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Term and Unranked Tree Rewriting

ranked unranked
finite ranked signature finite alphabet

Σ = {⊥,> : 0,¬ : 1,∨,∧ : 2} Σ = {⊥,>,¬,∨,∧}
term := a(term1, . . . , termn) a ∈ Σn tree := a(hedge) a ∈ Σ

hedge := tree∗

∧(t1,∧(t2, t3)) ∧(t1 t2 t3)

rewrite rules
terms× terms hedges×hedges

substitutions
variables→ terms variables→ hedges

Unranked Tree Rewriting:
[Löding Spelten 07 MFCS], [Touili 07 VECOS]



Unranked Tree Rewriting Node renaming

entree(x)→ entry(x)

I the rule can be applied to any node labeled by entree
I the variable x ins instantiated by a finite sequence of trees

(hedge)
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Unranked Tree Rewriting Insert first

book(x)→ book(entry x)
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Unranked Tree Rewriting Insert into

book(x1 x2)→ book(x1 entry x2)
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Unranked Tree Rewriting Insert after

n(x)→ n(x) ph(1)
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Unranked Tree Rewriting favorite(x)→ x
phonebook
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Collapsing Unranked Tree Rewriting Rule

favorite(x)→ x

”delete a single node labeled by favorite”
”move the trees in the sequence of children x up to the position
of the deleted node.”

I useful for constructing security views of documents



Motivations and Rewrite Closure



Motivations

Analysis of programs and protocols
I Tree Regular Tree Model Checking

XML processing and verification
I transformations (XSLT), static type checking
I update primitives (XQuery UF), reachability
I consistency of R/W access control policies

Rhythm trees
I tree structured representation of music notation
I simplification of rhythms, decision of equivalences.



Verification of Infinite State Systems

Tree Regular Tree Model Checking [Abdulla et al 2002 CAV]:
I configurations are represented by trees,
I transitions by rewrite rules / tree transducers,
I verification by reachability analysis.

R∗(Linit)∩Lerror = /0

higher-order functional programs : [Jones, Andersen 2007],
[Kochems Ong 2011 RTA] (collecting semantics)

multithreaded recursive programs:
I term model: [Seidl 2009 IIA] [Bouajjani et al 2000],

[Genet, Tong 2001], [Genet, Rusu 2010] .
I unranked tree model: [Bouajjani Touili 2005 RTA].



Static Typechecking [Milo Suciu Vianu 03 JCSS]
T : tree transducer rewrite system (tree transformation model)

Typechecking:
T always converts valid input data from a tree set Lin
into valid output data from a tree set Lout

T (Lin)⊆ Lout

Lin∩T −1
(
Lout
)
= /0

composition (Boolean closure)

decision procedures

forward
rewrite closure

backward
rewrite closure



Consistency of R/W Access Control Policies

[Fundulaki Maneth], [Bravo et al, ACCOn] atomic r/w access
(updates) modeled by rewrite rules

An ACP is defined by two rewrite systems:
I R+: authorized operations,
I R−: forbidden operations.

It is
I inconsistent if one rule of R− can be simulated through a

sequence of rules of R+.
I locally inconsistent for a tree t if there exists u such that

t−−→
R−

u and t−−→∗
R+

u, i.e. R1
−(t)∩R∗+(t) 6= /0.



Rewrite Closure & Tree Automata

When R∗(L) or (R−1)∗(L) is effectively regular (for L regular)
I RTMC, typechecking, local inconsistency

reduce to tree automata decision problems
[Milo Suciu Vianu 03 JCSS], [Tosawa 2001]

Otherwise
I approximate

[Touili Bouajani RTA 05], [Genet, Rusu 2010]...
I extend the tree automata model



Term Rewriting

Ranked Tree Automata



Ranked Tree Automata

A = 〈Σ,Q,F,∆〉 with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(q1, . . . ,qn)→ q

I a ∈ Σ, a of arity n
I q1, . . . ,qn,q ∈ Q

Consider ∆ as a TRS over Σ]Q.

Language L(A ,q) = {t | t−→∗
∆

q}

L(A ) =
⋃
q∈F

L(A ,q)

Regular sets of terms = ranked tree automata languages



Regularity Preservation
[Salomaa 1988]
linear and right-flat rewrite rules preserve regular languages.

i.e. for all linear and right-flat TRS R,
the forward closure R∗(L) of a regular language L is regular.

Ranked tree automata completion:
I given A = 〈Σ,Q,F,∆0〉 and R over Σ,
I compute A ∗ such that L(A ∗) = R∗

(
L(A )

)
.

