m

b

entry

n

c

m

d

Unranked Tree Rewriting Insert first

book(x)→ book(entry x)

book

entry

n

a

ph

0

m

b

entry

n

c

m

d

→

book

entry entry

n

a

ph

0

m

b

entry

n

c

m

d

Unranked Tree Rewriting Insert into

book(x1 x2)→ book(x1 entry x2)

book

entry

n

a

ph

0

m

b

entry

n

c

m

d

→

book

entry

n

a

ph

0

m

b

entry entry

n

c

m

d

→

book

entry

n

a

ph

0

m

b

entry

n

c

m

d

entry

Unranked Tree Rewriting Insert after

n(x)→ n(x) ph(1)

book

entry

n

a

m

b

entry

n

c

m

d

→

book

entry

n

a

ph

1

m

b

entry

n

c

m

d

Unranked Tree Rewriting favorite(x)→ x
phonebook

entry

name

first

Homer

last

Simpson

favorite

entry

name

first

Hannibal

last

Lecter

entry

name

first

Freddy

last

Krueger

entry

name

first

John

last

To

phonebook

entry

name

first

Homer

last

Simpson

entry

name

first

Hannibal

last

Lecter

entry

name

first

Freddy

last

Krueger

entry

name

first

John

last

To

Collapsing Unranked Tree Rewriting Rule

favorite(x)→ x

”delete a single node labeled by favorite”
”move the trees in the sequence of children x up to the position
of the deleted node.”

I useful for constructing security views of documents

Motivations and Rewrite Closure

Motivations

Analysis of programs and protocols
I Tree Regular Tree Model Checking

XML processing and verification
I transformations (XSLT), static type checking
I update primitives (XQuery UF), reachability
I consistency of R/W access control policies

Rhythm trees
I tree structured representation of music notation
I simplification of rhythms, decision of equivalences.

Verification of Infinite State Systems

Tree Regular Tree Model Checking [Abdulla et al 2002 CAV]:
I configurations are represented by trees,
I transitions by rewrite rules / tree transducers,
I verification by reachability analysis.

R∗(Linit)∩Lerror = /0

higher-order functional programs : [Jones, Andersen 2007],
[Kochems Ong 2011 RTA] (collecting semantics)

multithreaded recursive programs:
I term model: [Seidl 2009 IIA] [Bouajjani et al 2000],

[Genet, Tong 2001], [Genet, Rusu 2010] .
I unranked tree model: [Bouajjani Touili 2005 RTA].

Static Typechecking [Milo Suciu Vianu 03 JCSS]
T : tree transducer rewrite system (tree transformation model)

Typechecking:
T always converts valid input data from a tree set Lin
into valid output data from a tree set Lout

T (Lin)⊆ Lout

Lin∩T −1
(
Lout
)
= /0

composition (Boolean closure)

decision procedures

forward
rewrite closure

backward
rewrite closure

Consistency of R/W Access Control Policies

[Fundulaki Maneth], [Bravo et al, ACCOn] atomic r/w access
(updates) modeled by rewrite rules

An ACP is defined by two rewrite systems:
I R+: authorized operations,
I R−: forbidden operations.

It is
I inconsistent if one rule of R− can be simulated through a

sequence of rules of R+.
I locally inconsistent for a tree t if there exists u such that

t−−→
R−

u and t−−→∗
R+

u, i.e. R1
−(t)∩R∗+(t) 6= /0.

Rewrite Closure & Tree Automata

When R∗(L) or (R−1)∗(L) is effectively regular (for L regular)
I RTMC, typechecking, local inconsistency

reduce to tree automata decision problems
[Milo Suciu Vianu 03 JCSS], [Tosawa 2001]

Otherwise
I approximate

[Touili Bouajani RTA 05], [Genet, Rusu 2010]...
I extend the tree automata model

Term Rewriting

Ranked Tree Automata

Ranked Tree Automata

A = 〈Σ,Q,F,∆〉 with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(q1, . . . ,qn)→ q

I a ∈ Σ, a of arity n
I q1, . . . ,qn,q ∈ Q

Consider ∆ as a TRS over Σ]Q.

Language L(A ,q) = {t | t−→∗
∆

q}

L(A) =
⋃
q∈F

L(A ,q)

Regular sets of terms = ranked tree automata languages

Regularity Preservation
[Salomaa 1988]
linear and right-flat rewrite rules preserve regular languages.

i.e. for all linear and right-flat TRS R,
the forward closure R∗(L) of a regular language L is regular.

Ranked tree automata completion:
I given A = 〈Σ,Q,F,∆0〉 and R over Σ,
I compute A ∗ such that L(A ∗) = R∗

(
L(A)

)
.

