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ON GENERALIZED INTERVALS

AND TRANSFORMATIONS

‘David Lewin

In an earlier paper, I proposed a certain approach to the formal
study of pitch-class intervals and transformations.! There, I gave a
number of reasons for developing such an approach; here I intend to
demonstrate yet another of its values, that is, its susceptibility to wide
generalization.

In the earlier work, we had a set S containing objects s, ¢, . . . of
interest (the pitch-classes). With each ordered pair (s,t) of those objects,
we associated an “interval from s to z.”” That interval, i = int (s,1), was
a certain sort of number. Specifically, the numbers involved, the
“residues mod 12,” could be manipulated among themselves in ways
typical of mathematical groups. Intervals i and j could be combined by
adding them mod 12. The zero interval was unique in that it combined
with any interval i to form i itself. Intervals had complements: given i,
the complementary interval -i could be described as that unique inter-
val which combined with i to form the zero interval.

The manipulation of intervals by such means obeyed certain laws
which were taken for granted in the paper. For example, under the
combining rule of addition mod 12, the combination of i with j, com-
bined with k, produces the same result as does i/, combined with the
combination of j with k. That is, (i+j)+k = i+(j+k) mod 12. This ‘“Asso-
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ciative Law”, together with another, the Commutative Law, implicitly
assumed by the paper, were necessary for the formal inference of the
results obtained. In mathematical language, we used the fact that the
residues mod 12 form a “commutative group” under addition mod 12.

When we generalize the earlier work presently, we shall suppose
that the generalized “intervals” under consideration are members of
some commutative group. It therefore behooves us now to be more
formal about that notion. By a group, we understand a set G, together
with a combination rule which will be denoted here by the symbol *.
This rule assigns, to any ordered pair (i,/) of members of G, a certain
member of G which we shall denote i*i. The notion of i-star4 gener-
alizes i-plus+, i-times+, i-plusj-mod 12, etc. For G-cum-* to form a
group, certain features must obtain. First, the combination must be
associative, obeying the law discussed earlier: for every choice of
i, j, and k, we must have (i*/)*k = i*(j*k). Second, there must exist
an identity element in G, that is an element e of G which combines
with any given i to form that i: e*/ = i*e = i. (In the group of residues
under addition mod 12, the zero residue plays this role.) One can de-
duce that, given the associative law, there can be at most one such
identity element in G, hence the one which is stipulated to exist is
unique, and we can speak of “the” identity of the group. Third, given
any i/ in G, there must exist a member i’ of G which combines with
i to form the identity: i'"*i = i*i’ = e. One can show that, given i, such
an i’ is unique. It is called the inverse of i in the group. (In the group
of residues mod 12, the inverse of i is the complement - mod 12.)

Members i and j of a group are said to commute (with each other
or as a pair) if i*% = j*i. A group G is called commutative or non-com-
mutative depending on whether it is, or is not, the case that every i
in G commutes with every jin G.

We are now ready to state a highly generalized form of the system
developed in the earlier paper. Let G be some commutative group,
to serve as a group of generalized “intervals.” Let S be a set containing
objects s, #, . . . of interest. Suppose that we can associate with each
ordered pair (s5,7) of those objects a certain “interval from s to £, a
quantity i=int(s,f) which is a member of the group G. Suppose further
that conditions (1), (2), and (3) following obtain.

(1) For any choice of objects s, ¢, and u, the interval from s to
t, when combined in G with the interval from ¢ to u, yields the
interval from s to u. That is, int(s,£)*int(z,u) = int(s,u).

(2) For any choice of objects s and ¢, the interval from ¢ to s is
the inverse in G of the interval from s to ¢. That is, int(z,s) = int(s,7)’.

(3) Given any object s and any interval i in G, there is a unique
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object ¢ which lies the interval i from the given s, that is, which
satisfies the equation int(s,?) = i.