By superposition of A ’s transitions into R’s rules

for a(b(x1),c(x2))→ c(x2,x1) ∈R a(b(q1),c(q2)) q

c(q2,q1)

Ai

∗

R

Ai+1

Also for right-linear and right-flat TRS [Nagaya, Toyama 2002].



Unranked Tree Rewriting

Hedge Automata



Hedge Automata [Murata 2000]

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(L)→ q

I a ∈ Σ, q ∈ Q,
I L regular language over Q∗.

∆ represents the (possible infinite) rewrite system

∆∞ = {a(q1 . . .qn)→ q | a(L)→ q ∈ ∆,q1 . . .qn ∈ L}

Language L(A ,q) = {t | t−→∗
∆∞

q}

L(A ) =
⋃
q∈F

L(A ,q)

Regular sets of unranked tree = HA languages
≡ regular term set via binary encodings



Hedge Automata and XML Typing

corresponding HA

book(qe
∗) → qb

entry(qn qh
∗ qm

∗) → qe
name(qf ql) → qn

first(p∗) → qf
last(p∗) → ql

phone(p∗) → qh
email(qu qd) → qm

user(p∗) → qu
dom(p∗) → qd

a → q
b → q
...

DTD

book

entry∗

name

first

char∗
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char∗
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char∗
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char∗
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char∗



Hedge Automata: Main Properties

I Boolean closures of recognized languages
I membership t ∈ L(A ) is decidable

I PTIME when horizontal languages are presented by NFAs
I NP-complete when horizontal languages are presented by

alternating automata
I emptiness: L(A ) = /0 is decidable

I PTIME when horizontal languages are presented by NFAs
I PSPACE-complete when horizontal languages are

presented by alternating automata



HA Preservation

[JR 2008 RTA]
inverse CF rewrite rules `→ a(x), x ∈ vars(`) preserve HA.

book
(
entry(name(y) y1) entry(name(y) y2) x

)
→ book(x)

exponential construction (needs determinization)

non-trivial combination
I [Touili 07] (unranked trees)

HA completion, for linear HRS, approximative.
I [Nagaya Toyama 99] (terms)

TA completion, non-left-linear TRS.



HA Preservation

[JR 2008 RTA]
inverse CF rewrite rules `→ a(x), x ∈ vars(`) preserve HA.

exponential construction (needs determinization)

I A0 := determinization of the given HA (subset constr.)
I complete according to this schema

if `σ S

a(xσ)

Ai

∗

R

replace a(L′)→ S′ ∈Ai
by a(L′∩xσ)→ S′∪S ∈Ai+1
and a(L′ \xσ)→ S′ ∈Ai+1

with substitution σ : vars(`)→ 2(2Q)∗

I invariant: determinism.
I fixpoint: rewrite closure of L(A0).



Parametrized Rewrite Systems

Given a fixed HA B with state set Q
parametrized rewrite rule : symbols of Q allowed in leaves of
rhs

book(x) → book(qe x) (insert first)
book(x1 x2) → book(x1 qe x2) (insert into)

name(x) → name(x) qh (insert after)
name(x) → q1 . . .qn (replace/delete),n≥ 0

semantics of parametrized rewrite system R:
I (possibly infinite) rewrite system R/B obtained by

replacement of q in rhs by a (ground) tree in L(B,q).
I Different occurrences of q can be replaced by different

trees.

see also [Gilleron 91 STACS], [Löding 02 STACS]



Forward and Backward Closure of Update Primitives

[JR 2010 PPDP]

a(x) → b(x) ren
a(x) → a(p x) insfirst a(x) → p a(x) insbefore
a(x) → a(x p) inslast a(x) → a(x) p insafter

a(x1 x2) → a(x1 p x2) insinto
a(x) → q1 rpl1 a(x) → q1 . . . qn rpl
a(x) → ε del a(x) → x dels

preserve HA
polynomial construction

do not preserve HA
inverse-preserve HA
exponential construction



Forward and Backward Closure of Update Primitives

HA preservation: by transformation of the horizontal languages
(NFA) L in rules a(L)→ q.

ex: for a(x)→ b(x) ∈R and a(L)→ q ∈A , add b(L)→ q to A .

ex: for a(x)→ a(p x) ∈R, and a(L)→ q ∈A , add a loop labeled
with p on the initial state of L.

HA inverse-preservation: automata completion as before.



Unranked Tree Rewriting

CF Hedge Automata



Non preservation of HA
linear & flat rewrite rules do not preserve HA.

RE rewrite closure

g(x q a y)→ g(x b q′ y)

CF rewrite closure (simultaneously insert first and last)

c(x)→ c(a x b)

CF rewrite closure (simultaneously insert and rename)

c0(x)→ c1(a x), c1(x)→ c0(x b)

flat and right-ground rewrite rules do not preserve HA.

a(x)→ b a c

collapsing rewrite rules do not preserve HA.



