

JIM JOURNÉES D'INFORMATIQUE MUSICALE **2017**

STRUCTURING MUSIC BY MEANS OF AUDIO CLUSTERING AND GRAPH SEARCH ALGORITHMS

Frédéric Le Bel - <u>http://repmus.ircam.fr/lebel</u> - 2017.

PREMISE [SCHOENBERG 1911]

- If it is possible to create **patterns** out of tone colors that are differentiated **according to pitch** (melodies),
- then it must also be possible to create patterns out of tone colors that are differentiated according to tone colors (sound-color melodies)
- whose relations with one another work with a kind of logic entirely equivalent to that logic which satisfies us in the melody of pitches.

THE IDEA...

Develop a CAC framework,

- Not to generate but to analyse, to explore and to understand a given sound material,
- An analytical rather than a generative approach to composition,
- Deduce rather than induce (musical) structure,
- Towards formalizing music [Assayag 1985].
- Based on the principle that sounds are form-bearing elements [McAdams 1985]
 - The framework proposes to:
 - exploit various dimensions of timbre (audio-features),
 - study some relationships between sounds (features-space),
 - discover latent (musical) structures (clusters-space).

STRUCTURAL OVERVIEW (METHODOLOGY)

Extraction

DATAEXIRA	ACTION									
Sound database	Audio Features Extraction	► Ten Mod	mporal delling	Features Space Analysis	 Distance Threshold	 Agglomerative Clustering	 Clusters Space Analysis	•	Graph Exploration	Musical Structure

LOW-LEVEL DESCRIPTORS +

	Physical model	Perceptual model				
	Instantaneous TEMPORAL descriptors					
Г	 Log attack time 					
	Temporal increase					
	Temporal decrease					
out of scope	Amplitude modulation					
	• Frequency modulation					
	Effective duration					
	Temporal centroid					
	 Energy envelope 					
	 Auto-correlation 					
	• Zero crossing rate					
	Instantaneous ENERGY descriptors					
		• Loudness				
		 Loudness spread 				
		 Relative Specific 				
		Loudness				
		Loudness				

higher-level... -

Physical model	Perceptual model						
Instantaneous SPE	CTRAL descriptors						
	• MFCC						
	 Spectral centroid 						
	 Spectral spread 						
	 Spectral skewness 						
	 Spectral kurtosis 						
	 Spectral decrease 						
	 Spectral roll-off 						
	 Spectral variation 						
	 Spectral deviation 						
	 Spectral flatness 						
	 Spectral crest 						
Instantaneous HARMONIC descriptors							
• F0	 Spectral deviation 						
 Inharmonicity 	 Odd to even ratio 						
• Noisiness	 Tristimulus 						
• Chroma							
• CS-analysis							
 Partial tracking 							
 Peak analysis 							
 Masking effects 							

AUTOMATED FEATURES SELECTION

• Why not use all the features we have?

- Some features may be redundant, irrelevant or even misguiding.
- Reducing the number of features increases interpretability.

Feature evaluation criterion

scatter separability = minimize intra-cluster distances * maximize inter-cluster distances

[Dy and Brodley 2004]

LEVELS OF SIMILARITY

- Distances (magnitude)
 - Mahalanobis distance
 - Euclidean distance

Similarity (orientation)

- Cosine similarity
- Jaccard index

Correlation (dependency)

- |Spearman coefficient|
- Pearson coefficient |

Mahalanobis [Mahalanobis 1936]

Cosine [Singhal 2001]

Spearman [Rakotomalala 2015]

FUZZY CLUSTERING (CENTROID-BASED)

- Threshold constraint (C_t)
 - Threshold = max distance (diametrical)
 - Kind of perceptual witness...
- If $d(x, y) \leq C_t = true$, then agglomerate,
- else, create new cluster.
- Complexity = O(n!) = brute force
 - Speed is traded for accuracy...

Particularities

- 1. isomorphic clusters,
- 2. overlapping clusters.

CLUSTERS SPACE ANALYSIS

- What is the 'relationship' between clusters?
- Similar process as before (dist. oriented) but...
 - 1. Intra-cluster modelling
 - 2. Inter-cluster analysis
- To gain more insight on the resulting space
 - visualize the clusters space...

- Find the theoretical centre of mass (barycentre)
- Barycentre = 'multidimensional' vector
 - Each data point = mean of means of each audio features
- To measure the distance between each clusters barycentre
 - Mahalanobis distance (magnitude) * Jaccard index (similarity)

CLUSTERS SPACE NETWORK

- Minimum spanning tree (MST)
 - Similar to the TSP, a MST is a **subset of edges that connects all nodes together** with the **minimum possible total weight** without any cycles. [Graham 1985]
- From a compositional angle,
 - Some sort of an optimized road map for which the total distance is minimal...
 - Two connected clusters **may or may not** be the closest... (global optimum!)

 A Markov model is a stochastic model for which it is assumed that future states depend only on the current state, not on past events... (probabilistic forecasting)

- Transition layer = **inter-clusters** MST
- Emission layer = **intra-clusters** MST

15

A SMART(ER) SEQUENCER

- Transition period (clusters) = sequence length of n steps (n beats)
- Emission period (sounds) = step length of interval x (n beats subdivisions)

Step sequencer		Те	mpo 60 <						
Run Off Beat •	Interval Weight Current : 4	n • s	teps 16 <	Direction	forwards \bigtriangledown	Editing mode	All 🗢	Fold	Transform
	4n ▽ 0 •	21						16<	left
Change interval every	8n ⊽ 0 • C4	0							right
2 Beats (Reset)	16n ⊽ 0 •								up
Count 0 Go •	32n ⊽ 10 • C3								down
Changes probability	4nd ⊽ 0 • C:	2							sort 1
changes proceeding	8nd								aort-i
Chance 75 %	16nd⊽ 0 •								scramble
Change No change	32nd⊽ 0 • 1	reeze	Jump or se	lect 0 <	Current cluster	* 0 <	Current sample #	0 <	random

Automatic exploration OR manual exploration (freeze, next, select)

DEMO TIME

Sound corpus,

• 47 alto saxophone multiphonics.

Parameters,

- Clustering type: Neat
- Distance type(s): Mahalanobis
- Audio features:
 - k=5: Noisiness + Kurtosis + Spectral Variation + CS Analysis + Masking FX
 - k=4: Noisiness + Kurtosis + CS Analysis + Masking FX
 - k=3: Spectral Centroid + <u>CS Analysis</u> + Masking FX
 - k=2: Spectral Centroid + Masking FX
 - k=1:Spectral Variation

CONCLUSIONS...

Latent problematics:

- Temporal alignment (duration vs. perception)
- Automated feature selection (evaluation criterion vs.perception)
- Levels of similarity (measurements vs. perception)
- Implicit space (L^p space vs. perception)
- Graph exploration (optimization vs.perception)

Notable limitations:

- Audio signal as input (quality dependency)
- Audio features as variables (low level interpretation...)
- Unsupervised clustering (no qualitative information...)
- Complexity of use (knowledge required...)

... CONCLUSIONS

• Future works:

- Automated feature selection evaluation criterion
- Graph search strategies and related algorithms
- Add and develop different audio features
- Semi-supervised learning approach using concept target models
 - **qualitative scales** = higher level understanding...
- Unsupervised musical structure analysis/extraction from audio signal

FOR MORE INFORMATION

http://repmus.ircam.fr/lebel

slideshow, paper, demo software, audio examples

STRUCTURE ANALYSIS (PROOF OF CONCEPT...)