These three conditions supposed, we can then demonstrate formal-
ly—that is, by deductive logic alone—results (4) through (7) following.

(4) For each interval i in G, the operation T; of “transposition
by i” can be defined on S. Given a specimen object s, its i-transpose
is that (unique) object ¢ = T;(s) which lies the interval i from the
given s. That is, Tj(s) is uniquely defined by the relation
int(s, T;(s)) =i.

(5) Given objects « and v, the operation 4V of “inversion taking
u to v” can be defined. Given a specimen object s, the inverted image
IV (s) of s is that (unique) object whose interval from u is the same
as the interval from s to v. int(u,/%V(s)) = int(s,v).

(6) Let us consider various transformations X, Y, .. . which
permute the objects of S. Let us call X “interval-preserving” if
int(X(s), X(¢)) = int(s,¢) for all choices of s and #. Let us call ¥
“interval-reversing” if int(Y(s), Y(¢)) = int(z,s) for all choices of
s and t. Then theorems (a) and (b) following can be proved. (a)
X is interval-preserving if and only if X is a transposition-opera-
tion. (b) Y is interval-reversing if and only if Y is an inversion-
operation.

(7) The transpositions T; and the inversions /4¥ combine among
themselves according to the laws (a) through (d) below.
(2) T;Tj = Ty, where k=i*;.

(b) T4V = YW where w=T;(v).
(c) VT = TquV where j = i’, the inverse of i.
(d) MvWX = T; where i=int(w,v)*int(x,u).

(In the above formulas for (7), each operation-equation of the form
XY = Z is to be read: for any sample s, X(Y(s)) = Z(s). That is, if you
first perform Y on the sample object s, and then perform X on the ob-
ject Y(s), the net result will be the same as that of performing Z on s.)

To recapitulate: the results (4) through (7) can be inferred logically
from the stipulations (1) through (3), together with the supposition
that the intervals under consideration combine and have complements
(inverses) in a commutative group. The method of inference follows
exactly the formal arguments and proofs elaborated in the earlier
article, to which the curious reader is referred. Such a reader will note,
in particular, that the commutativity of G is essential to the logic of
the proofs for (6) and (7); this is a crucial point to which we shall
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return later. If G is not commutative, our intuition concerning the
operations (still) defined by (4) and (5) is not reliable; it may, for
instance, happen that 4V and /¥ are different operations in that case.

Some examples will illustrate the generality of the (commutative)
system we have developed, as well as some of its problems and limi-
tations. For Example 1, let S be the family of all durations. We can
imagine the quantities s,z, . . . to be positive real numbers, telling us
how long the durations are as multiples of some fixed unit of time.
Let us consider the “interval from s to ¢” here to be the quotient
t/s. Taking that quotient as int(s,z), we see that such intervals are
themselves positive real numbers. That family of numbers forms a
commutative group under multiplication. (Multiplication is associa-
tive and commutative, 1 is the identity, and the group inverse of
[ is its reciprocal 1/i.) One can also verify that stipulations (1) through
(3) obtain in this model. Specifically, int(s,#)*int(t,u) = (¢/s) W/t) =
ufs = int(s,u); thus stipulation (1) obtains. And s/¢, the interval from
t to s, is the reciprocal (inverse in G) of ¢/s, the interval from s to ¢;
thus (2) obtains. Finally, given a duration s and an interval i, then
any duration ¢ which lies the interval i from s must satisfy int(s,) =,
that is #/s = i. It is clear that the duration ¢ = i-times-s is a unique such
duration; hence (3) obtains.

We can now conclude, without further ado, that all of the results
(4) through (7) obtain in this model. Via (4), we can see that trans-
posing s by i amounts to multiplying s by i : T;(s) = is. Given u and
v, T4V takes a sample duration s to the inverted duration I(s) defined
by formula (5): I(s)/u = v/s. (That is, I(s) is j times as long or as short
as u, where v is j times as long or as short as the specimen s.) From
the latter relationship we can compute I(s) = uv/s. Theorem (6) tells
us that these transpositions and inversions are respectively the inter-
val-preserving and the interval-reversing operations on durations, in
the present sense of “interval.” And formulas (7) show us how to ma-
nipulate the labels attached to those operations when we combine them.

