AGGLOMERATIVE CLUSTERING FOR AUDIO CLASSIFICATION USING LOW-LEVEL DESCRIPTORS

Frédéric Le Bel - http://repmus.ircam.fr/lebel - 2016.

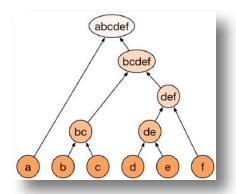
INTRODUCTION

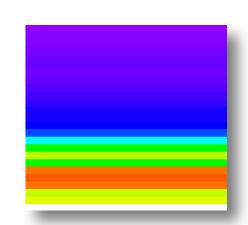
- Music information retrieval (MIR)
 - Corpus-based concatenative synthesis [Schwarz, 2006]
 - Musical genre recognition [Peeters, 2007]
 - Computer-aided orchestration [Carpentier, 2008]
- Different framework
 - Computer-aided composition
 - Towards formalizing music
 - Computational musicology
 - Towards <u>de</u>-formalizing music
- Audio data mining
 - Analysis
 - Exploration
 - Understanding

DEFINITIONS

- Agglomerative Clustering [Defays, 1977]
 - Hierarchical cluster analysis (HCA)
 - Unsupervised learning method
 - Seeks to build a hierarchy of clusters (bottom-up)
 - Dendrogram (dendro = tree, gramma = drawing)

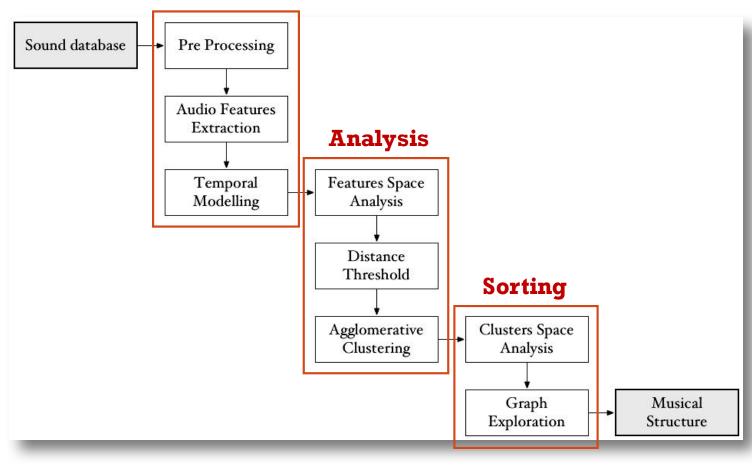
- Mathematical operators
- Transform a raw signal into a smaller space of variables
- Specific audio features (loudness, sharpness, spectral variation, etc.)
- Audio features = measurable properties of sounds
- Information relevant for pattern recognition





STRUCTURAL OVERVIEW

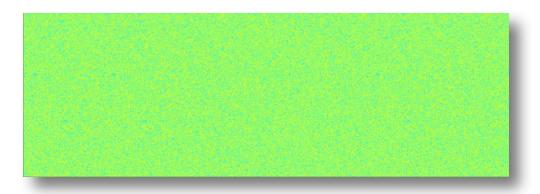
Extraction



PRE-PROCESSING

Applying different kinds of filters, the idea is to emulate the human selective listening skill...

- Sampling rate: signal smoothness
- Number of channels: auditory scene
- De-noise, hum removal, [...], spectral repair: *patterns clarity*
- Segmentation, auto-trim, effective duration: patterns identification
- Normalization: data amplification
- Banal but crucial...

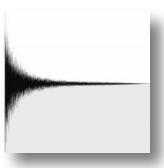


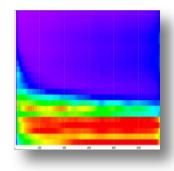
Raw signal (FFT)

Processed signal (FFT)

SIGNAL MODELLING

- Physical model(s) = raw signal
 - Energy envelope estimation (sampling)
 - Temporal segmentation (windowing)
 - Short-time Fourier Transform (STFT) [Cooley, 1965]
 - Harmonic sinusoid model approximation [Depalle, 1993]
- Perceptual model(s) = transformed signal
 - Mid-ear filtering (Fletcher-Munson curves) [Moore, 1997]
 - Mel scale conversion (critical bands filtering) [Rabiner, 1993]
 - Bark scale conversion (another type of critical bands filtering) [Zwicker, 1980]





