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Abstract

The book A Generative Theory of Shape (Michael Leyton, Springer-Verlag,
2001) develops new foundations to geometry in which shape is equivalent to mem-
ory storage. With respect to this, the argument is given that art-works are maximal
memory stores. The present paper reviews some of the basic principles concerning
our claim that, in particular, musical works are maximal memory stores. The argu-
ment is that maximizing memory storage explains the structure of musical works.
We first review the basic geometric theory of the book: A generative theory of
shape is developed that has two properties regarded as fundamental to intelligence
– maximization of transfer and maximization of recoverability. Aesthetic struc-
turation is taken to be equivalent to intelligence. Thus aesthetics is brought into the
very foundations of the new theory of geometry. A mathematical theory of transfer
and recoverability is developed, using symmetry-breaking wreath products. From
this, it becomes possible to develop a theory of musical composition, as follows:
Musical works are complex shapes. A theory of complex-shape generation is pre-
sented, in which any structure is described as unfolded from a maximally collapsed
version of that structure, called an alignment kernel. This process is formalized
by proposing a new class of groups called unfolding groups. The alignment kernel
is a subgroup of that structure, consisting of symmetry ground-states which are
themselves formalized by a new class of groups called iso-regular groups. In mu-
sic, the iso-regular groups represent the anticipation hierarchies, for example the
regular meters of the work. The process of musical composition is then described
by an unfolding group, which "unfolds" the work, by successively breaking the
iso-regular groups of the alignment kernel.

1 Introduction

The book, A Generative Theory of Shape (Michael Leyton, Springer-Verlag, 2001)
develops new foundations to geometry in which shape is equivalent to memory storage.
With respect to this, the argument is given that art-works are maximal memory stores.
The present paper reviews some of the basic principles concerning our claim that, in
particular, musical works are maximal memory stores. The argument is that maximizing
memory storage explains the structure of musical works.
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We begin by looking at the nature of geometry, generally. The book develops new
foundations to geometry that are diametrically opposed to the foundations that have
existed for almost 3000 years. The conventional foundations are strongly related to
Klein’s invariants program, which was formally stated in the late 19th century, but
whose origins can be traced back to Euclid’s fundamental concern with congruence.
Euclid’s congruence program was later generalized as Klein’s invariants program, and
the latter, in turn, became the basis of 20th century geometry and physics – for example,
Cartan’s moving-frame classification of curves and surfaces, Einstein’s special and
general principles of relativity, Wigner’s method of classifying quantum-mechanical
particles, etc.

Our book argues that the invariants program is fundamentally destructive of the
needs of modern computation. The reason is that invariants are those aspects that
are memoryless with respect to applied action: i.e., no action can be recovered from an
object which it leaves invariant, i.e., from a geometric object in Klein’s definition. Since
computing systems are required to increase memory, the invariants program defeats this
fundamental purpose. A related way of saying this is that invariants defeat generativity,
which is basic to computation; i.e., an object that is invariant under a generative operation
will not alter under the action of the operation, and thus negate the purpose of the
operation.

In contrast, the theory of geometry developed in our book is concerned with the
needs of computation. For this, we elaborate a theory in which geometric objects store
the effects of actions, i.e., act as memory stores for action. In fact, our basic claim is
this:

Shape ≡ Memory Storage.

This directly opposes the Klein program. As an example, consider the shape of the
human body. There is very little that is congruent or invariant between the developed
body and the original spherical egg from which it arose. Thus Euclid’s or Klein’s
program has almost nothing to say about this situation. However, notice that, from the
developed body, one can recover a considerable amount of the history of embryological
development and subsequent growth, that the body underwent. Therefore, it is much
more valuable to argue that the shape of the body is equivalent to the history that it
underwent, instead of invariants that should have survived in the situation. In fact,
observe that it is the absence of invariants that allows the history to be recovered.
Thus we argue that geometry should not be the study of invariants, or equivalently,
memoryless-ness; but rather it should be the study of memory storage. The book shows
that this new theory of geometry allows one to develop powerful analyses of perception,
robotics, and design.

This paper presents the theory of music that arises from the book. The purpose of
the paper is to show that music is a particular example of the theory of geometry as
memory storage.
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2 Two Basic Requirements

Let us begin by looking at the general theory of geometry, developed in the book. The
basic argument is that one substantially increases the power of geometry by establishing
a generative theory of shape founded on the following two criteria which we regard as
fundamental to intelligent and insightful behavior:

(1) Maximization of Transfer. Any agent is regarded as displaying intelligence and
insight when it is able to transfer actions used in previous situations to new situations.
For example, a robot might need to transfer a task developed for one region of a work-
space onto another region of a work-space. The ability to transfer past solutions to new
problems is at the very core of what it means to have knowledge.