While the system just studied behaves well formally, it is problem-
atical as a model for musical rhythm in all contexts. Let us leave aside
the fact that S contains indefinitely long and indefinitely short dura-
tions; let us also ignore the fact that S contains an infinitude of even
those durations of potential practical musical interest; problems analo-
gous to these have been confronted effectively in a variety of pitch-
systems. Let us rather concern ourselves here with the fact that our
perception of relations among musical durations is at least as much
additive as multiplicative, particularly in the foreground of rhythmic
textures. That is, given durations s and ¢, we often perceive ¢ as so much
longer (or shorter) than s by a certain difference t-s, rather than so
many times as long (or as short) by a certain factor ¢/s.

246



For Example 2, let us then try to construct a model in our system,
using the same family S of durations, but now taking int(s,z) to be
the difference #-s of the durations ¢ and s. E.g. int(s,) = 3, -2 or 0 if
t is respectively 3 time-units longer than, 2 units shorter than, or the
same length as s. Our group G will be all real numbers, combined by
addition. That is, i*j will mean i+j. (It is easily verified that G-cum-*
is indeed a commutative group.) Stipulation (1) obtains: given s, ¢
and u, then int(s,2)*int(z,u) = (t-s)*(u-t) = u-s = int(s,u) as desired.
Stipulation (2) also obtains: given s and ¢, then int(z,s) = s-t = <(t-s) =
int(s,7)" as desired. But stipulation (3) does not obtain for this model:
given a duration s and an interval i/, we can not always find a duration
t satisfying #-s = i. Suppose, for instance, that s is 2 units, and i is the
interval -5 (units); we are then seeking a duration ¢ which is 5 units
shorter than 2 units of time, i.e. which lasts (measurably) 3 units less
than no time at all. Algebraically, since we demand z-2 = -5, we would
have to have ¢ = -3. Our present model makes no sense of this concept;
the members of S are supposed to measure only positive quantities of
time. Hence our general system is not realized by this model. To
realize the system, one sees that we will have to be able to attribute
a meaning to “negative durations” as objects in the family S. This can
be done by adopting any of a variety of conventions. Any such con-
vention, though, would involve changing the nature of S and/or G.

Rather than pursuing such possibilities here, let us instead investi-
gate another, related, model as our Example 3. We take S here to be
the family, not of durations, but of time-points. We shall label each
member s of S by a real number, positive, negative or zero, measuring
the distance of s from an arbitrary zero time-point, in units of time.
We take the interval from s to ¢ to be the numerical difference #-s;
this interval is then, for example, 3, -2 or O respectively as time-point
¢t occurs 3 units later than, 2 units earlier than, or exactly at the same
moment as time-point s. In this model, durations arise not as objects
but as intervals between objects. A negative duration, as int(s,?), simply
means here that ¢ occurs before s. G is taken as the group of all real
numbers, combining under addition. It is easily verified, as in the
work for Example 2, that stipulations (1) and (2) obtain here. Stipu-
lation (3), which failed for Example 2, is now valid for Example 3.
Given a time-point s and i units of time, we can find a unique time-
point ¢ satisfying #~s = i. If i is positive, ¢ occurs i units after s, if i
is negative, ¢t occurs (<) units before s. Without further ado, we can
now conclude that all the results of (4) through (7) are valid for this
system. It should be noted that int(s,#) is independent of the “arbi-
trary zero time-point” selected earlier; int(s,) still does depend, how-
ever, on the unit by which time is being measured (e.g. the “beat,”
the “measure,” the “whole note,” a second, a centimeter of tape, etc.)
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Other rhythmic models instancing the general system can be studied.
An important class of such models is obtained by combining one of
the models already studied (including Example 2) with notions of
“equivalence” among certain classes of durations and intervals, in a
manner analogous to the formalism induced by “‘octave equivalence”
among classes of pitches.? Another important family of models involves
quantization of the sets S and groups G, so as to involve discrete or
even finite, rather than continuous, families of objects and intervals.?
Most such reduced models instance the general system: one obtains a
(reduced) family of durations, duration-classes, time-points or time-
point classes, and a (reduced) commutative group of formal intervals
spanned by ordered pairs of those objects, such that stipulations (1),
(2) and (3) obtain. Without further ado, results (4) through (7) will
be valid.