LOW-LEVEL DESCRIPTORS

PHYSICAL MODEL based

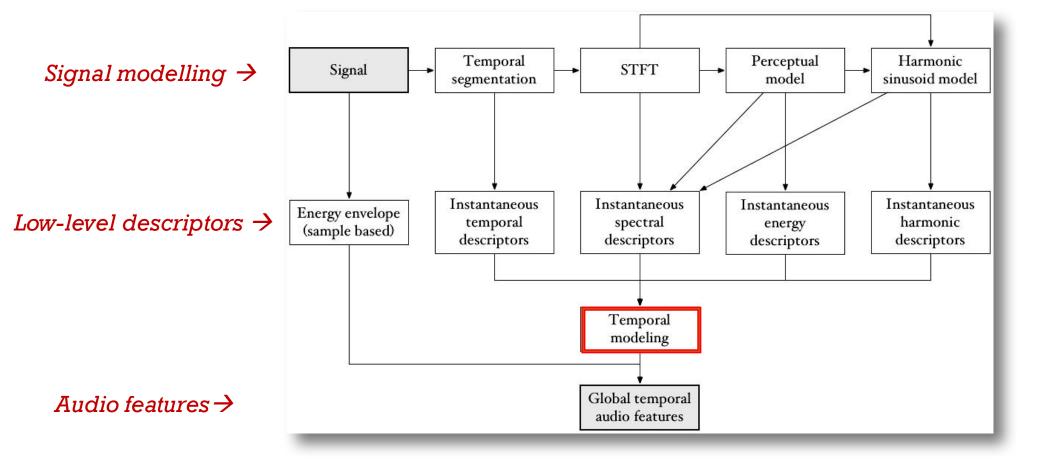
- Global **temporal** descriptors
 - Log attack time, temporal increase/decrease, amplitude modulation, MDF, EEV, EFD, TCN
- Instantaneous temporal descriptors
 - Energy envelope, auto-correlation, zero crossing rate

PERCEPTUAL MODEL based

- Instantaneous energy descriptors
 - Loudness, spread, relative specific loudness
- Instantaneous spectral descriptors
 - MFCC, sharpness, spread, skewness, kurtosis, decrease, roll off, PVA, PSD, POE, PTR, SFM, SCM
- Instantaneous **harmonic** descriptors
 - FQ0, inharmonicity, noisiness, Chroma, cs-analysis, partial tracking, masking effects

AUDIO FEATURES EXTRACTION

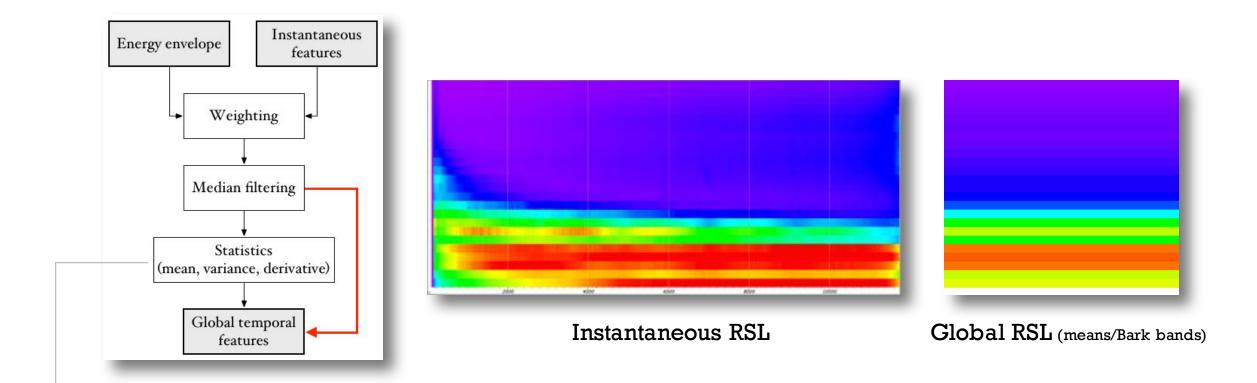
As one may listen to the same sound from different perspectives, segregating the different components, the idea is to project this ability into a computerized sound analysis...



TEMPORAL MODELLING

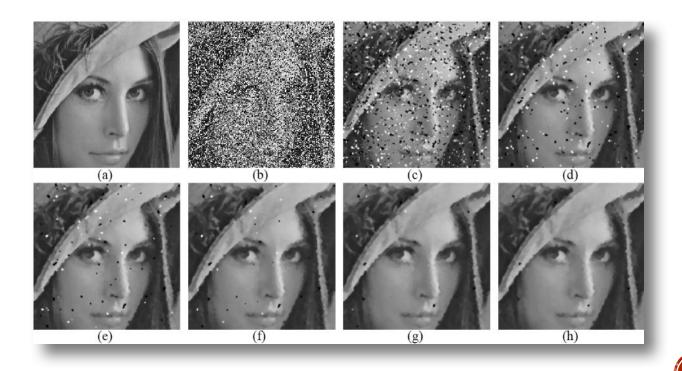
Global temporal model [Peeters, 2004]

Potential loss of information...