Also transfer can be regarded as equivalent to re-usability, which is a major issue
driving software-development, e.g., it was the major stimulus in the development of
object-oriented technology.

The book argues that transfer is basic to aesthetics. For example, a symphonic
movement by Beethoven has remarkably few basic elements. The entire movement
is generated by the transfer of these elements into different pitches, major and minor
forms, overlapping positions in counterpoint, and so on. We argue:

Aesthetics is the maximization of transfer.

That is, transfer is the basis of all intelligent behavior, and we argue that intelligence
is equivalent to aesthetic structuration. Furthermore, those objects in which transfer is
maximized are actually those objects that people call art-works.

(2) Maximization of Recoverability. A basic factor of intelligence is the ability to
give explanations. An agent must be able to infer the causes of its own current state, in
order to identify why it failed or succeeded – and edit its behavior. This is basic, for
example, to design, where one might need to go back to a previous stage, and proceed
in a different direction.

But note also that, with respect to an apparently very different set of issues, recover-
ability is basic to computer vision which requires recovering, from the retinal image, the
environmental processes that produced that image – an inference often referred to as in-
verse optics. With respect to a related set of issues, all science is about the recoverability
of those causal processes that lead to the results on the measuring instruments.

We shall see that a basic aspect of a musical work is that it is organized to ensure
recoverability.

This section presented our two fundamental criteria of intelligence: maximization of
transfer and maximization of recoverability. It will be seen that, if generativity satis-
fies these two criteria, then it has a powerful mathematical structure. Essentially, this
involves giving a new approach to geometry that incorporates intelligence (aesthetic
structuration) into the very definition of shape.
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3 Complex Shape Generation

The primary goal of the book is to handle complex shape. Such a shape might be a
highly complex design, such as a Beethoven symphony, or an assembly in mechanical
CAD – or it might be a complex real-world scene that confronts the visual system. The
remarkable fact about the human cognitive system is that, when presented with a highly
complex structure, such as a real-world scene, it is able to convert the complexity into
an entirely understandable form. This exemplifies the general problem that we will
investigate:

(1) The conversion of complexity into understandability: The basic purpose is to
give a generative theory of complex shape such that the complexity is entirely accounted
for, and yet the structure is completely understandable.

(2) Understandability and intelligence: Deep consideration reveals that understand-
ability of a structure is achieved by maximizing transfer and recoverability.

(3) The mathematics of understandability: A significant portion of the book is the
development of a mathematical theory of how understandability is created in a structure.

When putting together the statement in (2) and the theory of aesthetics in section 2,
one sees that, according to our theory of geometry, aesthetics is basic to the conversion of
complexity to understandability. Thus, for example, the computer-vision problem, for
complex scenes, is solved by aesthetics, rather than the techniques currently developed
in the research literature. Furthermore, a consequence of the statement in (3) is that we
will be giving a mathematic theory of aesthetics.

4 Object-Oriented Theory of Geometry

Geometry of the last 3,000 years is not object-oriented. A principal reason is that object-
oriented programming allows the identification and tracking of objects through histories
of complex modification (i.e., allows for recoverability or memory storage of action)
and the congruence/invariance program defeats this; e.g., the adult body and egg could
not be the same geometric object in Klein’s sense of object. One of the purposes of our
book is the development of an object-oriented formalization of geometry. The result
is a theory of geometry that has fundamentally opposite characteristics from previous
geometry. The object-orientedness is formulated in a rather novel use of group theory:
Groups are seen as descriptions of asymmetries rather than symmetries. One important
consequence is that the theory provides an entirely new formulation of the meaning of
symmetry-breaking, in which the group expands, on symmetry-breaking, rather than
reduces, as it does in modern physics. This increases the descriptive power of the theory,
because an expanding group provides greater number of algebraic operators.
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Figure 1: The control group transferring the fiber group.

5 Transfer

A generative theory of shape characterizes a shape by a sequence of actions needed
to generate it. According to our theory, aesthetics is increased by transferring actions
within the sequence. Indeed we argue that an artwork, e.g., a symphonic movement by
Beethoven, is a structure that has maximal complexity while simultaneously maximizing
transfer along the generative sequence. That is, the principle of the maximization of
transfer can be stated thus:

MAXIMIZATION OF TRANSFER. Make one part of the generative sequence a
transfer of another part of the generative sequence, whenever possible.

It will be argued that the appropriate formulation of this is as follows: A situation of
transfer (see Fig 1) involves two levels: a fiber group, which is the group of actions
to be transferred; and a control group, which is the group of actions that will transfer
the fiber group. The justification for these structures algebraically being groups will be
given later, but the theory of transfer will work equally for semi-groups, which is the
most general case one would need to consider for generativity.

