STRUCTURING MUSIC BY MEANS OF AUDIO CLUSTERING AND GRAPH SEARCH ALGORITHMS

If it is possible to create patterns out of tone colors that are differentiated according to pitch (melodies),

then it must also be possible to create patterns out of tone colors that are differentiated according to tone colors (sound-color melodies)

whose relations with one another work with a kind of logic entirely equivalent to that logic which satisfies us in the melody of pitches.
THE IDEA...

- Develop a CAC framework,
 - Not to generate but to analyse, to explore and to understand a given sound material,
 - An analytical rather than a generative approach to composition,
 - Deduce rather than induce (musical) structure,
 - Towards formalizing music [Assayag 1985].

- Based on the principle that sounds are form-bearing elements [McAdams 1985]
 - The framework proposes to:
 - exploit various dimensions of timbre (audio-features),
 - study some relationships between sounds (features-space),
 - discover latent (musical) structures (clusters-space).
STRUCTURAL OVERVIEW (METHODOLOGY)

Extraction
- Sound File Database
 - Pre Processing
 - Audio Features Extraction
 - Temporal Modelling

Analysis
- Features Space Analysis
 - Distance Threshold

Sorting
- Audio Clustering
 - Clusters Space Analysis
 - Graph Exploration

Musical Structure
LOW-LEVEL DESCRIPTORS +

Physical model

Perceptual model

Instantaneous TEMPORAL descriptors
- Log attack time
- Temporal increase
- Temporal decrease
- Amplitude modulation
- Frequency modulation
- Effective duration
- Temporal centroid
- Energy envelope
- Auto-correlation
- Zero crossing rate

Instantaneous ENERGY descriptors
- Loudness
- Loudness spread
- Relative Specific Loudness

Instantaneous SPECTRAL descriptors
- MFCC
- Spectral centroid
- Spectral spread
- Spectral skewness
- Spectral kurtosis
- Spectral decrease
- Spectral roll-off
- Spectral variation
- Spectral deviation
- Spectral flatness
- Spectral crest

Instantaneous HARMONIC descriptors
- F0
- Inharmonicity
- Noisiness
- Chroma
- CS-analysis
- Partial tracking
- Peak analysis
- Masking effects

DATA EXTRACTION

Sound database → Pre Processing → Audio Features Extraction → Temporal Modeling → Features Space Analysis → Distance Threshold → Agglomerative Clustering → Clusters Space Analysis → Graph Exploration → Musical Structure
AUTOMATED FEATURES SELECTION

- **Why not use all the features we have?**
 - Some features may be *redundant*, *irrelevant* or even *misguiding*.
 - Reducing the number of features increases *interpretability*.

- **Feature evaluation criterion**
 - *scatter separability* = minimize intra-cluster distances *maximize inter-cluster distances*
LEVELS OF SIMILARITY

- **Distances** *(magnitude)*
 - Mahalanobis distance
 - *Euclidean distance*

- **Similarity** *(orientation)*
 - |Cosine similarity|
 - *Jaccard index*

- **Correlation** *(dependency)*
 - |Spearman coefficient|
 - |Pearson coefficient|
Threshold constraint \((C_t)\)
- Threshold = max distance (diametrical)
- Kind of perceptual witness...

- If \(d(x, y) \leq C_t = \text{true},\) then agglomerate,
- else, create new cluster.

Complexity = \(O(n!)=\) brute force
- Speed is traded for accuracy...

Particularities
1. isomorphic clusters,
2. overlapping clusters.
DISTANCE THRESHOLD

- **Histogram** (sparsity of x)
 - Freedman-Diaconis rule [Freedman 1981]
 - Adaptive bin width (h)
 - For number of bins (k)
What is the ‘relationship’ between clusters?

Similar process as before (dist. oriented) but...
1. Intra-cluster modelling
2. Inter-cluster analysis

To gain **more insight** on the resulting space
- visualize the clusters space...
INTRA/INTER-CLUSTER ANALYSIS

- Find the **theoretical centre of mass** (barycentre)
- Barycentre = ‘multidimensional’ vector
 - Each data point = mean of means of each audio features

- To measure the distance between each **clusters barycentre**
 - Mahalanobis distance (magnitude) * Jaccard index (similarity)
NEAT CLUSTERING (CENTROID-BASED)

- Remove the fuzzy components
- Based on **maximum likelihood**...
- Each component belongs to a single cluster
CLUSTERS SPACE NETWORK

- nodes = clusters of sounds
 - Each node embeds a local network...
Minimum spanning tree (MST)

Similar to the TSP, a MST is a subset of edges that connects all nodes together with the minimum possible total weight without any cycles. [Graham 1985]

From a compositional angle,

- Some sort of an optimized road map for which the total distance is minimal...
- Two connected clusters may or may not be the closest... (global optimum!)

[Graphs and images of a graph with labeled vertices and edges, possibly showing a minimum spanning tree.

[Kruskal 1956]
A Markov model is a stochastic model for which it is assumed that future states depend only on the current state, not on past events… (probabilistic forecasting)

- Transition layer = inter-clusters MST
- Emission layer = intra-clusters MST
A SMART(ER) SEQUENCER

- Transition period (clusters) = sequence length of n steps (n beats)
- Emission period (sounds) = step length of interval x (n beats subdivisions)

- Automatic exploration OR manual exploration (freeze, next, select)
DEMO TIME

- **Sound corpus,**
 - 47 alto saxophone multiphonics.

- **Parameters,**
 - Clustering type: Neat
 - Distance type(s): Mahalanobis
 - Audio features:
 - $k=5$: Noisiness + Kurtosis + **Spectral Variation** + CS Analysis + Masking FX
 - $k=4$: Noisiness + Kurtosis + CS Analysis + Masking FX
 - $k=3$: Spectral Centroid + **CS Analysis** + Masking FX
 - $k=2$: Spectral Centroid + Masking FX
 - $k=1$: Spectral Variation
CONCLUSIONS...

- **Latent problematics:**
 - Temporal alignment (duration vs. perception)
 - **Automated feature selection** (evaluation criterion vs. perception)
 - Levels of similarity (measurements vs. perception)
 - Implicit space (L^p space vs. perception)
 - **Graph exploration** (optimization vs. perception)

- **Notable limitations:**
 - Audio signal as input (quality dependency)
 - **Audio features as variables** (low level interpretation...)
 - Unsupervised clustering (no qualitative information...)
 - Complexity of use (knowledge required...)

CONCLUSIONS

- **Future works:**
 - Automated feature selection **evaluation criterion**
 - **Graph search strategies** and related algorithms
 - Add and develop **different audio features**
 - Semi-supervised learning approach using concept target models
 - **qualitative scales** = higher level understanding...
 - Unsupervised **musical structure analysis/extraction** from audio signal
FOR MORE INFORMATION

- http://repmus.ircam.fr/lebel
 - slideshow, paper, demo software, audio examples
STRUCTURE ANALYSIS (PROOF OF CONCEPT...)

- **Computational musicology**
 - Temporal clustering [Sandler 2008]

Assumption:

Two consecutive frames from the same section should be more similar than two consecutive frames from different sections...