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Abstract
In this paper we present the main ideas of the
algebraic approach in the field of the
representation of musical structures. In this
perspective, well-known theories, as American
Pitch-Class Set Theory, can be considered as a
special case of the mathematical concept of
group action. We show how the change of the
group acting on a basic set enables to have
different catalogues of musical structures, as
well in the pitch as in the rhythmic domain. The
OpenMusic implementation of these concepts
offers to computational musicology the
possibility to approach music analysis with a
more firmly established theoretical background
and at the same time it leads to new interesting
compositional applications.

1 Introduction
Since the Sixties, algebraic methods have

been progressively integrated into music-
theoretical research. Many composers, like
Milton Babbitt, Iannis Xenakis and Anatol Vieru
explicitly employed group structures as an
important feature of compositional processes.
This is due, basically, to the abstract power of
these concepts, which are suitable for
application in the pitch- as well as in the
rhythmic domain. It is not surprising, therefore,
that all the composers mentioned before have
been conscious of this double perspective
offered by group theory. Some of the most
advanced formalisation of the so-called Pitch-
Class Set theory (PCS-Theory) take group-
theory as a common paradigm (Lewin, 1987;
Morris, 1987). We firmly believe that an
algebraic approach to music theory, analysis
and composition could be able to present some
well-known concepts, like Allen Forte's PCS-
Theory (Forte, 1973), in a very elegant form by
showing, at the same time, new possible
strategies for generalisation. This is the aim of
the algebraic-oriented implementation that we
realised in the visual programming language
OpenMusic developed by the musical
representations team at Ircam (Assayag et al.,

1999). Our approach, which takes into account
several families of groups, aims at giving the
possibility to the music-theorist and composer to
choose between different libraries, according the
different meaning of the notion of 'musical
equivalence'. In the case of the library Zn we
used the algebraic properties of the cyclic group
Z/nZ of order n and the action of this group on
itself. This provides an algebraic formalisation of
the musical concept of transposition. By
considering transpositions and inversions, we
obtain a new group, the dihedral group, whose
action on Z/nZ leads to Allen Forte's 224 pitch-
class sets. The possibility of applying such
structures in analysis, as well in composition, is
profoundly related to the group-theoretical
paradigm that has been considered. This is
crucial in a domain like computational
musicology in which the computer-aided
manipulation of musical structures, particularly in
analysis, is always subjected to methodological
procedures and epistemological discussions.
The concept of group, and that of group action in
particular, is far from being simply a technical
tool. By quoting the French mathematician Henri
Poincaré, "the general concept of group pre-
exists in our minds. [It] is imposed on us not as a
form of our sensibility, but as a form of our
understanding" (Poincaré, 1905).
In the following section we summarise some
basic group-theoretical concepts. Section 3
describes transposition classes of chords in
terms of group action. Section 4 shows how the
same concept enables to formalise PCS-Theory
simply by changing the group acting on a given
set. The analogy between equivalent classes of
chords and rhythmic orbits under some group
action is discussed in section 5 by means of a
special family of rhythmic canons, called "tiling
canons". Some open problems arising from the
rhythmic interpretation are discussed in the final
section.

2 Some basic definitions
This section introduces some basic group-

theoretical concepts. We will discuss the musical
interpretation in the following section.
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2.1 Definition of a group
By definition a group is a set G of elements

together with a binary operation "•" such that the
four following properties are satisfied:
• Closure: a•b belongs to G for all a and b in

G.
• Associativity: (a•b)•c = a•(b•c) for all a, b, c

belonging to G.
• Identity: There exists a unique element e in

G such that a•e = e•a = a for all a in G.
• Inverses: For each element a in G there

exists a unique element a' in G such that
a•a' = a'•a = a

In particular we will concentrate on two
groups that are interesting for music: the cyclic
and the dihedral groups.