MEDIAN FILITERING

- Nonlinear digital filtering technique [Huang, 1979]
- Noise reduction on a signal
- Sliding window
- Stream, x = 5
- Median

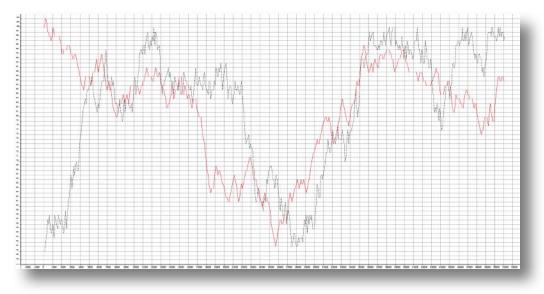


TEMPORAL ALIGNMENT

Here again, the idea is to mimic the selective listening skill, or the listening attitude in the time domain...

Different assumptions [Lebel, 2016]: instantaneous OR global OR dynamic OR ??

Original lengths audio features



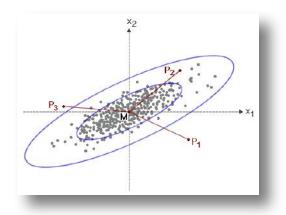
Resampled lengths audio features

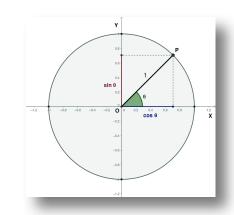
IN OTHER WORDS...

- This part of the framework focuses on
 - moulding the <u>digital data</u> through the <u>perceptual data</u>
 - in order to obtain <u>clustering results</u> that are <u>consistent to the listeners</u>...

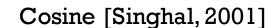
LEVELS OF SIMILARITY

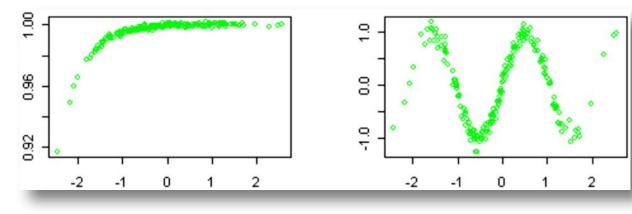
- Distances (magnitude)
 - Mahalanobis distance [0.1.]
 - Euclidean distance [0. +inf.]
- Similarity (orientation)
 - |Cosine similarity| [0.1.]
 - Jaccard index [0. 1.]
- Correlation (dependency)
 - |Spearman coefficient| [0.1.]
 - |Pearson coefficient | [0. 1.]





Mahalanobis [Hazewinkel, 2002]

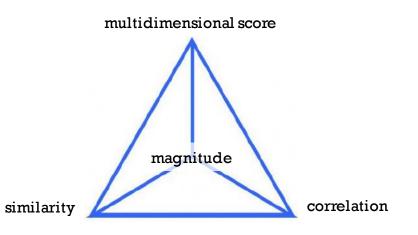


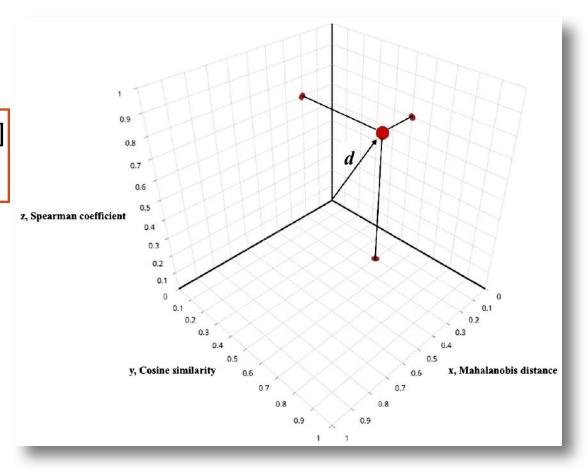


Spearman [Rakotomalala, 2015]

DISTANCE TRIANGULATION

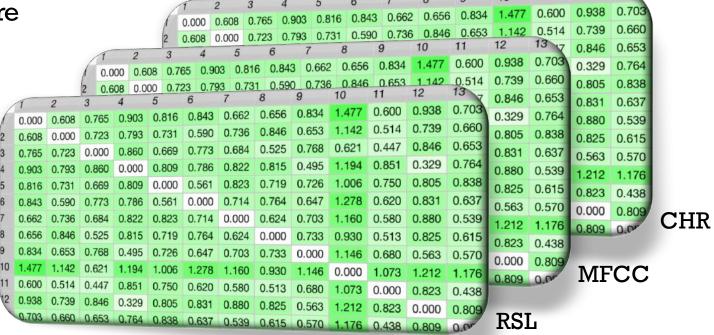
- Single multidimensional score
- Including 3 different perspectives
- Higher level description
- Inverted and normalized values! [0.1.]
- Shape of space/clusters [Lebel, 2016]