Now, one can think of transfer as the control group moving the fiber group around
some space; i.e., transferring it. The transferred versions of the fiber group are shown
as the vertical copies in Fig 1, and will be called the fiber-group copies. The control
group acts from above, and transfers the fiber-group copies onto each other, as indicated
by the arrow. This will often be referred to as a structure of nested control.

A basic part of our approach is this:

(1) Give an algebraic theory of transfer.
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(2) Reduce complex situations down to structures of transfer.

Transfer will be modeled by a group-theoretic construct called a wreath product. This
is a group that will be notated in the following way:

Fiber Group w© Control Group.

Intuitively, a wreath-product is a group that contains the entire structure shown in Fig
1; that is, it has an upper subgroup that will be called a control group, and a system of
lower subgroups that will be called the fiber-group copies. The control group sends the
fiber-group copies onto each other. It does so simply by conjugating them onto each
other.

6 Wreath Products

This section describes wreath products in detail. Consider a group, G(C), called the
control group, acting on a set, C, called the control set. This action, called the control
action, is given thus:

⎧⎨
⎩

G(C) × C −→ C

( g , ci ) �−→ gci.
(1)

Consider also another group, G(F ), called the fiber group, acting on a set, F , called
the fiber set. This action, called the fiber action, is given thus:

⎧⎨
⎩

G(F ) × F −→ F

( T , f ) �−→ Tf.
(2)

For each member c of the control set C, make a copy of the fiber action (2), thus:
⎧⎨
⎩

G(F )c × Fc −→ Fc

( Tc , fc ) �−→ Tcfc.
(3)

Notice that there will now be a set of copies Fc of the fiber set, called the fiber-set
copies, indexed in the control set C. Also, there will be a set of copies G(F )c of the
fiber group, called the fiber-group copies, also indexed in the control set C. The fiber-
group copies correspond to the columns in Fig 1. Each such column acts on its own
"personal" copy of the fiber set.

The following point is crucial: If we think of the control action, given at (1) above,
as a permutational action by the control group on the elements of the control set, then
this same action induces a permutational action by the control group on the copies of
the fiber. The latter permutational action is indicated by the arrow in Fig 1.
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In most cases, in this paper, the control set C will be the control group G(C) itself.
Thus the fiber copies will be indexed in the control group. This is called a regular
wreath product. In Fig 1, this would mean that there is one column (fiber-group copy)
for each element in the control group above. However, the present section defines the
most general type of wreath product – where the set C is some general set on which the
control group has an action.

Now take the direct product of the fiber-group copies. This will be called the fiber-
group product, given thus: ∏

c∈C

G(F )c. (4)

The entire bottom block in Fig 1 can be considered to illustrate this direct product.
Notice that the control group action of G(C) on C induces an action of G(C) on the
set of indexes c within the direct product in (4). Most crucially, this action of G(C) is
an automorphic action on the direct product.

Next, take the semi-direct product of the entire lower block and the control group
above, thus:

{
∏
c∈C

G(F )c} s© G(C). (5)

The lower block
∏

c∈C G(F )c is the normal subgroup of the semi-direct product. In
any semi-direct product, the upper group acts as an automorphism group of the normal
subgroup (here the lower block); and in this case the chosen automorphic action will be
the one defined in the previous paragraph.

Next consider the set F × C, which we will call the data set. Notice that this set
decomposes into the fiber-set copies Fc. The data set is shown as the entire block in
Fig 2 (ignore the arrows for the moment). The columns in this figure are the fiber-set
copies. This block corresponds, column for column, to the lower block in Fig 1 where
the columns are the fiber-group copies. The fiber-group copies in Fig 1 act on their
corresponding fiber-set copies in Fig 2.

Now for the final fundamental point concerning wreath products: There is a group
action of the wreath product G(F )w©G(C) on the data set F × C. That is, in terms of
the figures we have given, there is an action of the entire Fig 1 (upper control group and
lower block) on the block in Fig 2. To define this action, let us assume, only for the
purposes of notation, that the control set C is finite, of cardinality n. Observe that, by
the semi-direct product structure of the wreath product (as shown in expression (5)), a
single element from the wreath product must be of the form:

〈 ( Tc1 , Tc2 , . . . , Tcn
) | g 〉 (6)

where each Tci
is an element taken from its fiber-group copy G(F )ci (column in Fig

1); and g is an element taken from the control group (upper level in Fig 1).
Now the full element shown as expression (6) acts on the data set (the block in Fig 2)

in the following way: Each element Tci in expression (6) acts only on its own fiber-set
copy Fci (its corresponding column in Fig 2). Then the control element g in expression
(6) permutes the fiber-set copies (columns in Fig 2).