2.2 Cyclic groups
A cyclic group of n elements (i.e. of order n)

is a group (G,•) in which there exists an element
g (usually more than one) such that each
element of G is equal to g•g•… •g, where the
group law "•" is applied a finite number of times.
In other words, G is generated by g. In general a
cyclic group of order n is generated by all
integers d which are relatively primes with n ( i.e.
1 is the only common divisor of n and d). Usually
a cyclic group of order n is represented the set
{0,1,…,n-1} of integers (modulo n) and it will be
indicated as Z/nZ. Geometrically, a cyclic group
can be represented by a circle. Integers 0, …, 11
are distributed uniformly, as in a clock. One may
go from an integer to another simply by rotating
the circle around his centre by an angle equal to
a multiple of 30° - for the 12 notes group.
Musically speaking, rotations are equivalent to
transpositions, as we will see in the next
session.

2.3 Dihedral groups

A dihedral group (Dn, •) of order 2n is a
group generated by two elements a, b such that:
1. a•a•…•a = an = e where the group operation

"•" is applied n times and e is the identity.
2. b•b = e

In other words, the dihedral group Dn
consists of all 2n products a i•b j for i from 1 to n
and j=1 or 2. The name dihedral (two-faced)
stems from the fact that geometrically the
dihedral group corresponds to the group of
symmetries in the plane of a regular polygon of n
sides. These symmetries are basically of two
types: rotations and reflections (with respect to
an axis). Musically speaking, reflections are
inversions with respect to a given note that is
taken as a fixed pole.

2.4 The action of a group on a set
By definition a group (G, •) acts on a set X if

it exists a map ACTION from G×X to X such that
two conditions are satisfied:
1. ACTION (a•b, x) = ACTION (a, ACTION

(b•x)) for every a, b in G and s in X.
2. ACTION (e, x) = x for every x in X, where e

is the identity of G.
The first property is a kind of compatibility

condition between the action concept and the
group law; the second property guarantees that
the identity element of G will operate as an
"identity action", by leaving invariant each
element of the set.

Two elements x, y in a set X are conjugated if
they are the image one of the other under the
action of G on X, in other words if there is an
element a in G such that y = ACTION (a, x).
Conjugation is an equivalence relation (it is
reflexive, symmetric and transitive). Equivalence
classes under an equivalence relation are also
called orbits. Musically speaking, the actions of
the cyclic group (on the set of pitches) defines
transposition classes of chords. Orbits under the
action of the dihedral group correspond to the
so-called pitch-class sets.

Before discussing the musical relevance of
these two actions, we would like to introduce a
new interesting operation on Z/nZ: the affine
transformations. By definition an affine
transformation from Z/nZ into itself is a function f
which transforms a pitch-integer x into ax+b
(modulo n) where a is an integer relatively prime
with n and b belongs to Z/nZ. In the special case
of n=12, the multiplicative factor a belongs to the
set U={1,5,7,11}. Note that an affine
transformation reduce to a simple transposition
by taking a=1. On the other side, inversions are
affine transformations with a=11.

Therefore, the choice of a specific group
acting on a set is not only a technical problem
but has some interesting musicological
consequences. Z/nZ, Dn and the group Affn of
affine transformations enable different definitions
of the concept of musical equivalence. Note that
two structures that are equivalent under Z/nZ
are naturally equivalent in Dn. The same holds
for two equivalent structures in Dn. They will be
equivalent in Affn. The following two sections
describe the case of Z/nZ and Dn. The case of
affine orbits is an open field of research
(Mazzola, 2002). A comparative example of
musical orbits under the three previous groups is
given at the end of section 4.

3. Transposition classes of
chords or the action of Zn on Zn



As pointed out somewhat emphatically by
Iannis Xenakis, it is a fact that "after the Twenty-
five centuries of musical evolution, we have
reached the universal formulation for what
concerns pitch perception: the set of melodic
intervals has a group structure with respect to
the law of addition" (Xenakis, 1965). In other
words, any division of the octave in a given
number n of equal parts can be represented as a
group, the cyclic group of integers modulo n,
with respect to the addition modulo n.

