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RÉSUMÉ 
Cet article propose d’explorer un ‘work in progress’ 
cherchant à développer une démarche de composition 
assistée par ordinateur (CAO) axée sur l’élaboration de 
structures musicales au moyen d’une méthode de classifi-
cation audio non supervisée et de certains algorithmes de 
parcours de graphe. Certaines parties de cette idée ont 
déjà été étudiées, notamment dans le cadre de la synthèse 
concaténative par corpus, de la reconnaissance des genres 
musicaux ou de l’orchestration assistée par ordinateur 
pour en nommer quelques-unes, mais le défi reste de 
trouver une manière d’intégrer ces techniques informa-
tiques dans le processus compositionnel, non pas pour 
générer du matériau sonore mais plutôt pour l’explorer, 
pour l’analyser et pour mieux le comprendre en prépara-
tion d’une œuvre musicale. Contrairement aux démarches 
traditionnelles de CAO, principalement axées sur des 
méthodes génératives, la suivante propose une approche 
analytique du matériau sonore axée sur l’élaboration de 
différents types de structures musicales afin de stimuler le 
processus créatif. Cet article propose donc de disséquer la 
structure algorithmique afin d’exposer la méthodologie, 
d’éclairer certaines problématiques inhérentes, d’exposer 
les limites d’une telle approche et finalement de présenter 
quelques idées pour d’autres applications. 

1. INTRODUCTION 
This article proposes to explore a work in progress that 
aims at developing a computer-aided-composition (CAC) 
approach to structuring music by means of audio cluster-
ing and graph search algorithms. Although parts of this 
idea have been investigated in order to achieve different 
tasks such as corpus-based concatenative synthesis [1], 
musical genre recognition [2] or computer-aided orches-
tration [3] to name a few, the challenge remains to find a 
way of integrating these techniques into the creative pro-
cess; not to generate material but to explore, to analyse 
and to understand the full potential of a given sound cor-
pus prior to scoring a musical piece. As opposed to main-
stream CAC tools, mostly focusing on generative meth-
ods, the following one proposes an analytical approach to 
structuring music through the creative process. As the 
title of this article reveals some pieces of answer to this 
interrogation, the following topics aim at unfolding the 
algorithmic structure in order to examine the methodolo-
gy, to discuss a few important co-lateral problematics, to 
expose the limitations of such an approach and finally to 
discuss ideas for future development. 

2. STRUCTURAL OVERVIEW 
The algorithmic structure may be divided into three dis-
tinct processing stages. The first one, including the signal 
modelling, the audio features extraction and the temporal 
modelling, focuses on data extraction. The second stage, 
including the features space analysis, the calculation of a 
distance threshold and the audio clustering itself, focuses 
on data analysis. The third one, including the clusters 
space analysis and the graph exploration, focuses on data 
sorting. 

 
Figure 1. Structural overview 

3. DATA EXTRACTION 
3.1 Signal Modelling 

Considering that the database is composed of pre-
segmented sounds of any lengths (user defined), the pro-
cess starts with a very simple but crucial procedure which 
is to prepare the sound files for audio features extraction 
by applying different types of processing. The goal is to 
optimize the input data in order to extract relevant infor-
mation for the algorithm to detect significant patterns. 
Somehow, it is to mimic the human selective listening 
skill by reducing the information to what is perceptually 
consistent in the audio files. 
 
In the frame of this work, the sound files are systemati-
cally resampled to 44.1kHz/16bits before the audio fea-
tures extraction. Then, depending on the source of the 
recording (analogic or digital), different treatments may 
be applied in order to smooth and clean the signal such as 
filters, de-clip, de-click, hum removal, de-noise and spec-
tral repair.  Also, each sound file is mixed down to a 
single channel in order to remove the sound localization 
variable. Finally, the tracks are normalized to 0dB with-



Journées d’informatique musicale, 17-20 Mai 2017, Collegium Musicae – Sorbonne Universités, Paris, France 

out any type of compression in order to amplify the data 
without removing the relative amplitude of each frame. 
These processing are applied for the sake of analysis 
only1. The final output may use the original sound files. 

3.2 Audio Features Extraction 

The audio features extraction consists of decomposing 
the sounds into specific properties based on the energy, 
the spectrum and the harmonic content, either from a 
physical or a perceptual model applied to a raw signal. As 
one may listen to the same sound from different perspec-
tives, segregating the different components, the idea is to 
project this ability into a computerized sound analysis. 
 
In the frame of this work, different engines are used in 
order to extract different types of data. For low-level 
features, the Ircamdescriptors-2.8.6 [4] appears to be very 
efficient. For others such as partial tracking and chord 
sequence analysis, the pm2 engine [5] is used. Also, the 
superVP engine [6] is used to extract the peak analysis 
and the masking effects. Without being exhaustive, the 
following selection of audio features covers a wide range 
of the complexity of sounds for the user to make custom 
sub-selections. Under two different models (physical and 
perceptual), the low-level descriptors may be separated 
into four categories: instantaneous temporal, instantane-
ous harmonic, instantaneous energy and instantaneous 
spectral. 