Let us therefore see the effect of the full element in expression (6) on a single point
in the data set. This point will be shown as the first dot (in the sequence of dots) in Fig
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Figure 2: Illustrating the action of the wreath product on the data set.

2. This is located in the fiber-set copy Fci
(its column in Fig 2). Notice that the dot can

be expressed as the ordered pair (f , ci) in the data set F × C (the full block).
Now apply the full group element, expression (6), to this point. Notice, since each

Tcj
in expression (6) acts only on its personal fiber-set copy, only the element Tci

will
act on the point (f , ci). It will move it to the point (Tcif , ci) which is the second
dot in Fig 2. The arrow from the first to the second dot corresponds to the action of
Tci . Finally, the element g in expression (6) moves the second dot to its corresponding
position in the column indexed by gci. So the final dot is given by the ordered pair
(Tci

f , gci) in the data set F × C.
The above therefore defines the group action of wreath product G(F )w©G(C) on

the data set F ×C. It will be called the full wreath action, and we have seen that it is
given thus:

⎧⎨
⎩

G(F )w©G(C) × [F × C] −→ [F × C]

( 〈 ( Tc1 , Tc2 , . . . , Tcn ) | g 〉 , (f, ci) ) �−→ (Tcif, gci).
(7)

7 Mathematical Theory of Transfer

We are now ready to give our rigorous theory of transfer, as follows: Each copy G(F )c,
of the fiber group, acts on its own copy of the fiber set Fc. One can view the control
group as transferring the fiber-group copies around the fiber-set copies. In fact, this
action is achieved by the automorphic action of the control group within the wreath
product, as given by the map τ . This action sends the fiber-group copies onto each other
via conjugation. Therefore:

MATHEMATICAL STRUCTURE OF TRANSFER. Transfer will be modelled by
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the conjugacy action of the control group on the fiber-group copies within a wreath
product.

8 Theory of Gestalt

A musical work is structured by perceptual organization – often referred to as Gestalt
organization. In Leyton [16], [17], [18], [19], [20], [21], I put forward several hundred
pages of psychological evidence that lead to the following theory of Gestalt:

THEORY OF PERCEPTUAL ORGANIZATION (GESTALT)

The human perceptual system forms organizations by maximizing
transfer; i.e., the structural cohesion is formed by making one part
of the perceptual input the transfer of another part of the percep-
tual input, where-ever possible. The mathematical consequence is
that perceptual organizations are structured as n-fold wreath prod-
ucts, G1 w©G2 w©. . . w©Gn.1

We will later give several extended examples of this with musical meter, modulation,
and melodic form. However, it is best to initially illustrate the above with an example
from the visual domain, to show that the musical examples are merely instances of the
general process of perception – which in turn is merely an instance of our general theory
of geometry.

As an initial example, consider how the human visual system structures a square.
In a sequence of psychological experiments, Leyton [18] [19], we showed that human
vision represents a square generatively, in much the same way that one draws it on a
sheet of paper – i.e., drawing the sides sequentially around the square. Notice that this
in fact involves a crucial transfer structure thus: The first side is generated by starting
with a corner point, and applying translations to trace out the side, as shown in Fig 3.

Next, this translational structure is transferred from one side to the next – rotationally
around the square. In other words, there is transfer of translations by rotations. This is
illustrated in Fig 4.

Therefore, the transfer structure is defined as the wreath product:

Translations w© Rotations

where Translations is the fiber group (corresponding to the side) and Rotations is the
control group (transferring the side). This will now be defined rigorously, as follows:

1Throughout this paper, the term and notation n-fold wreath product G1 w©G2 w©. . . w©Gn

will mean that the hierarchy of control groups were added successively from left-to-right, thus:
(. . . (((G1 w©G2) w©G3) w©G4) w©. . .) w©Gn.
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Figure 3: The generation of a side, using translations.

Figure 4: Transfer of translation by rotation.

The translation group (generating the side) will be denoted by the additive group R.
The rotation group is Z4, the cyclic group of order 4, which will be represented as

Z4 = { e, r90, r180, r270 }
where rθ means clockwise rotation by θ degrees. We now construct a regular wreath
product of these two groups. The construction will use the terminology of section 6.

The group Z4 will be the control group, G(C), and the control set will be the set C
of four side-positions around the square:

c1 = top, c2 = right, c3 = bottom, c4 = left. (8)

The control action of Z4 on the set {c1, c2, c3, c4} will correspond to the clockwise
rotation of the four side-positions onto each other.

The translation group R will be the fiber group, G(F ), and the fiber set will be
the infinite line F containing the finite side as a subset. This is mathematically and
psychologically an important concept, as will be observed shortly. The fiber action of
R on the fiber set F will be the obvious translation of the infinite line along itself.
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Figure 5: The square on the projective plane.