Figure 1 shows the usual 'clock'
representation of the 12-tempered system as
generated by the well-known circle of fourths.

Figure 1. Circle of fourths in the 12-tempered
system.

In the case of the 12-tempered system we
can have three more circles in addition to the
circle of fourths that we mentioned before. They
are the circles of minor seconds, of fifths and of
major sevenths, corresponding to the integers 1,
7 and 11 respectively, all numbers which are
relatively primes with 12. As mentioned in the
previous section, the cyclic group Z/nZ could
also be considered as generated by operations,
instead of by elements. Let Tk be the
transposition of k minimal divisions of the octave
(i.e. semitons in the case n=12). For any integer
k relatively prime with n we have that Tk

generates the whole cyclic group. By definition,
given two transpositions Tk and Th we simply
define the product of transpositions as follows:
Tk • Th = Tk+h where the addition k+h is
computed modulo n.

The axioms that guarantee the group-
structure (closure, associativity, identity and
inverses) are easily verified. Moreover, this map
has two main properties with respect to Z/nZ
considered as a set:
1. (Tk • Th ) (x) = Tk (Th (x)) for every

transposition Tk ,Th and for every x in Z/nZ.
In other words, transposing a pitch-integer
by h semitons and successively by k
semitons will be the same as transposing
the pitch-integer by h+k semitones (modulo
n).

2. T0 (x) = Tn (x) = x for every x in Z/nZ, where
T0 (or Tn ) is the identity transposition. This

means that the identity transposition simply
"acts" as identity operation for a given pitch-
integer.

By remembering the definitions introduced in
section 2.4 we may conclude that musical
transpositions define mathematical actions.
Classifying transposition classes of chords is
also equivalent to study orbits under the action
of the group Z/nZ on itself. A first problem
concerns the computation of all these orbits.

A basic function of Zn library, card, enables to
calculate the number of transposition classes of
k-chords (i.e. chords with k elements) in a given
n-tempered division of the octave. The patch
shown in Figure 2 shows the situation for n=12
and n=24. There are, for example, 80
hexachords (k = 6) in the 12-tone temperament.
They are much more (5620) in the division of the
octave in 24 equal parts.

Figure 2 : Number of transposition chords for the
twelve-tone and quarter-tone temperament.

This gives an idea of the combinatorial
complexity generated by large values of n. The
problem is crucial when we apply the same
concept of group action in order to formalise
rhythm, because we do not have to impose
perceptual-motivated limitation to the length of a
rhythmic structure. We will show in the section 5
how the analogy between pitch- and rhythmic
domain leads at looking for specific algebraic
strategies helping to reduce structurally the
combinatorial explosion.

4. Pitch-class sets or the action
of Dn on Zn

After Allen Forte main theoretical book
(Forte, 1973), many implementation of Pitch-
Class Set Theory have been proposed (See, for
example, Castine, 1994). In the case of the Dn
library we adapted for OpenMusic a lisp-



implementation of PCS-Theory done by Janusz
Podrazik by adding some more general
algebraic tools. In analogy to the transposition
case, we are interested in a general catalogue of
Pitch-Class Sets for any given n-tempered
division of the octave. For this reason we use
the concept of action of the dihedral group on
Z/nZ considered as a set. This action
determines equivalence classes of chords with
respect to transposition and inversion. In the
case of n=12, this reduces the previous
catalogue of transposition classes in the 224
orbits traditionally known as pitch-class sets.
Figure 3 shows how the C-major chord is
transformed in the c-minor chord by applying an
inversion (with respect to C) and followed by a
transposition (of a fifth).

Figure 3: a chord under the action of Dn.

Note that the group is not commutative, i.e.
the change of order of the operations gives a
different result (in fact a•b = b•a' where a' is the
inverse of a). With the function Dn-card we can
calculate for given n and k the number of
'generalised' pitch-class sets of cardinality k. The
following patch (Figure 4) shows the new
situation for the twelve-tone and for the quarter-
tone system.