DISTANCE MATRICES

- 2D containers of distances taken pairwise [Gentle, 2007]
- Quantifies all the connections
- Each matrix = One audio feature
- Thus, n features = n matrices

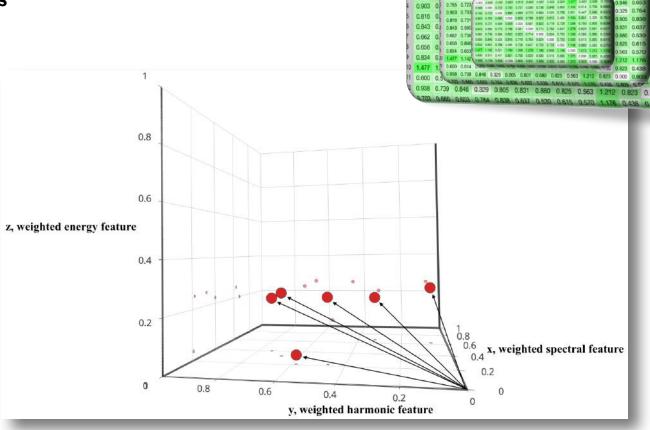


WEIGHTED MATRICES

- Different features
- Different levels of importance
- Different weight factors [0.1.]
- Simple multiplication: $x_i * w_i$
- User defined...

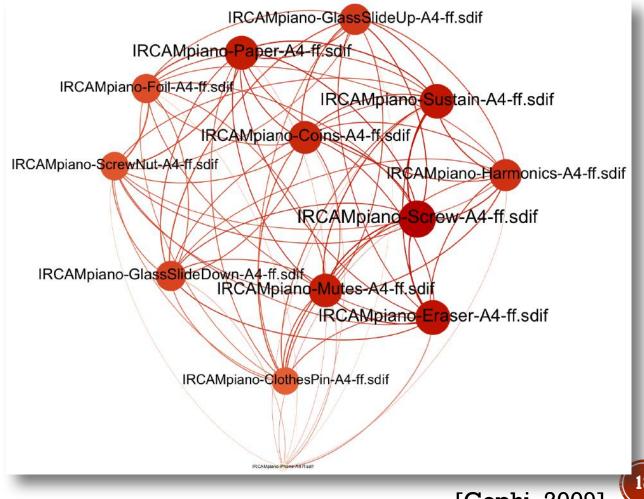
DIMENSIONALITY REDUCTION

- n features = n matrices = n dimensions
- Need to simplify the data...
- ...reduce the number of variables
- Principal Component Analysis?
 - Features selection [Roweiss, 2000]
 - Features extraction [Pudil, 1998]
- No because,
 - Low number of features... (< 100)
 - Curse of dimensionality [Bellman, 1957]
 - Better interpretation of the output!
- Then how,
 - Similar to distance triangulation...
 - Matrices triangulation!
- n dimensions down to a single one
 - Without any data transformation!



FEATURES SPACE NETWORK

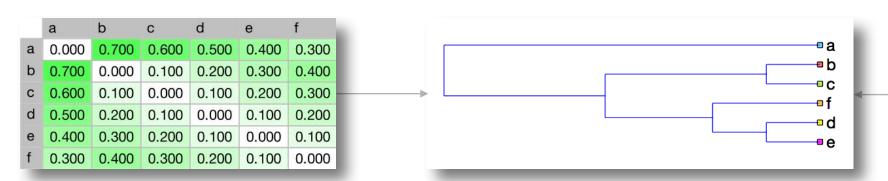
- Multidimensional scaling [MDSJ, 2009]
 - 17D (audio features) \rightarrow 2D (graph)
- Average weighted degrees
 - Big dark nodes = high degree
 - Small clear nodes = low degree
 - Centrality/Eccentricity
- Just a representation...
 - Not a mathematical structure!



abcdef

AGGLOWERATIVE CLUSTERING

- Hierarchical Cluster Analysis [Defays, 1977]
 - Unsupervised learning method (unlabelled data)
 - Seeks to build a hierarchy of clusters (bottom-up)
 - Based on distances + <u>linkage criterion</u> (NN algorithm)
 - Dendrogram (Greek: dendro = tree, gramma = drawing)
 - Drawbacks:
 - 1. consistency within and between clusters,
 - 2. <u>tie-break</u> problem... (pairwise approach)