By superposition of A ’s transitions into R’s rules

for a(b(x1),c(x2))→ c(x2,x1) ∈R a(b(q1),c(q2)) q

c(q2,q1)

Ai

∗

R

Ai+1

Also for right-linear and right-flat TRS [Nagaya, Toyama 2002].

Unranked Tree Rewriting

Hedge Automata

Hedge Automata [Murata 2000]

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(L)→ q

I a ∈ Σ, q ∈ Q,
I L regular language over Q∗.

∆ represents the (possible infinite) rewrite system

∆∞ = {a(q1 . . .qn)→ q | a(L)→ q ∈ ∆,q1 . . .qn ∈ L}

Language L(A ,q) = {t | t−→∗
∆∞

q}

L(A) =
⋃
q∈F

L(A ,q)

Regular sets of unranked tree = HA languages
≡ regular term set via binary encodings

Hedge Automata and XML Typing

corresponding HA

book(qe
∗) → qb

entry(qn qh
∗ qm

∗) → qe
name(qf ql) → qn

first(p∗) → qf
last(p∗) → ql

phone(p∗) → qh
email(qu qd) → qm

user(p∗) → qu
dom(p∗) → qd

a → q
b → q
...

DTD

book

entry∗

name

first

char∗

last

char∗

phone∗

char∗

email∗

user

char∗

dom

char∗

Hedge Automata: Main Properties

I Boolean closures of recognized languages
I membership t ∈ L(A) is decidable

I PTIME when horizontal languages are presented by NFAs
I NP-complete when horizontal languages are presented by

alternating automata
I emptiness: L(A) = /0 is decidable

I PTIME when horizontal languages are presented by NFAs
I PSPACE-complete when horizontal languages are

presented by alternating automata

HA Preservation

[JR 2008 RTA]
inverse CF rewrite rules `→ a(x), x ∈ vars(`) preserve HA.

book
(
entry(name(y) y1) entry(name(y) y2) x

)
→ book(x)

exponential construction (needs determinization)

non-trivial combination
I [Touili 07] (unranked trees)

HA completion, for linear HRS, approximative.
I [Nagaya Toyama 99] (terms)

TA completion, non-left-linear TRS.

HA Preservation

[JR 2008 RTA]
inverse CF rewrite rules `→ a(x), x ∈ vars(`) preserve HA.

exponential construction (needs determinization)

I A0 := determinization of the given HA (subset constr.)
I complete according to this schema

if `σ S

a(xσ)

Ai

∗

R

replace a(L′)→ S′ ∈Ai
by a(L′∩xσ)→ S′∪S ∈Ai+1
and a(L′ \xσ)→ S′ ∈Ai+1

with substitution σ : vars(`)→ 2(2Q)∗

I invariant: determinism.
I fixpoint: rewrite closure of L(A0).

Parametrized Rewrite Systems

Given a fixed HA B with state set Q
parametrized rewrite rule : symbols of Q allowed in leaves of
rhs

book(x) → book(qe x) (insert first)
book(x1 x2) → book(x1 qe x2) (insert into)

name(x) → name(x) qh (insert after)
name(x) → q1 . . .qn (replace/delete),n≥ 0

semantics of parametrized rewrite system R:
I (possibly infinite) rewrite system R/B obtained by

replacement of q in rhs by a (ground) tree in L(B,q).
I Different occurrences of q can be replaced by different

trees.

see also [Gilleron 91 STACS], [Löding 02 STACS]

Forward and Backward Closure of Update Primitives

[JR 2010 PPDP]

a(x) → b(x) ren
a(x) → a(p x) insfirst a(x) → p a(x) insbefore
a(x) → a(x p) inslast a(x) → a(x) p insafter

a(x1 x2) → a(x1 p x2) insinto
a(x) → q1 rpl1 a(x) → q1 . . . qn rpl
a(x) → ε del a(x) → x dels

preserve HA
polynomial construction

do not preserve HA
inverse-preserve HA
exponential construction

Forward and Backward Closure of Update Primitives

HA preservation: by transformation of the horizontal languages
(NFA) L in rules a(L)→ q.

ex: for a(x)→ b(x) ∈R and a(L)→ q ∈A , add b(L)→ q to A .

ex: for a(x)→ a(p x) ∈R, and a(L)→ q ∈A , add a loop labeled
with p on the initial state of L.

HA inverse-preservation: automata completion as before.

Unranked Tree Rewriting

CF Hedge Automata

Non preservation of HA
linear & flat rewrite rules do not preserve HA.