Physical model Perceptual model 
Instantaneous temporal descriptors 

• Auto-correlation 
• Signal zero crossing rate 

 

Instantaneous energy descriptors 
 • Loudness 

• Spread 
• Relative Specific Loudness 

Instantaneous spectral descriptors 
 • MFCC 

• Spectral centroid 
• Spectral spread 
• Spectral skewness 
• Spectral kurtosis 
• Spectral decrease 
• Spectral roll-off 
• Spectral variation 
• Spectral deviation 
• Spectral flatness 
• Spectral crest 

Instantaneous harmonic descriptors 
• Fundamental frequency 
• Inharmonicity 
• Noisiness 
• Chroma 
• Chord sequence analysis 
• Partial tracking 
• Peak analysis 
• Masking effects 

• Harmonic spectral deviation 
• Odd to even energy ratio 
• Tristimulus 

Table 1. Selected low-level descriptors 

                                                             
1 Obviously, this procedure may vary a lot according to the database. 
The idea is to clearly determine what is perceptually consistent or what 
is to be analysed into the clustering process and prepare the audio files 
consequently. 

The two models, physical and perceptual, imply a pre-
processing stage in order to provide the adequate signal 
representations for computing the descriptors. In both 
cases, but depending on the feature to extract, the pre-
processing may consist of: 

• Energy envelope estimation (sampling), 
• Temporal segmentation (windowing), 
• Short-time Fourier transform [7], 
• Harmonic sinusoid model [8].  

The perceptual model differs from the other one because 
it implies an additional set of pre-processing that attempts 
to emulate the human auditory system. This specific 
chain of processing consists of a mid-ear filtering [9] and 
a logarithmic band conversion, namely the Mel bands 
[10], used for the MFCCs, and the Bark bands [11], used 
for all others. 

 
Figure 2. Audio features extraction flowchart 

As shown in figure 2, the spectral descriptors may be 
computed directly over the STFT but also over the per-
ceptual model and the harmonic sinusoid model. In the 
frame of this work, as seen in Table 1, the spectral de-
scriptors are computed over the perceptual model only. It 
is also shown that the harmonic descriptors may be com-
puted over the physical (STFT) or the perceptual model 
as for the harmonic spectral deviation, the odd to even 
energy ratio and the tristimulus. As shown in Table 1, 
both approaches are used in the frame of this work. 

3.3 Temporal Modelling 

The temporal modelling is similar to the signal model-
ling. It consists of reducing the information to what is 
perceptually consistent in the audio features (not the 
sound files) by applying different processing. Here again, 
the idea is somehow to mimic the selective listening skill. 
In this sense, the instantaneous features, except the ones 
expressed in frequencies (Hz), can be weighted by the 
energy (amplitude^2) of their corresponding signal (user 
defined) and smoothed by the use of a 5th order median 
filter [12]. Although different windowing patterns are 
possible for multidimensional features (box and cross 
patterns), the temporal modelling is applied, if so, inde-
pendently on each coefficient. Thus, each of them is 
considered as an individual time series and is treated 
consequently for more accuracy. 
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Figure 3. Temporal modelling flowchart 

Then, for mathematical reasons (calculation of the Cosine 
similarity and the Spearman coefficient), the audio fea-
tures are resized for their lengths to match when later 
compared pairwise.2 Hence, for each pair of audio fea-
tures that is compared, the shortest is oversampled to fit 
the size of the longest. From a perceptual angle that is to 
say, if two sounds are identical, except for their durations, 
they are perceived as equivalent or extremely similar. 
Below is an example of two superimposed audio features 
of the same type (y = spectral centroid) calculated over 
two different sounds of different durations (x = time). 

 

 
Figure 4. [top] Original features,                              

[bottom] Resampled features 

From figure 4 (top) they seem to be very different con-
sidering their original lengths but, from figure 4 (bottom), 
they seem a lot more alike considering that the shortest 
was oversampled to match the length of the longest. Alt-
hough the previous approach seems to fit reality, this 
question should be further investigated from a perceptual 
angle. 

                                                             
2 For this kind of temporal alignment, multiple approaches were tested. 
One was to pad the shortest feature from a pair with a given numerical 
value but then, the comparison was affected by the added values. An-
other one was to use the fast dynamic time warping (fastDTW) [13] but 
then, the comparison was biased by the overfitting yielded by the latter 
method. Considering the previous drawbacks, a classic resampling 
method then appeared to be the way with minimum impact on further 
calculations. 