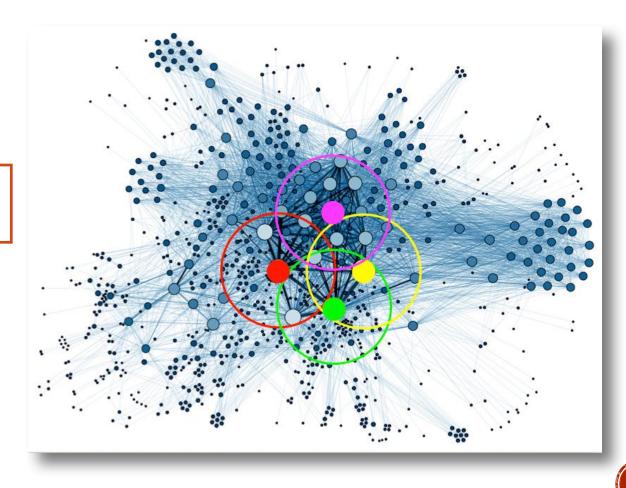


Distance matrix

Dendrogram [Orange, 2013]

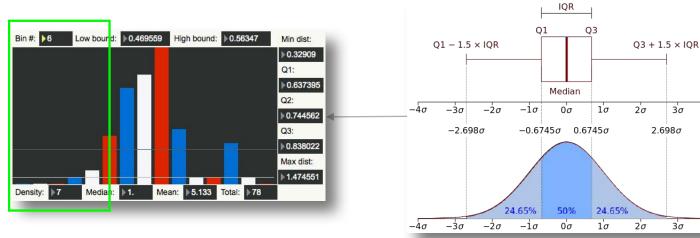
VARIATION ON HCA

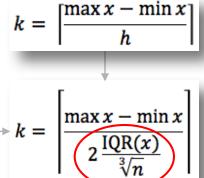
- Instead of nearest neighbour...
- Threshold constraint (C_t)
 - Threshold = max distance (diametrical)
 - Kind of perceptual witness...
- If $d(x, y) \le C_t = true$, then agglomerate,
- else, create new cluster.
- Speed is traded for accuracy...
 - Global optimum!
 - Complexity = O(n!)...
- Solves previous drawbacks:
 - consistency = isomorphic clusters,
 - 2. tie-break = overlapping clusters.



DISTANCE THRESHOLD

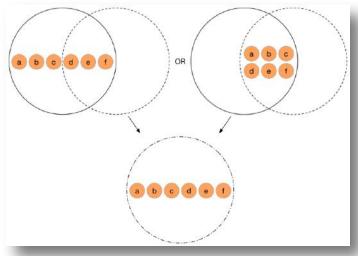
- Descriptive statistics [Mann, 2006]
 - Central tendency: median, mean and mode
 - <u>Dispersion</u>: extrema, standard deviation, kurtosis and skewness
 - Distribution: histogram and stem-and-leaf display
- Histogram (sparsity of x)
 - Freedman-Dicaonis rule [Freedman, 1981]
 - Adaptive bin width (h)
 - For number of bins (k)



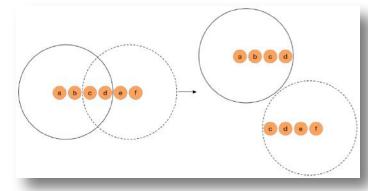


THE OUTCOME

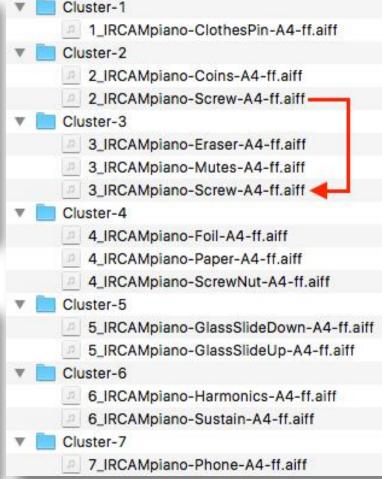
- More accurate but more complex...
 - Overlapping clusters = blured hierarchy
 - One component may belong to multiple clusters
 - More difficult to distinguish clusters
 - Fuzzy clustering...
- Need to reduce the number of variables!
 - Sub-clusters merging
 - Overlapping clusters split
- Translated into musical terms [Huron, 2001]
 - Overlaps = voice-leading patterns
 - voice-leading patterns = timbral patterns



Sub-clusters merging



Overlapping clusters split

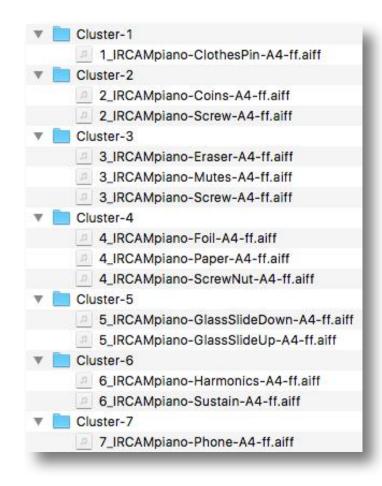


IN OTHER WORDS...