RE rewrite closure

g(x q a y)→ g(x b q′ y)

CF rewrite closure (simultaneously insert first and last)

c(x)→ c(a x b)

CF rewrite closure (simultaneously insert and rename)

c0(x)→ c1(a x), c1(x)→ c0(x b)

flat and right-ground rewrite rules do not preserve HA.

a(x)→ b a c

collapsing rewrite rules do not preserve HA.

Non preservation of HA (collapse)

collapsing rewrite rules do not preserve HA.

R = {c(x)→ x}, Lin = { c

a c

a ...

c

a b

b

b

} (regular)

R∗(Lin) ∩ a∗ b∗ = {an bn | n≥ 0}

The rewrite closure is a CF-HA language.

I all these examples are in contrast with the case of terms.
I an extension of HA is needed.

CF Hedge Automata [de la Higuera PhD], [Ohsaki 01 CSL]

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(L)→ q

I a ∈ Σ, q ∈ Q,
I L is a CF language over Q∗.

∆ represents the (possible infinite) rewrite system

∆∞ = {a(q1 . . .qn)→ q | a(L)→ q ∈ ∆,q1 . . .qn ∈ L}

HA ≡ ranked tree automata
CF-HA ≡ ranked tree automata modulo A

CF Hedge Automata: Main Properties

I closure of recognized languages under union
I no closure under intersection and complementation
I closure under intersection with HA

I membership t ∈ L(A) is decidable in PTIME
I emptiness: L(A) = /0 is decidable in PTIME

(when horizontal languages are presented by CFG)

Forward Closure of Update Primitives [JR 2010 PPDP]

a(x) → b(x) ren
a(x) → a(q x) insfirst a(x) → p a(x) insbefore
a(x) → a(x q) inslast a(x) → a(x) q insafter

a(x1 x2) → a(x1 q x2) insinto
a(x) → q1 rpl1 a(x) → q1 . . .qn rpl
a(x) → ε del a(x) → x dels

preserve HA

preserve CF-HA
polynomial construction

inverse-preserve HA
exponential construction

Verification of Inconsistency for Rule Based ACP

An ACP 〈R+,R−〉 is locally inconsistent for t
if there exists u such that t−−→

R−
u and t−−→∗

R+
u.

equivalently R1
−(t)∩R∗+(t) 6= /0.

[JR 2010 PPDP]
Local inconsistency is decidable in PTIME for update rules.

proof:
I compute a HA recognizing τ− = {u | t−−→

R−
u}

I compute a CF-HA recognizing τ+ = R∗+
(
{t}
)

I check that τ−∩ τ+ 6= /0.

CF-HA Preservation

[JR 2008 RTA]
restricted CF rewrite rules a(x)→ r with

1. r linear
2. x at depth ≤ 1 in r

preserve CF-HA.

a(x)→ b(x), a(x)→ a(entry(name(Homer)),x)

polynomial construction
finite transformation of CF grammars for horizontal language.

Non-preservation of CF-HA

flat and non-linear CF rewrite rules do not preserve CF-HA .

with g(x)→ g(x x) g(a)−→∗ g
(
a2k)

non-shallow CF rewrite rules do not preserve CF-HA .

with a(x)→ b(a(x e)) a(c)−→∗ b(. . .b︸ ︷︷ ︸
n

(a(c en)))

Unranked Tree Rewriting

CF2 Hedge Automata

CF2HA

transitions are rewrite rules!

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions of the form,

a → q
p(x) → q(x)

p1(x) p2 → q(x) horizontal transitions
p1 p2(x) → q(x)

p1
(
p2(x)

)
→ q(x) vertical transitions

where p,p1,p2 ∈ Q∪Σ, q ∈ Q.

equivalently, x can be set to ε.

CF2HA: T-patterns

a . . .a. b

...

b

b

.c . . .c

〈{a,b,c},{q0,q1,q2},{q0},∆〉 with

∆ =

{
b(x) → q2(x), a q1(x) → q0(x),

q2(x) c → q1(x), q0(b(x)) → q2(x)

}

...not a CF-HA language.

CF2HA ⊃ HA and CF-HA

CF-HA with variable-free transitions

q1 q2 → q
a(q1) → q2

a → q

where a ∈ Σ and q1,q2,q are states.

HA with Q = Qh]Qv, transitions:

qh qv → q′h
a(qh) → qh | qv

a → qh | qv

where a ∈ Σ, qh,q′h ∈ Qh, qv ∈ Qv.

CF2HA: properties

Membership is decidable in PTIME for CF2HA.

dynamic programming procedure (CKY like)

Emptiness is decidable in PTIME for CF2HA.

State marking with 2 marks.