For each of the four members c of the control set C, make a copy of the fiber
action. Thus there will now be a set of four copies {Fc1 , Fc2 , Fc3 , Fc4} of the fiber
set, called the fiber-set copies, indexed in the control set C. These will be the four
infinite lines that contain the four finite sides as subsets. This structure is illustrated
in Fig 5, where P and Q represent the points at infinity. Clearly the structure has
considerable mathematical significance because it corresponds to what is called the
complete quadrilateral in projective geometry. It also has considerable psychological
significance. For example, in Leyton [23], we have shown that it allows one to solve
long-standing Gestalt problems such as the orientation-and-form problem. Particularly
important is the fact that it psychologically acts as the Gestalt completion of the square
because it allows the location of vanishing points in perspective projections.

Corresponding to the four fiber-set copies, there will be four copies {Rc1 , Rc2 , Rc3 ,
Rc4} of the fiber group, called the fiber-group copies, also indexed in the control set
C. Each fiber-group copy (translation group) will act on its own "personal" copy of the
fiber set (infinite line).

One can now define the regular wreath product:

R w© Z4 (9)

where this group is the semi-direct product:

[Rc1 × Rc2 × Rc3 × Rc4 ] s© Z4. (10)

The automorphic action of the control group Z4, on the fiber-group product Rc1 ×
Rc2 × Rc3 × Rc4 corresponds to the action of Z4 on the control set {c1, c2, c3, c4},
whose elements now appear as the indexes on the four fiber-group copies Rci

. This
means that the fiber-group copies are rotated around the square. In fact, in accord with

126



the structure of a semi-direct product, Z4 carries out this action by conjugating the
fiber-group copies onto each other.

The data set F × C, in this example, is the Gestalt completion of the square – i.e.,
given by the four infinite lines containing the four finite sides, as indicated in Fig 5. We
can think of this as four infinite wires overlapping each other.2

The wreath product R w©Z4 acts on the data set (the Gestalt completion), in the
following way: By inspection of the semi-direct product form (10) of the wreath product,
an individual element from the wreath product is of this form:

〈 ( Tc1 , Tc2 , Tc3 , Tc4 ) | rθ 〉 (11)

where Tci
∈ Rci

and rθ ∈ Z4. The action of the group element (11) is then interpreted
as follows: Each translation Tci

moves its own infinite wire along itself by the amount
indicated by that translation, and then the remaining component rθ rotates the four
wires by the amount θ. Notice therefore that the group element (11) maps the Gestalt
completion of the square to itself, and that consequently the wreath product at (10) is a
symmetry group of the Gestalt completion.

In our generative theory, the Gestalt completion is cut down to its visible portion,
the finite square, by placing what we call an occupancy group, Z2 (a cyclic group of
order 2), at each point along the infinite line containing a side. The group switches
between two states, "occupied" and "non-occupied," and is wreath sub-appended below
the above group thus

Z2 w© R w© Z4.

Notice the power of this wreath product is that it is a regular one. That is, going from
left to right, there is one copy of Z2 for each element in the group R above it, and there
is one copy of R for each element of the group Z4 above that. For ease of exposition,
the occupancy level will be ignored in the present paper.

Now observe that the group at (9) gives generative coordinates to the square, as
follows. Since the wreath product is regular, we can identify the members ci of the
control set with the members rθ of the control group. Thus, any fiber-group copy can
be labelled Rrθ

, and its elements can be labelled trθ
. Therefore, any point on the square

can be described by a pair of coordinates:

(t, rθ) = trθ
∈ Rrθ

.

The first coordinate gives the generative (translational) distance along a side, and the
second coordinate gives the generative (rotational) distance of a side from the first
generated side. Therefore a point is given a complete generative description from the
origin. (This relies on the fact that the fiber-action is transitive.)

Fig 6 illustrates this by giving the coordinates of four of the points.
The crucial thing to observe is that the coordinates maximize transfer. Fig 7 illus-

trates this by showing that the coordinates on one side are a transfer of the coordinates
of another side. Notice that, given an individual point (t, rθ) on a side, its four transfer-
equivalent copies (on each of the four sides), are now given by the diagonal embedding
of the fiber group into the fiber-group product, thus: t −→ (t, t, t, t).

2Note that, since, generally, fiber-set copies are independent sets, the four infinite lines to not intersect but
overlap.
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Figure 6: The coordinates of four points.

Figure 7: The control-nested structure of those coordinates.