- This part of the framework strives to
 - computerize the way one would intuitively aggregate sounds by proximity, or similarity,
 - including the possibility of sounds to be part of multiple subpopulations at once.

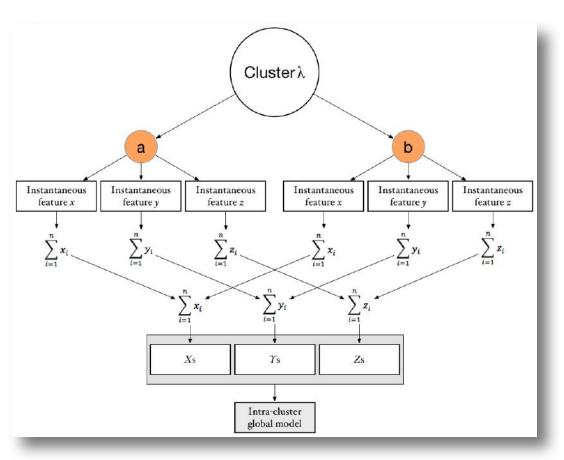
CLUSTERS SPACE ANALYSIS

- To gain more insight on the resulting space
 - visualize the clustered space
 - looking at a down sampled dataset
 - using a larger bin width histogram
- Better understanding of the core structure
 - Intra-cluster modelling
 - 2. Inter-cluster analysis



INTRA-CLUSTER ANALYSIS

- Similar to temporal modelling
 - Generalizing audio features of each cluster
 - Find the theoretical centre of mass (barycentre)
- Global model = multidimensional vector
 - Each data point = sum of the sums of each audio features
 - Summation and accumulation of audio features...
- In order to measure the distance between them...



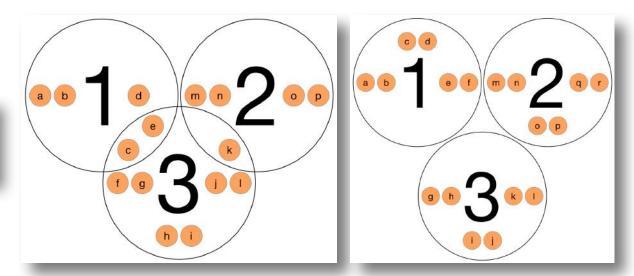
Intra-cluster modelling

INTER-CLUSTER ANALYSIS

- Measuring the distance between each clusters barycentre
 - Euclidean distance [0. +inf.] (magnitude) * Jaccard index [0. 1.] (similarity)
 - single multidimensional score, including 2 different perspectives, higher level information...
- Gathered in a distance matrix to outline the resulting network...

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Jaccard index [Jaccard, 1901]



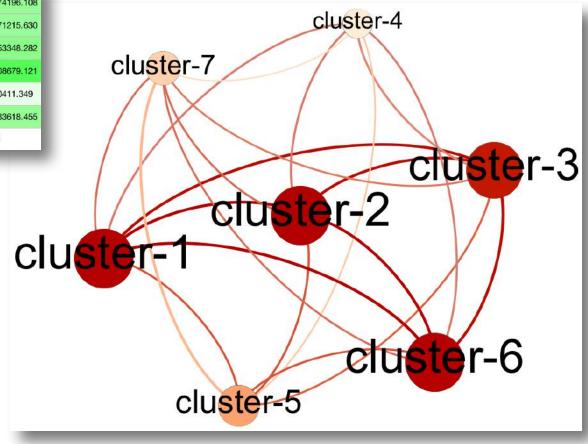
$$d(\vec{\lambda}, \vec{\delta}) = \sqrt{\sum_{i=1}^{n} (\lambda_i - \delta_i)^2}$$