4. DATA ANALYSIS 
4.1 Features Space Analysis 

Following the data extraction is to determine the level of 
similarity, or dissimilarity, between each component of 
the database taken pairwise.3 Considering that only in-
stantaneous features (time series) are taken into account, 
three different approaches may be adopted, all combina-
tions included (user defined), to process such data struc-
tures. The first approach is based on distances (magni-
tudes), the second one is based on similarities (orienta-
tions) and the third one is based on correlations (depend-
encies).4  

4.1.1 Mahalanobis distance (magnitude) 

The Mahalanobis distance is a measure of the distance 
between a point P and a distribution D. It is a multidi-
mensional generalization of the idea of measuring how 
many standard deviations away P is from the mean D. 
This distance is zero if P is at the mean of D, and grows 
as P moves away from the mean. This type of distance is 
thus unit less, scale-invariant and takes into account the 
variance and the correlation of the data set [14]. 

𝑑 𝑥, 𝑦 = (𝑥 − 𝑦))	𝑆,-	(𝑥 − 𝑦)            (1) 

4.1.2 Cosine similarity (orientation) 

The cosine similarity is a measure of similarity between 
two non-zero vectors of an inner product space that 
measures the cosine of the angle between them. The co-
sine of 0° is 1, and it is less than 1 for any other angle. It 
is thus a judgment of orientation and not of magnitude. 
For example, two vectors with the same orientation have 
a cosine similarity of 1, two vectors at 90° have a similar-
ity of 0, and two vectors diametrically opposed (180°) 
have a similarity of -1, independent of their magnitude 
(translation-invariant) [15]. 

𝑐𝑜𝑠(𝜃) = 7898
:
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                     (2) 

4.1.3 Spearman’s rank correlation (dependencies) 

Spearman's rank correlation assesses monotonic relation-
ships whether linear or not. A perfect Spearman correla-
tion of +1 or −1 occurs when each of the variables is a 
perfect monotone function of the other. Intuitively, the 
Spearman correlation between two variables is high when 
observations have a similar rank between the two varia-
bles, and low when observations have a dissimilar rank 
between the two variables. A value of zero denotes a total 
independence (zero relationship) between the rank of the 
two variables. Unlike the cosine similarity, this type of 
coefficient gives a clear indication about the direction of 

                                                             
3 As discussed earlier, this can be done using one or more of their audio 
features in order to create customized perspectives on sound materials 
through clustering (user defined). 
4 As demonstrated further, the previous approaches may also be merged 
in order to account for higher level descriptions of sounds into the 
clustering process. 
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the function. It is also translation-invariant [16]. 

tie	corrected	𝜌 = FG,F ,H I8
=, )JK)L:

8;< /N
FG,F =, )JK)L FG,F K)J)L

    (3) 

where, 
• n is the length of the variable, 
• R and S are the rank variables, 
• d is the difference between 𝑅P and 𝑆P, 
• 𝑇R and 𝑇S are the tie-correction factors. 

𝑇R = 𝑡UV − 𝑡U
W
UX-                         (4) 

where, 
• G is the distinct values of the averaged ranks, 
• 𝑡U is the number of occurrence of a distinct rank. 

4.1.4 Distance triangulation 

If using more than one of the three types of measure-
ments (distance, similarity and correlation), the following 
approach is to merge them into a single multidimensional 
score. Since each type describes a different aspect of 
similarity (magnitude, orientation and dependency), the 
goal is to obtain a single value that includes all three 
perspectives. Based on the concept of triangulation, the 
principle is to project the previous measurements in a 
common space where each axis represents a different one 
of them. This allows to triangulate the resulting location 
for later calculating the Euclidean distance between this 
new coordinate (x, y, z) and the origin (0, 0, 0) [17].  

 
Figure 5. 3D space distance triangulation 

𝑑 𝑥, 𝑦 = 𝑥P − 𝑦P NF
PX-                    (5) 

For that, the measurements must be adapted to the new 
space for the origin to be the right target (minimum dis-
tance). Knowing that the Mahalanobis distance range 
may be statistically ceiled between [0. 4.], that the Cosine 
similarity ranges between [-1. 1.], and that the Spear-
man’s rank correlation coefficient is bounded between [-
1. 1.], it becomes obvious that they can be normalized 
between [0. 1.] and rescaled to [1. 0.] for fitting the pre-
vious space and for its origin to represent the minimum 

distance. The reason to rescale the data is to convert the 
degrees of similarity and correlation into distance inter-
pretable values and the reason to normalize them is to 
work in an even space and avoid favouring one or another 
of the values while triangulating them. In a way, it is to 
give the same weight to all the given values.5 

4.1.5 Distance matrices 

After measuring the level of similarity between each pair 
of sounds upon specific audio feature(s), the resulting 
values are gathered inside distance matrices, each of 
those representing a different feature. Meaning that the 
level of similarity is computed between corresponding 
audio features only: d(xi, yi) and not d(xi, yj) nor d(xj, yi). 
This way, each matrix includes the distance between each 
pair of sounds under a specific property of sounds. The 
resulting number of matrices is thus linked to the number 
of extracted features (n features = n matrices). 