CF2HA Preservation

[JR 2013 LATA]
CF rewrite rule a(x)→ r where x

I is the only variable in r,
I has at most 1 occurrence in r,
I has no siblings in r.

preserve CF2HA.

example: T-patterns

R =

{
q0(x) → a q1(x), q1(x) → q2(x) c,
q2(x) → q0(b(x)), q2(x) → b(x)

}
q0 −→∗

R
a q1 −→

∗
R

a q2 c−→∗
R

a q0(b).c−→
∗
R

a a q1(b) c
−→∗
R

a a q2(b) c c−→∗
R

a a q0(b(b)) c c−→∗
R

. . .

CF2HA Preservation

Given a CF2HA Ain = 〈Σ,Qin,Fin,∆in〉,
we construct a CF2HA A with state set

Q=Qin]{h | h non-var subhedge of a rhs of R}]{a | a∈Σ}]{q}

and transitions
q1(x1) . . .qn(xn) → p(x1 . . .xn) | q1(x1) . . .qn(xn)→ p(x) ∈ ∆in

q1
(
q2(x)

)
→ p(x) | q1

(
q2(x)

)
→ p(x) ∈ ∆in

t(x) h → t h(x) | x ∈ t, t h ∈ Q
t(x) h → q(x) | x ∈ t, t h /∈ Q
t h(x) → t h(x) | x /∈ t, t h ∈ Q
t h(x) → q(x) | x /∈ t, t h /∈ Q

h(x) → a(x) | a(x)→ h ∈R

a(x) → a(x)
a(h(x)) → a(h)(x) | a(h) ∈ Q
a(h(x)) → a(x) | a(h) /∈ Q
a(q(x)) → a(x)

1-childvar Condition

R = {a(x)→ c a(e x g) d}

R∗
(
{a}
)
= {cn a(en gn) dn | n≥ 1}

seemingly not CF2HA.

Forward Closure of Extd Update Primitives [JR 2013 LATA]

Given a fixed HA B with state set Q

a(x) → b(x) node renaming (ren)
a(x) → a(u1 x u2) u1,u2 ∈ Q∗ insertion (ins.c)

of child nodes

a(x) → v1 a(x) v2 v1,v2 ∈ Q∗ insertion (ins.s)
of sibling nodes

a(x) → b
(
a(x)

)
insertion (ins.p)
of a parent node

a(x) → u u ∈ Q∗ node replacement (rpl)
recursive deletion

a(x) → x node deletion (del)

preserve CF-HA.

The proof uses the CF2HA presentation of CF-HA.

Loop-Free Update Rewrite Systems

R loop-free if there exists no sequence a1, . . . ,an (n > 1)
such that for all 1≤ i < n, ai(x)→ ai+1(x) ∈R and a1 = an.

Transformation of an update rewrite system R
into a loop-free update rewrite system R̂
by selecting a representative â of a in every a’s loop
and suppressing loops.

In the construction of an automaton for R∗,
it is sufficient to consider the rewrite closure by R̂.

Closure under Update Rewrite Systems
Rewrite closure of CF-HA is CF-HA
for every loop-free update rewrite system.

Initialize, given CF-HA Ain = 〈Σ,Qin,Fin,∆in〉

∆0 = ∆in ∪ {qa1 → q}
∪ {an

(
qa1...an

)
→ qa1...an | a1, . . . ,an is a renaming chain}

Completion

R contains ∆i+1 = ∆i∪

(ren) an(x)→ b(x) {qa1...an → qa1...anb | qa1...anb ∈ Q}
∪ {qa1...anb→ qa1...an | qa1...anb ∈ Q}

(ins.c) an(x)→ an(u x v) {u qa1...an v→ qa1...an | qa1...an ∈ Q}
(ins.s) an(x)→ u an(x) v {u qa1...an v→ qa1...an | qa1...an ∈ Q}
(ins.p) an(x)→ b

(
an(x)

)
{b
(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u→ qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

Synchronized rename and insert

R = {a(x)→ c a(e x g) d}

R∗
(
{a}
)
= {cn a(en gn) dn | n≥ 1}

R ′ =


a(x) → c a′(x) d, inv-monadic, 1-childvar

∈ (ins.s)+(ren)
a′(x) → a(e x g) /∈ 1-childvar

∈ (ins.c)+(ren)



Conclusion
I decidable models CF-HA, CF2HA of unranked ordered tree

recognizers extending hedge automata
I captures forward/backward rewrite closure under

I various families of unranked tree rewrite systems with
(inverse-) CF rules

I parametric rewrite systems modeling update primitives

Perspectives
I case of unranked unordered trees
I counting constraints on horizontal and vertical paths

...Thank You!