For a more complex and less familiar model exemplifying the gen-
eral system, I propose to investigate intervals between “spans.” By a
“span,” I shall mean an ordered pair s = (s, s;) of real numbers,
positive, negative or zero, such that s, is less than s, . The lesser number
so will be called the “beginning” of the span s, and we shall write
So = BGN(s). Similarly, s, , the “end” of s, can be denoted END(s). We
shall also have occasion to consider the midpoint of s, MID(s). This
is the number halfway between BGN(s) and END(s). The length of s
will be denoted by LEN(s), that is the difference END(s)-BGN(s).

Such numerical spans could model various musical phenomena:
So and s; might be time-points articulating the beginning and end of
a segment of time. Or, considering so and s, as frequencies, they could
articulate the low and high extremes of a certain band-limited frequen-
cy event. Or, still as frequencies, they could represent the low and
high half-power points of a certain noise or filter characteristic. Or,
now as pitches, they could represent the lowest and highest notes
present in a certain cluster. Or, again as pitches, they could articulate
the extreme notes of an active register in a certain piece at a certain
time. And so on. (In each case, we would have to specify a convention
for attributing meaning to negative values for s,, or for both s, and
§; . In each case, this could be done.)

For Example 4 we shall take, as the “interval between span s and
span £, the pair of numbers (x,a), where x is the quotient of the
lengths of the spans and a is the directed distance between their mid-
points. That is, x = LEN(¢)/LEN(s) and a = MID(¢)-MID(s). Since the
lengths of the spans are positive, x will be a positive real number; a
will be a real number.

The group G for Example 4 will comprise all ordered pairs (x,a) such
that x is a positive real number and @ is a real number. The group
combination will be defined as (x,a)*(y,b) = (xy, a+b). It is straight-
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forward to verify that this combination is associative and commutative,
that (1,0) is an identity for the system, and that (1/x, -2) combines
with (x, @) to form (1,0). So G is a commutative group.

It can be shown that stipulations (1) through (3) of the general
system obtain for this model. Now, without further ado, we can con-
clude that the results of (4) through (7) will also obtain. To transpose
the span s by the interval i = (x,a), we first expand or contract s
about its midpoint by a factor of x, and then displace the resulting
span rigidly by a units. Or, equivalently, we can first displace s rigidly
by @ units, and then expand or contract the resultant span itself about
its midpoint by a factor of x. Given spans « and v, and writing / for
"V, formula (5) tells us how to compute the span I(s), given the span
s. First we compute int(s,v): this is the pair (x,2) such that x =
LEN()/LEN(s) and a = MID(v)-MID(s). Formula (5) tells us that this
(x,a) will also be int(w,I(s)). Hence the above x also = LEN((s))/
LEN(u), and the above a also = MID(I(s))-MID(u). Working out the
equalities, we can derive LEN(I(s)) = LEN(u)LEN(v)/LEN(s), and
MID(I(s)) = MID(u) + MID(v)-MID(s). The latter equations compute
the length and the midpoint of the span I(s) in terms of the known
lengths and midpoints of the spans u, v, and s; knowing the midpoint
and the length of the span /(s) we can of course construct its beginning
and its end, i.e. we know what I(s) is.