Non preservation of HA (collapse)

collapsing rewrite rules do not preserve HA.

R = {c(x)→ x}, Lin = { c

a c

a ...

c

a b

b

b

} (regular)

R∗(Lin) ∩ a∗ b∗ = {an bn | n≥ 0}

The rewrite closure is a CF-HA language.

I all these examples are in contrast with the case of terms.
I an extension of HA is needed.



CF Hedge Automata [de la Higuera PhD], [Ohsaki 01 CSL]

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions a(L)→ q

I a ∈ Σ, q ∈ Q,
I L is a CF language over Q∗.

∆ represents the (possible infinite) rewrite system

∆∞ = {a(q1 . . .qn)→ q | a(L)→ q ∈ ∆,q1 . . .qn ∈ L}

HA ≡ ranked tree automata
CF-HA ≡ ranked tree automata modulo A



CF Hedge Automata: Main Properties

I closure of recognized languages under union
I no closure under intersection and complementation
I closure under intersection with HA

I membership t ∈ L(A ) is decidable in PTIME
I emptiness: L(A ) = /0 is decidable in PTIME

(when horizontal languages are presented by CFG)



Forward Closure of Update Primitives [JR 2010 PPDP]

a(x) → b(x) ren
a(x) → a(q x) insfirst a(x) → p a(x) insbefore
a(x) → a(x q) inslast a(x) → a(x) q insafter

a(x1 x2) → a(x1 q x2) insinto
a(x) → q1 rpl1 a(x) → q1 . . .qn rpl
a(x) → ε del a(x) → x dels

preserve HA

preserve CF-HA
polynomial construction

inverse-preserve HA
exponential construction



Verification of Inconsistency for Rule Based ACP

An ACP 〈R+,R−〉 is locally inconsistent for t
if there exists u such that t−−→

R−
u and t−−→∗

R+
u.

equivalently R1
−(t)∩R∗+(t) 6= /0.

[JR 2010 PPDP]
Local inconsistency is decidable in PTIME for update rules.

proof:
I compute a HA recognizing τ− = {u | t−−→

R−
u}

I compute a CF-HA recognizing τ+ = R∗+
(
{t}
)

I check that τ−∩ τ+ 6= /0.



CF-HA Preservation

[JR 2008 RTA]
restricted CF rewrite rules a(x)→ r with

1. r linear
2. x at depth ≤ 1 in r

preserve CF-HA.

a(x)→ b(x), a(x)→ a(entry(name(Homer)),x)

polynomial construction
finite transformation of CF grammars for horizontal language.



Non-preservation of CF-HA

flat and non-linear CF rewrite rules do not preserve CF-HA .

with g(x)→ g(x x) g(a)−→∗ g
(
a2k)

non-shallow CF rewrite rules do not preserve CF-HA .

with a(x)→ b(a(x e)) a(c)−→∗ b(. . .b︸ ︷︷ ︸
n

(a(c en)))



Unranked Tree Rewriting

CF2 Hedge Automata



CF2HA

transitions are rewrite rules!

A = (Σ,Q,F,∆) with I Σ ranked alphabet,
every symbol has a fixed arity

I Q finite state set,
I F ⊆ Q final states,
I ∆ set of transitions of the form,

a → q
p(x) → q(x)

p1(x) p2 → q(x) horizontal transitions
p1 p2(x) → q(x)

p1
(
p2(x)

)
→ q(x) vertical transitions

where p,p1,p2 ∈ Q∪Σ, q ∈ Q.

equivalently, x can be set to ε.



CF2HA: T-patterns

a . . .a. b

...

b

b

.c . . .c

〈{a,b,c},{q0,q1,q2},{q0},∆〉 with

∆ =

{
b(x) → q2(x), a q1(x) → q0(x),

q2(x) c → q1(x), q0(b(x)) → q2(x)

}

...not a CF-HA language.



CF2HA ⊃ HA and CF-HA

CF-HA with variable-free transitions

q1 q2 → q
a(q1) → q2

a → q

where a ∈ Σ and q1,q2,q are states.

HA with Q = Qh]Qv, transitions:

qh qv → q′h
a(qh) → qh | qv

a → qh | qv

where a ∈ Σ, qh,q′h ∈ Qh, qv ∈ Qv.



CF2HA: properties

Membership is decidable in PTIME for CF2HA.

dynamic programming procedure (CKY like)

Emptiness is decidable in PTIME for CF2HA.

State marking with 2 marks.