Figure 4: Number of orbits under the action of
Dn for the twelve-tone and quarter-tone

temperament.

Note the invariance property of the Dn-card
function between orbits with k and n-k elements
which suggest to restrict the classification to
orbits having cardinality k less or equal to n/2
without loss of generality.

To come back to the classical PCS-Theory,
we now shortly describe some basic functions of
the Dn library. We will discuss in more details a
concept that has been independently formalised
by some American theorists and some European
composers. It will be particularly useful to follow
the metamorphosis of all these pitch-
constructions in the rhythmic domain.

One of the most important concepts in PCS-
Theory is the concept of prime form that
provides a particular order in the family of
possible orbits. This order is obtained by
choosing between all possible cyclic
permutations of the pc-set (in integral mode) that
one which minimalise the distance between the
first and the last pitch classes (normal order)
eventually followed by inversions. A final
transposition would transform, if necessary, the
first pc number to 0. This is Forte's prime form1.
The following OpenMusic patch shows a random
generated hexachord will reduce progressively
to its prime form (Figure 5).

                                                
1  Note that several different algorithms for normal
form and prime form have been proposed. For

example see Rahn (1980) or Morris (1987) for two

slightly different strategies.



Figure 5: Normal order and prime form of a
randomly-generated hexachord.

The generic-function pc-set (figure 6) takes a
pitch-class set coded in Forte's catalogue as two
numerals separated by a dash (the number of
elements of the set and its position in the list of
prime- forms respectively) and transforms it into
one of the three possible presentation (of types):
• The integer mode (the ordered collection of

integers from 0 to 11)
• The vector mode (an ordered array counting

the number of occurrences of intervals from
1=minor second until 6=triton)

• The pitch mode (where, as usually, 0=C,
1=C#=Db, …, 11=B)

The pc-set in integral mode can be eventually
represented in its so intervallic structure, which
is an original concept introduced by Anatol Vieru
in the Fifties (See the catalogue of modes in
Vieru, 1980). In this representation, not to be
confused with the interval vector, a pc-set is
represented by a series of intervals that always
add up to 12. This number can be easily
generalised thanks to the Zn-function n—structure
which takes a generic integer n as an argument
(Figure 6).

Figure 6: The functions pc-set and n-structure.

It is well known that the interval vector does
not determine uniquely a pc-set. In fact, there
exist pc-sets that have the same interval vector
without being related by transposition and/or
inversions. They are the so-called Z-related sets.
An example of a pc-set which is Z-related with
the pc-set 6-z10 considered in figure 6 is shown
in the Figure 7:

Figure 7: a Z-related pc-set

A set-theoretic operation in which we would
like to concentrate now is the complementary
relation. By definition, two sets are
complementary when they form a disjoint union
of the chromatic total. Because of the prime form
concept, complementary relation may give rise
to logical contradictions. Consider the following
example (figure 8) taken by Forte's analysis of



The Rite of Spring of I. Stravinsky (Forte, 1978).2

.
The pc-set A is included in the pc-set B, for

each element of A belongs to B. The
complement of A is given by C which can be
transformed into B by using only transpositions
and inversions. Therefore, A is contained in its
complement, which is at least a problematic
conclusion!

Figure 8: A pc-set included in its complement.

Before interpreting the different orbits
catalogues in the rhythmic domain, we would
like to compare the two previous paradigms
(cyclic and dihedral) by considering a more
general action on the set of pitch-integers. This
action is provided by the so-called affine
transformations that we introduced in section
2.4. In the following examples, we show how the
different actions modify the nature of a given
chord. The first example shows the action of
Z/nZ on a C-major chord. This chord is simply
transformed into another major chord:

In the case of the Dn-action, chords can be
transposed and/or inverted. In this special case,
the C major chord has been transformed into the
G# minor chord. Therefore, major and minor
chords are equivalent in this paradigm:

                                                
2  This example is also discussed in Chemillier

(1987).

The last example shows how the chord is
transformed by means of an affine map.