4.1.6 Weighted scores 

For each distance matrix, thus each selected audio fea-
tures, it is possible to apply different weights to them 
(user defined). In other words, that is to assign independ-
ent degrees of importance to the different features that are 
considered for the clustering. That is done by multiplying 
each scores within a single matrix by a weight factor (wi) 
ranging from 0 to 1 [18].  

4.1.7 Dimensionality reduction 

If working with multiple audio features at once, the di-
mensionality of the resulting space (n-features = n-
matrices = n-dimensions) needs to be reduced in order to 
process the final clustering. One of the most common 
method to do so is known as the principal component 
analysis (PCA) [19]. Although the latter technique could 
be used at this point, or earlier in the process for feature 
selection and/or feature extraction [20], it was not con-
sidered to be necessary considering that the maximum 
number of dimensions (n-features) used in the frame of 
this work is less than a hundred.  Hence, there is no seri-
ous reasons to fear the curse of dimensionality [21]. Be-
sides, it also appeared to be more consistent to keep con-
trol over the processed information for later interpreting 
the clustering results without adding confusion.  

In this sense, the following solution is not to reduce the 
number of dimensions themselves but rather to project 
them in a common space. The idea is the same as de-
scribed before (distance triangulation). Although the 
resulting space may be expressed in more or less than 
three dimensions here, the approach remains the same: 
calculating the Euclidean distance (5) between the new 

                                                             
5 However, it should be mentioned that in the case of the Mahalanobis 
distance, the values do not need to be rescaled since it is already a 
distance measure. It should also be mentioned that in the case of the 
Cosine similarity and the Spearman’s coefficient the absolute values are 
used in order to fit the Mahalanobis distance scale and avoid space 
fitting problems. From a perceptual angle, it means that a given sound 
and its inversion, or its retrograde, are considered equivalent. Similar to 
the temporal alignment method mentioned before, this seems to make 
sense but it should also be further investigated from a perceptual point 
of view in order to determine the level of similarity between a sound 
and its opposite.  
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coordinate (x, y, z, …, n) and the origin (0, 0, 0, …, 0). In 
other words, the multiple dimensions are triangulated and 
summarized by their distance to the origin (minimum 
distance). Consequently, this approach allows to bring 
down the number of distance matrices to a single one 
(features-space distance matrix) without applying any 
transformation to the original data. 

 
Figure 6. 3D space dimensionality reduction 

In figure 6, each node represents a specific pair of sounds 
((a b)(a c)(a d)(b c)(b d)(c d)) and the axes represent the 
distances corresponding to each feature. 

4.1.8 Single-layer relational space 

Although this is not an intrinsic part of the clustering 
process, it is interesting to mention that the database can 
be viewed as some kind of relational space at this point. 
With the help of Gephi [22], an open source software for 
exploring and manipulating networks, any features-space 
distance matrix can be visualized as such. 

 
 

Figure 7. Features-space network 

In figure 7, the nodes represent the sounds and the edges 
represent the distances between them. From this perspec-
tive, it is clear that the matter of this work is not about 
positioning the sounds in space but rather to define the 
strength of their respective networks. 

4.2 Audio Clustering (fuzzy clustering) 

The algorithm used in the frame of this work may be seen 
as a variation on the hierarchical cluster analysis (HCA) 

based on a distance threshold constraint instead of link-
age criteria. Hence, instead of targeting the nearest 
neighbours (open space), a user defined threshold (closed 
space) determines the targets. The threshold represents 
the maximum distance between two elements to be ag-
glomerated. It can be seen as some kind of perceptual 
threshold. In this sense, the targets should be as many as 
they fall below the maximum distance allowed. For that 
to be assessed, the number of iterations has to be as much 
as the square number of elements. In other words, each 
component has to be tested before defining a cluster. That 
means the algorithm is looking for the global optimum, 
including the possibility of one component belonging to 
multiple clusters (overlapping clusters). In this case, 
contrary to the greedy algorithms, the speed is traded for 
completeness and accuracy of the clustering. The follow-
ing figure, where the radiuses of each circle represent the 
distance threshold as well as each of them an iteration of 
the process, partially demonstrates the agglomeration 
strategy described above. 

 
Figure 8. Fuzzy clustering in the features-space 

Concretely, the distance threshold is applied to each col-
umn, or each row, of the features-space distance matrix, 
meaning that the centre of each cluster corresponds to a 
sound itself. From another angle, it also means that the 
space is defined by its components and not the opposite.  