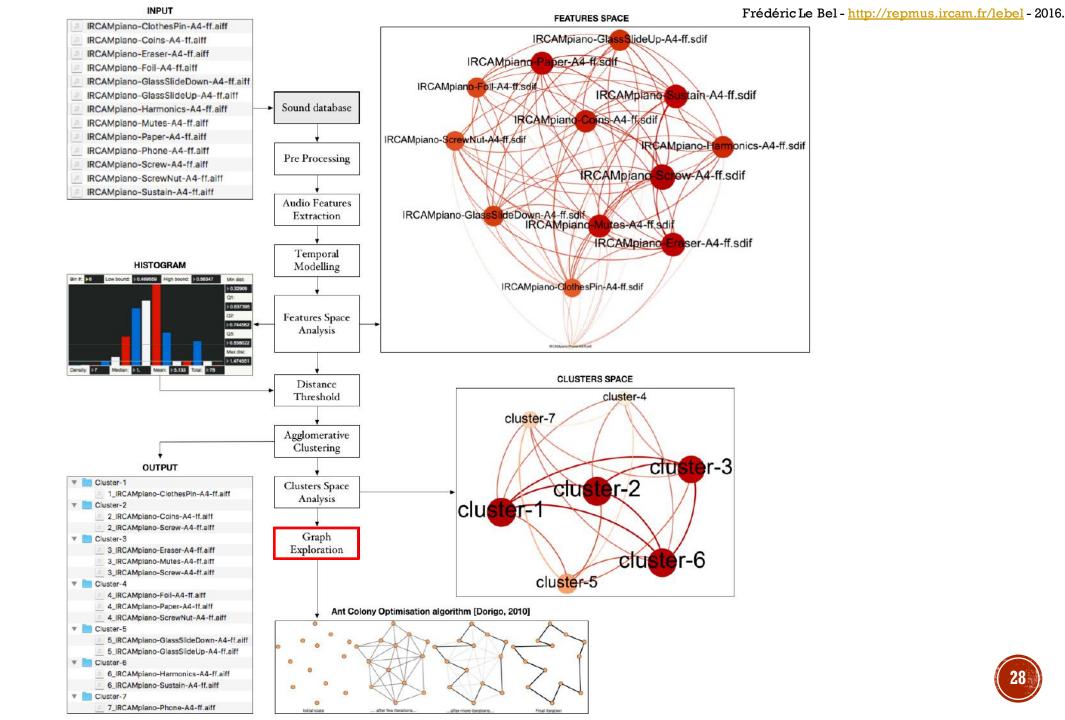
Euclidean distance [Verley, 1997]

CLUSTERS SPACE NETWORK

	"cluster-1"	"cluster-2"	"cluster-3"	"cluster-4"	"cluster-5"	"cluster-6"	"cluster-7"
"cluster- 1"	0.000	24886673.802	38900706.651	297179876.332	286879316.637	10532180.324	339574196.108
"cluster- 2"	24886673.802	0.000	56060666.279	282491866.688	274240613.812	35408076.384	330371215.630
"cluster- 3"	38900706.651	56060666.279	0.000	285941699.637	325771919.827	35125811.841	378153348.282
"cluster- 4"	297179876.332	282491866.688	285941699.637	0.000	476063442.497	304210404.150	546808679.121
"cluster- 5"	286879316.637	274240613.812	325771919.827	476063442.497	0.000	292239273.422	72010411.349
"cluster- 6"	10532180.324	35408076.384	35125811.841	304210404.150	292239273.422	0.000	343433618.455
"cluster- 7"	339574196.108	330371215.630	378153348.282	546808679.121	72010411.349	343433618.455	0.000

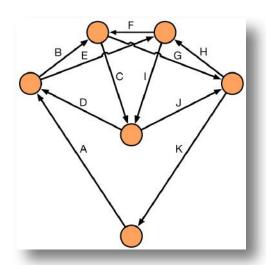
- Multidimensional scaling...
- Average weighted degrees
 - Big dark nodes = high degree
 - Small clear nodes = low degree
 - Centrality/Eccentricity
- Just a representation...
 - Not a mathematical structure!



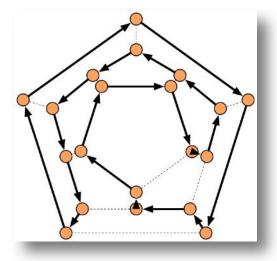


GRAPH THEORY (NOT EVEN AN OVERVIEW...)

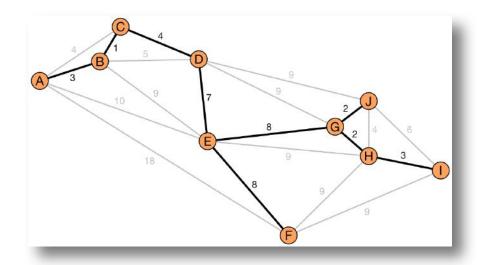
- Clearly suggests ways of exploring the clusters space!
- Eulerian cycles: visits each edge exactly once (start/end points = same)
- Hamiltonian cycles: visits each node exactly once (start/end points = same)
- Spanning trees: sets of edges covering all nodes (no path nor cycle)



Eulerian cycle [Euler, 1736]



Hamiltonian cycle [Hamilton, 1857]