One may ask for musically-motivated reasons
for including affine orbits in a catalogue of
musical structures. This concept, which seems
to be problematic in the pitch domain, appears
as extremely natural in the rhythmic domain.
Augmentations, which are classical tools in the
construction of musical canons, are,
mathematically speaking, affine transformations.
We will now discuss some of these properties in
the rhythmic domain.

5. The rhythmic analogy: the
case of "tiling canons"

The algebraic model of rhythm, as it has
been proposed by Dan Tudor Vuza, is strictly
related to the Zn paradigm (Vuza, 1988). In this
general framework, rhythms are translation
classes of chords under the action of the
additive group Q of rational numbers. We
already discussed some new results that were
obtained by the implementation of this model in
OpenMusic (Andreatta et al., 1999). This section
aims at generalising some questions concerning
rhythmic tiling canons inside of the Dn paradigm.

By definition, a rhythmic canon is given by a
rhythmic pattern which is translate in the time
axis a given number of times (which is equal of
the number of voices). The rhythmic pattern is
represented as an intervallic structure where 1 is
the temporal distance between two successive
possible onset-times. Figure 9 shows a
particular rhythmic canon in 4 voices obtained by
the time translation of the pattern R=(2 8 2)
according with the interval content of the pattern
S=(5 1 5 1) which corresponds to the onset-time
0, 5, 6, 11.



Figure 9: a tiling rhythmic canon.

 Note that the canon tiles completely the time
axis by producing a regular pulsation (when all
voices play) in which no holes occur and no
voices overlap. A rhythmic canon of this type is
called a regular complementary canon.
Algebraically, the problem of construction of a
regular complementary canon is equivalent to
the factorisation of a cyclic group Z/nZ in a direct
sum of two subsets, as it is shown by the Figure
10.

Figure 10: factorisation of Z/12Z in two subsets.

This problem becomes very difficult once a
particular condition is imposed on the structure
of the two subsets. For example, by avoiding
Messiaen's limited transposition property in both
subsets, one may show that no canon of this
type exists for n less than 72 (Andreatta et al.
1999).

The following example enables to understand
why we payed so much attention to the concept
of group action and to the possibility to switch
from the Zn to the Dn paradigm. We take a
hexachord which is known in the music-

theoretical literature as inversional combinatorial
hexachord. This means that its complement
cannot be obtained by simple transposition, as it
is clear from Figure 11. An inversion is
necessary, so that we are naturally inside of the
Dn paradigm.

Figure 11: An inversional combinatorial
hexachord.

In the rhythmic interpretation, as shown in
Figure 12, it leads to the construction of rhythmic
canons in which different voices could be
translation or inversions of a given rhythmic
pattern. The property of tiling completely the
time axis, without intersection nor holes between
the voices enables to speak of regular
complementary canons by inversion.

Figure 12. The rhythmic realisation of an
inversional combinatorial hexachord.

5. Conclusion
Algebraic methods provide an elegant way to

formalise musical structures, as well in the pitch
as in the rhythmic domain. It enables a better
structural understanding of well know musical
systems, like Pitch-Class Set Theory, by
describing it as a special case of a more general
classification process. The rhythmic
interpretation of pitch orbits under some
classical actions confirms the usefulness of
looking for general properties in n-tempered
systems. The implementation of all these
theoretical concepts, as we have done in
OpenMusic, offers a very user-friendly approach
to theoretical questions that may be applied in
music analysis or may eventually lead to
interesting compositional processes. One
example is given by the construction of what we
called "tiling rhythmic canons". Their



implementation represents a long-time project
motivated by the same group-action paradigm.
Canons obtained by transposition or inversions
are but special cases of a more general
transformation process that can be described by
means a new group: the affine group. This leads
to the concept of "generalised augmentation" i.e.
the action of the affine group Affn on Z/nZ and
opens the problem of implementation and
classification of what we call " augmented tiling
canons"(Andreatta et al., 2001).
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