4.2.1 Distance threshold 

Considering that the components have to fall below a 
user defined threshold to be agglomerated, the definition 
of space and the number of dimensions have a significant 
impact on the results, thus on setting the threshold itself 
[23]. In other words, the threshold is a space dependent 
variable (relative value) and thus should be adapted to 
every case.6 Consequently, the distance threshold should 
be informed by some kind of sparsity analysis computed 
upon the features-space distance matrix. In the frame of 
this work, the definition of this parameter relies on a 
histogram based on the Freedman-Diaconis rule [24], 

                                                             
6 Although the ultimate objective is to identify clusters of sounds shar-
ing strong similarities upon particular audio features, where the distance 
threshold would act as some kind of perceptual witness, the reality is 
that datasets are inflexible. In this sense, the algorithm cannot find what 
do not exist. 
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itself based on the most significant basic robust measure 
of scale, the interquartile range (IQR) [25]. 

bin	width	ℎ = 2 `ab(7)
FG

                       (6) 

The number of bins can then be calculated from the fol-
lowing formula in order to build a consistent histogram 
upon which the user can assess the sparsity of its database 
and later determine a proper distance threshold [26]. 

number	of	bins	𝑘 = 	 hij7,hkl7
m

              (7) 

4.2.2 The outcome 

Using the clustering method described before leads to a 
particular outcome (fuzzy clustering). Being more accu-
rate and complete that in the case of a classic HCA, the 
resulting space is more complex. Related to the possibil-
ity of clusters to overlap, a new genre of hierarchy ap-
pears among the elements. In a way, the hierarchy is 
blurred.7 Thus, in order to simplify the data structure and 
to avoid duplicates with different labels, clusters within 
clusters (sub-clusters) are simply merged together. 

 
Figure 9. Sub-clusters merge 

In the case where two clusters have distinguished and 
shared elements (overlapping clusters), they are simply 
considered as two different entities with common ele-
ments. 

 
Figure 10. Overlapping clusters split 

                                                             
7 That is because the overlaps allow a single element to belong to multi-
ple clusters at once, thus making the clusters more difficult to distin-
guish. 

Being inherent to the agglomeration strategy described 
earlier, this particularity becomes very interesting when 
translated into musical terms. In this sense, the overlaps 
may be seen as common notes between different chords. 
Such case often leads to what is known as voice-leading 
patterns. This technique is widely used in music to se-
quence various harmonic structures such as the typical 
(VI-II-V-I) chord progression in tonal music. This work 
being audio feature oriented, the previous analogy could 
be translated to some kind of timbre voice-leading where 
the overlaps, or the intersections between clusters, be-
come pivots for commuting between two distinct groups 
of sounds [27]. 

5. DATA SORTING 
5.1  Clusters Space Analysis 

The clusters space analysis (post-clustering) is about 
gaining more insight on the resulting network. The same 
way as for the single-layer relational space presented 
earlier, the idea is to visualize the clustered space net-
work in order to have a better understanding of its core 
structure and to provide crucial information for later 
graph exploration. 

5.1.1 Intra-cluster modelling 

The intra-cluster modelling consists of generalizing the 
features of each cluster. The idea of creating these global 
models is to obtain a general, but still accurate, descrip-
tion of every single cluster. In a way, it is to find the 
theoretical centre of mass or the barycentre of each clus-
ter.8 Since the clusters are composed of sounds, the global 
models are obtained by merging the corresponding audio 
features and by accumulating the results in a list (vector), 
the latter being the global model (barycentre) itself. In 
this case, each data point of the resulting vector is calcu-
lated as the arithmetic mean of the arithmetic means of 
each audio feature respectively.  

 
Figure 11. Intra-cluster modelling 

                                                             
8 As for the previous single-layer relational space, this information is 
essential to outline the resulting network. 
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Similar to the temporal modelling, each coefficient of a 
multidimensional feature is considered as an individual 
time series and is treated consequently. Thus, each coef-
ficient represents a different data point calculated as the 
mean of the means in the resulting vectors. 

5.1.2 Audio clustering (Neat clustering) 

At this stage, the user may decide to reformulate the 
clustering in a way to remove the fuzzy components, the 
sounds that are assigned to multiple clusters, in order to 
obtain a neat clustering where each sound belongs to a 
single cluster. That is done by measuring the distance 
(magnitude) between the sounds and the centre of their 
assigned clusters in order to identify the closest and make 
it the final assignation.9 For that, each sound has to be 
modelled similarly to the previous intra-cluster modelling 
method in order to assess the distance to its clusters bary-
centre. Since a sound is a single element, the difference is 
that there is no need to average the means of each audio 
feature. 

 
Figure 12. Single-sound modelling 

Considering that both global models, the intra-cluster and 
the single-sound, are expressed as vectors of information, 
the Mahalanobis distance (1) appears to be the most ap-
propriate measurement in this case also. Using this last 
clustering method, the circular shape of clusters, as seen 
in figure 8, may now be seen as if they were closed under 
vacuum from their centre. 