CF2HA Preservation

[JR 2013 LATA]
CF rewrite rule a(x)→ r where x

I is the only variable in r,
I has at most 1 occurrence in r,
I has no siblings in r.

preserve CF2HA.

example: T-patterns

R =

{
q0(x) → a q1(x), q1(x) → q2(x) c,
q2(x) → q0(b(x)), q2(x) → b(x)

}
q0 −→∗

R
a q1 −→

∗
R

a q2 c−→∗
R

a q0(b).c−→
∗
R

a a q1(b) c
−→∗
R

a a q2(b) c c−→∗
R

a a q0(b(b)) c c−→∗
R

. . .



CF2HA Preservation

Given a CF2HA Ain = 〈Σ,Qin,Fin,∆in〉,
we construct a CF2HA A with state set

Q=Qin]{h | h non-var subhedge of a rhs of R}]{a | a∈Σ}]{q}

and transitions
q1(x1) . . .qn(xn) → p(x1 . . .xn) | q1(x1) . . .qn(xn)→ p(x) ∈ ∆in

q1
(
q2(x)

)
→ p(x) | q1

(
q2(x)

)
→ p(x) ∈ ∆in

t(x) h → t h(x) | x ∈ t, t h ∈ Q
t(x) h → q(x) | x ∈ t, t h /∈ Q
t h(x) → t h(x) | x /∈ t, t h ∈ Q
t h(x) → q(x) | x /∈ t, t h /∈ Q

h(x) → a(x) | a(x)→ h ∈R

a(x) → a(x)
a(h(x)) → a(h)(x) | a(h) ∈ Q
a(h(x)) → a(x) | a(h) /∈ Q
a(q(x)) → a(x)



1-childvar Condition

R = {a(x)→ c a(e x g) d}

R∗
(
{a}
)
= {cn a(en gn) dn | n≥ 1}

seemingly not CF2HA.



Forward Closure of Extd Update Primitives [JR 2013 LATA]

Given a fixed HA B with state set Q

a(x) → b(x) node renaming (ren)
a(x) → a(u1 x u2) u1,u2 ∈ Q∗ insertion (ins.c)

of child nodes

a(x) → v1 a(x) v2 v1,v2 ∈ Q∗ insertion (ins.s)
of sibling nodes

a(x) → b
(
a(x)

)
insertion (ins.p)
of a parent node

a(x) → u u ∈ Q∗ node replacement (rpl)
recursive deletion

a(x) → x node deletion (del)

preserve CF-HA.

The proof uses the CF2HA presentation of CF-HA.



Loop-Free Update Rewrite Systems

R loop-free if there exists no sequence a1, . . . ,an (n > 1)
such that for all 1≤ i < n, ai(x)→ ai+1(x) ∈R and a1 = an.

Transformation of an update rewrite system R
into a loop-free update rewrite system R̂
by selecting a representative â of a in every a’s loop
and suppressing loops.

In the construction of an automaton for R∗,
it is sufficient to consider the rewrite closure by R̂.



Closure under Update Rewrite Systems
Rewrite closure of CF-HA is CF-HA
for every loop-free update rewrite system.

Initialize, given CF-HA Ain = 〈Σ,Qin,Fin,∆in〉

∆0 = ∆in ∪ {qa1 → q}
∪ {an

(
qa1...an

)
→ qa1...an | a1, . . . ,an is a renaming chain}

Completion

R contains ∆i+1 = ∆i∪

(ren) an(x)→ b(x) {qa1...an → qa1...anb | qa1...anb ∈ Q}
∪ {qa1...anb→ qa1...an | qa1...anb ∈ Q}

(ins.c) an(x)→ an(u x v) {u qa1...an v→ qa1...an | qa1...an ∈ Q}
(ins.s) an(x)→ u an(x) v {u qa1...an v→ qa1...an | qa1...an ∈ Q}
(ins.p) an(x)→ b

(
an(x)

)
{b
(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u→ qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}



Synchronized rename and insert

R = {a(x)→ c a(e x g) d}

R∗
(
{a}
)
= {cn a(en gn) dn | n≥ 1}

R ′ =


a(x) → c a′(x) d, inv-monadic, 1-childvar

∈ (ins.s)+(ren)
a′(x) → a(e x g) /∈ 1-childvar

∈ (ins.c)+(ren)





Conclusion
I decidable models CF-HA, CF2HA of unranked ordered tree

recognizers extending hedge automata
I captures forward/backward rewrite closure under

I various families of unranked tree rewrite systems with
(inverse-) CF rules

I parametric rewrite systems modeling update primitives

Perspectives
I case of unranked unordered trees
I counting constraints on horizontal and vertical paths

...Thank You!