128



Now, deformed shapes are handled in our system by adding extra layers of transfer.
For example, to obtain a parallelogram, one adds the general linear group GL(2, R)
onto the two-level group of the square thus:

R w© Z4 w© GL(2, R). (12)

Notice that the operation used to add GL(2, R) on to the lower structure R w©Z4 is, once
again, the wreath-product w©which means that GL(2, R) acts by transferring R w©Z4, as
follows: Since the fiber group R w©Z4 represents the structure of the square, this means
that GL(2, R) transfers the structure of the square onto the parallelogram. In particular,
it transfers the generative coordinates of the square onto the parallelogram. For example,
GL(2, R) transfers the four points on the square in Fig 6 onto the corresponding four
points on the parallelogram, as shown in Fig 8.

More deeply still, the fiber group R w©Z4 in expression (12) is itself a transfer
structure, as seen in Fig 7, where rotation transferred the translation process from the
top side onto the right side. This transfer structure is itself transferred, by GL(2, R),
onto the parallelogram, as shown in Fig 9. That is, we have transfer of transfer. This
recursive transfer is encoded by the successive w© operations in expression (12).

What has been illustrated here is our principle of the maximization of transfer:
The parallelogram is given a generative description, all the way up from a point, that
maximizes transfer. That is, the point is transferred by translations to create a side, the
side is transferred by rotations to create a square, and the square is transferred by the
general linear group to create a parallelogram. Everything is re-usued. This is the basis
of our theory of aesthetics. For example this is the basis of a symphonic movement by
Beethoven. We are giving here a simple first illustration of the mathematical principles
involved.

In our theory of music, the concept of anticipation hierarchies will be crucial. We
shall argue that, for deep mathematical reasons, such hierarchies have a role correspond-
ing to the 3D shape primitives of mechanical CAD. Therefore it will be useful here to
illustrate our theory of geometry with three-dimensional shape. For example, consider
the structure of a cylinder. The standard group-theoretic description of a cylinder is

SO(2) × R (13)

where SO(2), the group of planar rotations around a fixed point, gives the rotational
symmetry of the cross-section, and R gives the translational symmetry along the axis.
Notice that in (13) the operation linking the two groups is the direct product operation
×.

For us, the problem with this expression is that it does not give a generative de-
scription of the cylinder. In computer vision and graphics, cylinders are described
generatively as the sweeping of the circular cross-section along the axis, as shown in
Fig 10. To our knowledge, the group of this sweeping structure has never been given.
We propose that the appropriate group is:

SO(2) w© R. (14)

Notice that it uses the wreath-product operation w© rather than the direct product ×,
and therefore the group has a very different structure from that in expression (13). The
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Figure 8: The transferred coordinates from a square.

Figure 9: The transfer of transfer.
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Figure 10: The sweep structure of a cylinder.

operation w©means that this new group has a fiber-control structure, in which SO(2) is
the fiber group and R is the control group. This is exactly what is seen in the sweeping
structure shown in Fig 10. The cross-section is generated first as a fiber, and then its
position is controlled by translation.

We conclude this section by stating, more precisely, the principle of the maximization
of transfer. It says two things: Given a data set: (1) Generate the set by maximizing
re-use of the parts of the generative sequence; i.e., maximize the height of the wreath
product. (2) However, make the height non-spurious; i.e., do not introduce levels where
there are no detectable distinguishabilities in the data set. This second condition relates
to the theory of recoverability (section 14), which says that generative operations are
introduced to account only for asymmetries (distinguishabilties), not for symmetries
(indistinguishabilities). This can be illustrated as follows: A set of equally-spaced
points along a line can be generated by the group of integers, constituting one level.
Alternatively, this set can be generated by a two-level structure, in which one particular
fiber copy corresponds to a particular pair of adjacent points, and the control corresponds
to the group of even numbers that moves this pair onto the next pair, and then the next
pair, . . . , successively along the line. However, since the points are equally spaced, this
would be a spurious decomposition into levels, because there is no distinguishability,
along the line of points, that justifies this decomposition.

9 Shape Generation by Group Extensions

One can see from the above discussion that the concept of group extension is basic to
our generative theory. A group extension takes a group G1 and adds to it a second group
G2 to produce a third, more encompassing, group G, thus:
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G1 E© G2 = G

where E© is the extension operation. (For introduction to group extensions, see Rotman
[34].)

It is clear, looking back over the examples given so far, that according to our theory:

Shape generation proceeds by a sequence of group extensions.

That is, shape generation starts with a base group and successively adds groups obtaining
a structure of this form:

G1 E© G2 E© . . . E© Gn.

This approach to shape-generation differs substantially from standard shape-grammar
approaches, e.g., that of Stiny and Gips [10], [36], which are based on the application
of production rules. In our approach, structural elements correspond to groups, and the
addition of structural elements corresponds to group extensions.

Structural elements −→ Groups.

Addition of structural elements −→ Group extensions.

Furthermore, imposing the condition of maximization of transfer demands that the
structure G1 E©G2 E©. . . E©Gn be actually of the form G1 w©G2 w©. . . w©Gn. In other
words, the extension operation E© is the control-nesting operation w©.