 
Figure 13. Neat clustering in the features-space 

                                                             
9 From a probabilistic point of view, it is to say that the closer a sound is 
to the centre of a cluster, the more probable it is to belong to it. 

5.1.3 Inter-cluster analysis 

Similar to the features-space analysis described earlier, 
the inter-cluster analysis consists of measuring the dis-
tance (magnitude) between each cluster’s barycentre. For 
that, the Mahalanobis distance (1) also appears to be the 
most adequate measurement in order to process this type 
of data structure. Then, as for the single-layer relational 
space, a distance matrix is built from the previous calcu-
lations in order to outline the underlying network.10 

Although this could be enough to unravel the network, it 
appeared to be important to add a second element in the 
process with respect to the fuzzy clustering approach. 
That is to use the Jaccard distance [28]. While the Ma-
halanobis distance informs a metric distance between two 
theoretical barycentre, the latter informs a similarity level 
(distance interpretable) based on the ratio of two given 
cluster’s intersection (shared components) and their union 
(combined components).11 In this case, the Mahalanobis 
distance [0. +inf.] is simply weighted (multiplied) by the 
Jaccard distance [0. 1.].  

𝐽	𝑑 𝐴, 𝐵 = q∪s , q∩s
q∪s

                       (8) 

While the latter is useful to arbitrate between two clusters 
having the same Mahalanobis distance to a third one, the 
former is useful to keep track of two others not sharing 
any components (no intersection) with another one. 

 

 
Figure 14. [top-left] Clusters with shared components, 

[bottom-right] Clusters without shared components 

In figure 14 (top-left), if the Mahalanobis distance be-
tween cluster no.1 and cluster no.3 equals 1, and that 
between cluster no.2 and cluster no.3 also equals 1, but 
that the Jaccard distance between cluster no.1 and cluster 
                                                             
10 Since it is based upon clusters of sounds (audio features), the resulting 
matrix may be seen as a clusters-space distance matrix by analogy to the 
previous features-space distance matrix. 
11 Similar to the idea of distance triangulation, here also, it is about 
combining two different perspectives on a unique case in order to 
strengthen the results of the analysis. 
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no.3 equals 0.82, and that between cluster no.2 and clus-
ter no.3 equals 0.91, the conclusion is that cluster no.1 
and cluster no.3 are closer (smallest distance). In the 
other case (figure 14 bottom-right), since there is no in-
tersection between any of the clusters, the Jaccard dis-
tance equals 1 (maximum distance) for every pair. Thus, 
the Mahalanobis distance remains the only, and suffi-
cient, measurement index to compare them. 

5.1.4 Multi-layer relational space 

Following the intra-cluster modelling and the inter-cluster 
analysis, the resulting clusters-space distance matrix can 
be used, also with the help of Gephi, to visualize the 
underlying network. In this case, the nodes represent the 
clusters and the edges represent the distances between 
them. From this perspective, the resulting relational space 
is multi-layered. In other words, the network is itself 
composed of networks. Meaning that each node (cluster) 
embeds a smaller network of the same type. 

 
Figure 15. Clusters-space network 

Regarding the overlapping clusters, it is now clear that 
the more they overlap, the closer they are. Consequently, 
this approach already suggests ways for navigating 
through the network (distance based) towards the previ-
ous idea of timbre voice-leading. 

5.2 Graph Exploration 

Far from being exhaustive, the following section propos-
es two simple approaches for the user to start structuring 
music from the previous clusters-space analysis. In this 
sense, the graph exploration consists of finding path(s) 
that could suggest way(s) of sequencing the different 
clusters of sounds in some kind of chronological order. 
Considering that the resulting network, as yielded from 
the clusters-space analysis, translates to a complete, undi-
rected and weighted graph, two types of approaches seem 
to apply quiet naturally. The first one is to find Hamilto-
nian paths and the second one is to find Spanning trees. 

5.2.1 Hamiltonian paths 

A Hamiltonian path is verified when a trail in a graph can 
visit each node (cluster) exactly once. The starting and 
ending node may not be the same. If they are, the path is 
a Hamiltonian cycle. 

 
 

Figure 16. Hamiltonian cycle 

Considering that the clusters-space graph is complete, 
thus having n! Hamiltonian paths, the following problem 
is not how to find them but rather what kind to find. In 
this sense, the well-known traveling salesman problem 
(TSP) seems to provide an interesting premise.12 Then, 
from a compositional angle, the shortest Hamiltonian 
path would represent an ordered sequence of clusters for 
which the total distance is minimal. In other words, the 
clusters would be sorted in a way that the global similari-
ty is maximized.  
 