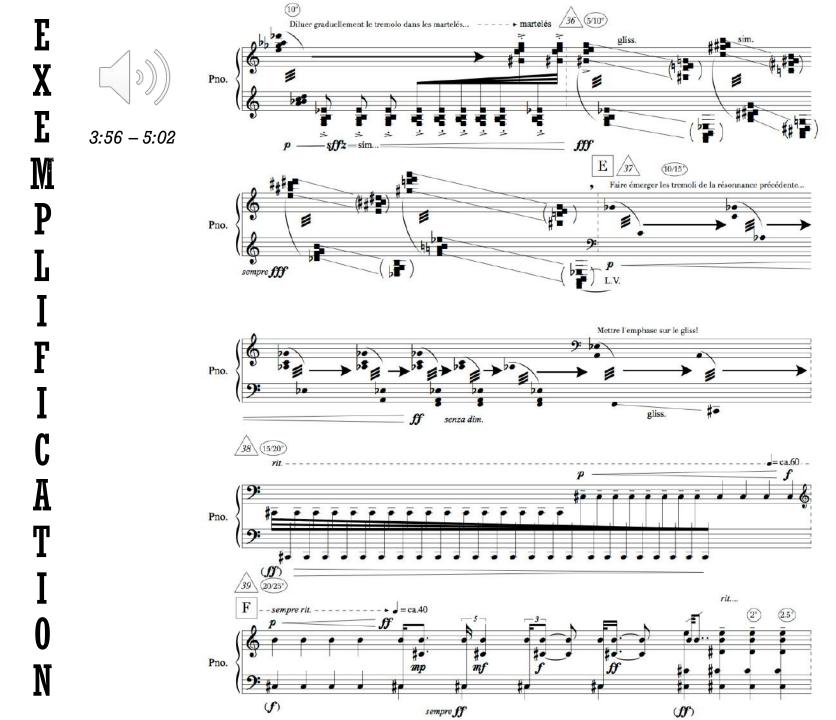
Minimum spanning tree [Graham, 1985]

IN OTHER WORDS...

- This part of the framework aspires to
 - provide more insight on the resulting clusters space and to
 - find ways of navigating though it
 - towards formalizing music.

FROM SCIENCE TO MUSIC

- Due to time constraint...
 - could not make exhaustive use of the clustering process (nor the graph search algorithms)
- But many concepts were translated
 - to nourish musical ideas.
 - compositional techniques and
 - various scenarios of interaction.
- The idea was
 - not to mimic the algorithm itself
 - but to expand the notion of distance/similarity on multiple layers (locally and globally)
 - in a way to create different scenarios of interaction
- Each scenario
 - intuitively targets specific audio features (energy, pitch, spectrum, density, time, behaviour, rhythm, etc.)
 - and projects them into various shifting processes
 - in order to create some kind of a smooth and perpetual drifting motion through the music.
- That is to reflect the idea of
 - exploring the shortest path(s) within a graph.

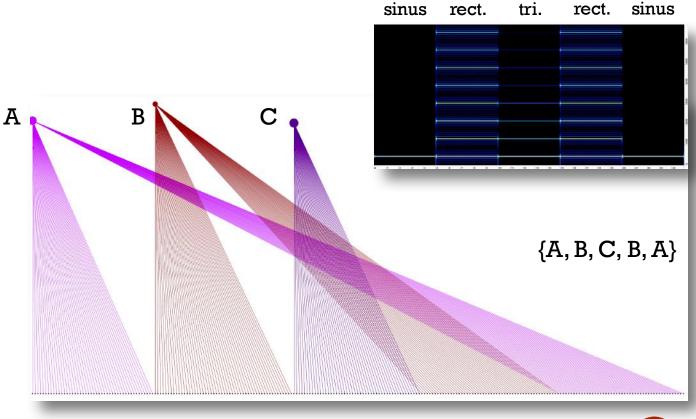


CONCLUSIONS...

- Based on previous works (MIR)
 - corpus-based concatenative synthesis [Schwarz, 2006]
 - musical genre recognition [Peeters, 2007]
 - computer-aided orchestration [Carpentier, 2008]
- A different framework for audio classification
 - with applications to computer-aided composition (graph theory)
 - And <u>eventually</u> for computational musicology...
- Contrary to its predecessors,
 - this framework is built towards formalizing music
 - rather than generating or labelling sound material
- In other words,
 - it is engineered to act on a larger scale than in the other cases
- Consequently,
 - it is designed to attempt rendering this level of perspective through analysis and clustering.

... PERSPECTIVES

- Developing applications for
 - Computer-aided composition
 - Graph search algorithms...
 - Computational musicology
 - Representations in the time domain...



Variation on k-medoids...

FOR MORE INFORMATION

- http://repmus.ircam.fr/lebel
 - Research report & audio examples
 - Score(s) & recording(s)

CLUSTERING EXAMPLES

PIANO	MULTIPHONICS	SOUND DESIGN	ABSTRACT	
Cluster-x	Cluster-x	Cluster-x	Cluster-x	
(,)) (,))	(,)) (,)) (,))	(,)) (,))	*)) ('')	
Cluster-y	Cluster-y	Cluster-y	Cluster-y	
(,))	(,)) (,))	(1) (1)	(1)	
Cluster-z	Cluster-z	Cluster-z	Cluster-z	
(,)) (,))	(,))	(1) (1)	(,))	