10 Algebraic Theory of Inheritance

Our theory of music is inherently object-oriented, in the sense of object-oriented pro-
gramming. Indeed we argue that object-oriented inheritance is a fundamental part of
musical perception and composition. A central component of our generative theory of
shape is a mathematical theory of inheritance, which will now be described, and which
becomes essential to every part of the music theory.

The term inheritance, in object-oriented programming, refers to the passing of prop-
erties from a parent to a child, [27]. The child incorporates these parent properties, but
also adds its own. This kind of structure covers two types of situation. The first is class
inheritance, which is a static software concept, and the second is a type of dynamic link-
ing created at run-time. The book gives an algebraic theory of both types of inheritance,
in the geometrical domain; i.e., related to shape. Notice that, since our theory of shape
is generative, spatial movement and deformation are understood as part of the specifi-
cation of shape. Thus the command operations in shape classes are understood as part
of the specification of higher order shapes (e.g., configurations). Notice that, in shape
classes, the command operations – which include spatial movements and deformations
– form groups.

In this paper, we will have time to deal with only the dynamic type of inheritance cre-
ated at run-time. This is fundamental to all computer-aided design, assembly, robotics,
animation, etc. A typical example is a child object inheriting the transform of a parent
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object, and adding its own. It is instructive for the music theorist to consider the follow-
ing example in architectural CAD: Here a door is defined as a child of a wall, and moves
with the wall if the designer decides to change the position of the wall. However, the
door can also open and close with respect to its attached position in the wall. This means
that the door inherits the movement of the wall, but adds its personal movement with
respect to the latter. Clearly, examples of this type are profuse in music. For instance,
we shall later show that modulation has exactly this structure.

Now for the basic statement of our algebraic theory of inheritance:

ALGEBRAIC THEORY OF INHERITANCE. Inheritance arises from a wreath
product:

Parent ←→ Control group
Child ←→ Fiber group.

This can be illustrated by returning to the door/wall example. Let us suppose that the
command group of motions for the wall is the Euclidean group E(2) on the plane (i.e.,
the base-line of the wall can be translated and/or rotated within the plane of the floor
plan – which is a typical operation in architectural CAD). Let us also suppose that the
command group of motions for the door is the rotation group SO(2), since the door can
rotate about its fixed hinge in the wall. Then, our claim is that the combined transform
structure of the door and wall is given by a regular wreath product of the two command
groups thus:

SO(2) w© E(2).

The reason is easy to see as follows: Let us move the wall by a command operation
g ∈ E(2). Then, because the door moves with the wall, g moves a copy of the door’s
rotation group SO(2) together with the wall, i.e., sends the copy of the door’s rotation
group within the first wall position onto the copy of the door’s rotation group within the
second wall position. In fact, g achieves this by conjugating the first copy of the rotation
group onto the second copy. Thus the fiber-group copies of SO(2), in the above wreath
product, correspond to the copies of the doors’s rotation group in each of the different
wall positions.

Figure 11: The representation of parent-child relations in 3D Studio Max.
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It will be useful, for later discussion in this paper, to consider here diagrammatic
aspects of current design programs. Because run-time inheritance is created by the
designer, it is usually represented by diagrams that the designer can view. It will be
useful for us to show how these diagrams can be converted into algebra. A good
diagrammatic representation is used by 3D Studio Max, as illustrated in Fig 11. Here,
inheritance is represented by indentation – i.e., an indented object is a child of the next
object above with respect to which it is indented. Each object, except the World object,
has a transform shown just below it. The transform relates the coordinate frame of the
object to the coordinate frame of its parent. This transform is the "personal" transform
of the object. In addition, the object inherits the transform of its parent. The object
therefore adds its personal transform to its inherited transform. This means, of course,
that via its parent, it inherits the transform of its parent’s parent, and so on. By the
above Algebraic Theory of Inheritance, such diagrams can be converted into algebra in
the following way:

GROUP OF ENTIRE TRANSFORM STRUCTURE. Consider a set of n + 1
objects: Object 1 to n, and the World. Suppose that they are linked such that Object i
is the child of Object i + 1, and Object n is the child of the World. Let Object i have
personal transform Gi. Then the group of the entire transform structure is the wreath
product:

G1 w© G2 w© . . . w© Gn.

11 Theory of Relative Motion

We shall soon argue the following:

Musical works are relative motion systems.

This will allow us to give a detailed algebraic theory of music, because relative motion
is an inheritance phenomenon, and thus it will be possible to use the algebraic theory
of inheritance from the previous section.