Usually, two approaches may apply to solve a TSP. The 
first is to use exact algorithms, which works reasonably 
fast for small problem sizes. The second one is to use 
heuristic algorithms, which deliver either seemingly or 
probably good solutions. Considering that the running 
time for exact algorithm lies within the factorial of the 
number of cities, this approach becomes impractical even 
for only 20 cities [30]. For that reason, the heuristic ap-
proach is often preferred. In the frame of this work, two 
types of heuristics, the nearest neighbour algorithm [31] 
and the Concorde TSP Solver [32], are available for the 
user to estimate the shortest Hamiltonian path from any 
given clusters-space network as described before. 

5.2.2 Spanning trees 

A spanning tree of an undirected graph is a subgraph that 
includes all of the nodes. In general, a graph may have 
several spanning trees. They can be defined as a maximal 
set of edges from the initial graph that do not contain any 
cycle [33], or as a minimal set of edges that connects all 
nodes together [34].  

 
Figure 17. Spanning tree 

                                                             
12 The TSP asks the following question: Given a list of cities (nodes) 
and the distances between each pair of them, what is the shortest possi-
ble path that visits each city exactly once and returns (or not) to the 
origin city? [29] 
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Considering that the clusters-space graph is complete, 
thus having nn-2 number of spanning trees [35], the prob-
lem is similar to as formulated before. It is not how to 
find them but rather what kind to find. In this sense, the 
minimum spanning tree (MST) seems to provide another 
interesting premise. Similar to the shortest Hamiltonian 
path, a MST is a subset of the edges of an undirected and 
weighted graph that connects all the nodes together with 
the minimum possible total edge weight without any 
cycles. In other words, it is a spanning tree (not a path) 
whose sum of edge weight is as small as possible [36]. 
Hence, the MST does not represent an ordered sequence 
of clusters but rather some sort of an optimized road map 
through the clusters-space from which the user can trace 
its own way. However, the clusters remain connected in a 
way that the global similarity is maximized. In the frame 
of this work, the Kruskal algorithm [37] is available for 
the user to find the minimum spanning tree for any given 
clusters-space network as described before. 

5.2.3 Discussion 

As shown in the previous section, the MST is similar to 
the TSP in the way that both approaches look for a subset 
of edges that connects all the nodes together with the 
minimum possible total weight (or distance). The main 
difference between them is that the TSP leads to a se-
quenced solution (path or cycle) while the MST leads to a 
solution that is not sequenced (no path nor cycle). Hence, 
they provide a different representation, thus a different 
point of view on the same problem. While the algorithms 
used to solve the TSP lead to a closed pattern solution for 
exploring the space, the MST leads to an open one. In a 
way, the latter may offer more flexibility to explore the 
space and to structure music. However, both approaches 
appear to be an interesting way for exploring the clusters-
space towards the idea of timbre voice-leading discussed 
earlier.  
 
Although the previous section covered only a few types 
of a large number of graph search methods, it is clear that 
there is a rich potential into using these techniques for 
structuring music in the continuity of audio clustering. 
Therefore, further investigations will be conducted in this 
field in order to bridge the analytical approach (audio 
clustering) to the compositional approach (structuring 
music).  In this sense, it is important to mention that, in 
this specific context, the graph search algorithms should 
be used, and or developed, to solve creative problems 
rather than optimization ones. Actually, the whole pro-
cess should be engaged with artistic purposes in order to 
exploit the full potential of this approach. 

6. EXEMPLIFICATION 
http://repmus.ircam.fr/lebel/structuring-music-by-means-

of-audio-clustering-and-graph-search-algorithms 

7. CONCLUSIONS 
Based on previous works achieved in the field of music 
information retrieval such as corpus-based concatenative 
synthesis, musical genre recognition and computer-aided 

orchestration, this article exposed a different framework 
for audio clustering with applications to computer-aided 
composition. Contrary to its predecessors, this framework 
is built towards structuring music rather than generating 
sound material. In other words, it is engineered to act on 
a larger scale than in the other cases. Consequently, the 
method is designed in an attempt to render this level of 
perspective through the different processing stages. 

7.1 Latent Problematics 

As discussed along this article, many questions related to 
sound perception remain open despite solutions are put 
forward. Among those, the approach to temporal align-
ment (section 3.3) should be further investigated in order 
to have a better understanding on the effect of time 
(sound durations) through sound perception for measur-
ing the similarity between sounds with more accuracy. 
Another one is the method for measuring the similarity 
itself. Using more than one approach simultaneously 
(magnitude, orientation and dependency), as in the frame 
of this work, seems to be a fairly good solution but the 
problem of interpreting the results accurately remains 
open. More specifically when comparing a sound and its 
inversion, or its retrograde as discussed earlier (section 
4.1.4).  Another problem is the shape of space implied by 
the distance triangulation (section 4.1.4) and the dimen-
sionality reduction (section 4.1.7) methods discussed 
earlier and their impact on the shape of clusters. Although 
the Euclidean space seems to be well suited for achieving 
such tasks in the frame of this work, this question is an-
other one that should be further investigated from a per-
ceptual angle. Another one is related to the graph explo-
ration. Considering that the context of this work is art 
oriented, the graph search algorithms should be further 
investigated from a perceptual angle rather than an opti-
mization one in order to exploit the full potential of these 
tools into the creative process. In this sense, these algo-
rithms should be further evaluated for their musical affect 
rather than for their efficiency. In other words, the ques-
tion is about the kind of musical structure the various 
graph search algorithms may lead to. 