The model of Example 4, as a means of conceptualizing and manip-
ulating intervals and transformations involving spans, enjoys decided
advantages because of the validity of (6) and (7). On the other hand,
the model has certain problematic aspects qua model. Among these
is the significance it attaches to the midpoint of each span. It is clear
that there are many musical situations in which one would not care
to assign such a priori functional significance to the midpoint of an
articulated span of, say, pitches or time-points. And, in fact, other
systems of span-intervals can be developed which do not attach such
formal weight to the midpoints of spans, and which correspond, for
many applications, to more “musical” ways of deforming spans, one
into another. Such systems, however, sacrifice the algebraic advan-
tages enjoyed by Example 4, and the considerable clarity and power
that go with those advantages.

For instance, given spans s and ¢, there exists a unique numerical
transformation of a sort called “projective” which transforms s,,
s;, and a number between into, respectively, #,, ¢;, and a number
between. If we call this projective transformation P, we can write
symbolically P(s) = t. If we follow P by another projective transforma-
tion Q of the sort under consideration, the resulting composite trans-
formation will itself be of the desired type; further, such transforma-
tions form a group under this rule of combination; that is, P*Q means
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P-followed-by-Q. Let us try defining a member P of the group to be
“int(s,#)” when P is the unique transformation of the sort under con-
sideration satisfying P(s) = ¢. If we so define int(s,¢), then stipulations
(1) through (3) of the general system are satisfied. That being so,
(4) and (5) will still provide formal definitions for “transposition” and
“inversion” operations. But very little of (6) and (7) will obtain. In
fact, it is not even the case here that IV (as defined by (5)) is the same
operation as /V%: “inversion taking u to v’ is not the same operation
as “inversion taking v to u.” The trouble is that the group under con-
sideration is non-commutative. As was mentioned earlier, commuta-
tivity in the group of intervals is essential, within the general system,
if one is to infer (6) and (7) from (1) through (3). Thus, though pro-
jective transformations are in some respects more plausible for many
musical situations than are the “transpositions” of Example 4, the pro-
jective system sacrifices a good deal of power and intuitive clarity in
exchange.

The projective system above does exemplify an interesting attitude,
though. It starts with the notion of transforming its objects, one into
another, and then defines, as the interval from s to ¢, a certain trans-
formation, unique of its sort, which carries s to z. By this means,
transposition operations are actually conceived as defining intervals,
rather than vice-versa. This is a suggestive notion. To return to the
general (commutative) system: it is often useful to think of an interval
i not as an abstract directed “distance” from s to ¢, but rather as a
label for the corresponding transposition operation 7}, a unique opera-
tion of its kind which “moves s to ¢.” The transposition operations
form a group which can be identified with the group of intervals via
formula (7a). (Mathematicians call the groups “isomorphic.”) The
reader who wishes to explore further the idea of considering trans-
position operations themselves as ‘‘intervals” will find discussion of
related matter in another of my earlier articles.*
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NOTES

. David Lewin, “A Label-Free Development for 12-Pitch-Class Systems,” Jour-
nal of Music Theory 21 (1977), pp. 29-48.

. Instances of such models have been developed, e.g., by Stockhausen and
Babbitt, in “multiplicative” and ‘‘additive” contexts respectively. See Karl-
heinz Stockhausen, “. .. how time passes . . . ,” Die Reihe 3, pp. 1040, and
Milton Babbitt, “Twelve-Tone Rhythmic Structure and the Electronic Me-
dium,” Perspectives of New Music 1 (1962), pp. 49-79.

. Babbitt’s model, in “Twelve-tone Rhythmic Structure,” has this feature.
. David Lewin, “Forte’s Interval Vector, My Interval Function, and Regener’s
Common-Note Function,” Journal of Music Theory 21 (1977), pp. 194-237.
The discussion in Parts 4 and 5 of that article is particularly to the point.
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