7.2 Notable Limitations 

Obviously, this approach comes with a certain lot of 
limitations regarding the type of input, the consequent 
space of variables, the clustering method itself and its 
manipulation. The first notable limitation is thus about 
using raw audio signal as main input. Contrary to main-
stream CAC approaches, it may be seen as an advantage 
but it is actually its main disadvantage because the quali-
ty of the output is inevitably correlated to the quality of 
the input and also because the whole process depends on 
it. As discussed earlier, the signal modelling may then 
require a lot of time (section 3.1). Another limitation is 
related to the use of low-level audio features. Although 
the resulting space of variables may quickly become very 
complex and give the impression of covering a very large 
spectrum of sounds, the results remain interpretable on a 
low-level basis only, meaning that no aesthetical nor 
emotional affects may be considered using such an ap-
proach. Then, the clustering method is itself another no-
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table limitation. Based on unsupervised learning, the 
method does not provide any information on the clusters 
components other than a similarity index. In other words, 
the results are simply quantitative and not qualitative. 
Hence, the interpretation remains confined to low-level 
concepts. Finally, the complexity of this tool may be a 
limitation itself. For instance, an ‘uneducated’ user may 
end spending a lot of time understanding the multiple 
parameters of this approach and their impacts on audio 
clustering. However, repeated experiments may lead to 
develop a different way of listening to sounds and even-
tually to use this tool as an ear trainer instead as for 
straight forward audio clustering. 

7.3 Future Works 

As mentioned before, the most important addition to this 
framework concerns the graph search strategies and relat-
ed algorithms. Consequently, this topic is in the priority 
queue for future works. Also, different audio features are 
planned to be added and/or developed in order to offer a 
wider range of variables for deeper audio clustering. 
Besides improving the current framework, other applica-
tions and approaches are also on the way for develop-
ment. Another application of audio clustering that is 
being investigated at the moment, using the same frame-
work, is for musical structure analysis/extraction directly 
from audio signals. Also, a similar framework, based on 
semi-supervised learning, is under development for the 
user to create its own invariant models from which the 
clustering can be computed. In a way, the latter is thought 
to overcome the limitation of low-level interpretation by 
integrating higher-level variables. In this case, the objec-
tive is not to outline a quantitative network but rather to 
create different qualitative scales in order to provide the 
user with a higher level understanding of its sounds.  

7.4 Backend discussion 

The advent of electricity, in its relation to sound, has 
permanently modified the way of perceiving sounds 
and consequently deeply expanded the notion of 
musical meaning. The sensibility of the listener, like 
the composer or the performer, has then changed.  
Since decades, the ear has been sensitized to the 
subtleties of sounds and has been led to discover 
meaning in the qualities of new sonic territories. 
The continuous nature of these qualities encourages 
henceforth to reason on the motion of sound and to 
consider sound events as a state of it. In this sense, it 
may be fair to say that there are no more isolated 
objects such as melodic cells, rhythmic patterns, 
orchestral timbres or dynamic reinforcements, but 
only different states in a perpetual sound flux. Then, 
the concept of pattern, as it has been used in much 
of the music from the last centuries becomes insuf-
ficient to explain this conception of sound. What 
may be of interest to the contemporary composer is 
therefore not necessarily to create new musical ob-
jects upon which musical thoughts or actions may 
be directed, but may be to understand how to use 

those that already exist and what they can be used 
for. Is this postmodernity or postmodernism? No, 
for it proposes neither a disillusioned attitude of a 
satisfied epicureanism as the former, nor revisiting 
musical objects from the past as the latter. It is ra-
ther a question of inventing new uses for these ob-
jects, and of establishing original relationships be-
tween them. What must be the basis of musical re-
flection is perhaps no longer the object or the mate-
rial, but the relationship. Temporal, energetic, har-
monic and spectral relationships are examples. 
Hence, is it possible to elaborate musical works 
based, not on patterns proliferation or similar tech-
niques, but rather on relationships that bring togeth-
er different states of the sound continuum? Perhaps 
this is the moment to try to understand the world as 
it is instead of forcing it into a fantasised order… 
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