Relative motion is a powerful organizing force in cognitive representation. For
example, it is a classic Gestalt result that the visual system organizes motion into hi-
erarchies of relative motion; furthermore, basic decomposition theorems in classical
and quantum mechanics allow momentum to be organized into hierarchies of relative
momenta – a basic tool for problem-solving in physics.

Computer animators know that relative motion is an inheritance phenomenon. Thus,
using our algebraic theory of inheritance, it is now possible to give an algebraic theory
of relative motion:

ALGEBRAIC THEORY OF RELATIVE MOTION. A relative motion system cor-
responds to a wreath product in which the relative motion is given by the fiber group
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Figure 12: A relative motion system.

and the absolute motion, to which it is judged, is given by the control group:

relative motion w© absolute motion.

This theory will be used to explain both melodic and rhythmic organization in music.
However, it is instructive to first look at a visual example. Fig 12 shows a wheel moving
along the ground. If one follows a single point on the wheel, it makes a complex curve
called a cycloid. However, the human eye does not organize the movement in this way.
Instead it decomposes the motion into a relative motion hierarchy, in which the point
is seen as executing circular motion around the wheel-center, and the wheel is seen
as moving as whole in a straight line. Our algebraic theory explains this as follows:
The visual system organizes the motion into a wreath product in which the fiber is the
rotation group SO(2), and the control is the translation group R:

SO(2) w© R.

Generally, our fundamental rule of relative motion is this:

Decompose the motion into two symmetry groups, such that one group
transfers the other.

This gives a wreath product where the transferring symmetry group is the control group
and the transferred symmetry group is the fiber group.

As shown in Leyton [23], the above theory explains relative motion in human per-
ception, classical and quantum mechanics, robotics, and computer animation.

12 Serial-Link Manipulators

It will now be argued that there is a profound relation between serial-link manipulators
in robotics, and modulation in music. Both are decompositional means of reaching a
point by hierarchical transfer. Therefore their mathematical structure is identical. This
section considers serial-link manipulators, and the next deals with musical modulation.
Both illustrate our theory of inheritance, and in particular our theory of relative motion.

Standardly in a serial-link manipulator (such as the human arm), one says that the
frames of two successive links are related by a special Euclidean transformation Ai, and
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thus the overall relationship between the hand coordinate frame and the base coordinate
frame is given by the product of matrices

A1A2 . . . An (15)

corresponding to the succession of links. (see [2], [31]).
Now, in setting up the object-oriented structure of such manipulators, one usually

stipulates that a distal link is a child of the next proximal link, and so on, successively
along the manipulator. Our argument is that this arises from the transfer structure: The
distal link has a space of actions that is transferred through the environment by the next
proximal link. This exemplifies our claim that the basis of inheritance is the deeper
notion of transfer. It is this that allows us to formulate inheritance algebraically in terms
of wreath products. Thus, we argue that the group of a serial-link manipulator has the
following wreath-product structure:

SE(3)1 w© SE(3)2 w© . . . w© SE(3)n (16)

where each level SE(3)i is isomorphic to the special Euclidean group SE(3), and the
succession from left to right corresponds to the succession from hand to base (distal to
proximal).

The entire group we have given in (16) for the serial-link manipulator, is very
different from the group that is normally given in robotics for serial-link manipulators.
Standardly, it is assumed that, because one is multiplying the matrices in (15) together,
and therefore producing an overall Euclidean motion T between hand and base, the
group of such motions T is simply SE(3). However, we argue that this is not the
case. The group is the much more complicated group given in expression (16). The
conventional group SE(3) necessarily models the arm as a rigid structure, whereas the
wreath product (16) models the arm as a structure we call semi-rigid: a group where
rigidity breaks down at a discrete set of points. Most crucially the wreath product
models the object-oriented structure, which is basic to all computation concerning the
kinematics.

13 Musical Modulation

With the above concepts, it is now possible to understand deeply modulation in music.
The first thing to observe is that modulation, rather than being simply a translation
system, is actually a relative motion system. For example, when one talks about a
musical piece has having modulated to the dominant, one means that movement is now
judged as within the dominant key, yet the dominant key is judged, as a whole, relative
to the tonic key. Notice that the same movement could be judged as within the tonic
key. However, its position is instead judged through a hierarchy of relative motion.

The fact that modulation is a relative motion system allows us to see that it necessarily
involves an inheritance hierarchy. For example, movement within the tonic key is the
transform belonging the parent, and movement within the dominant key is the transform
belonging to the child. The latter inherits the former in the hierarchical manner described
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above. Thus, let the symbol S be the group of movements within a scale. Then, the
ability to move the scale to any position within the scale is given by the following wreath
product:

S w© S.

The control group represents the action of modulation, and the fiber group represents
the key to which one modulates. This will be now be explained using the full detail of
section 6.

For the purposes of illustration, we will assume that the group S of scale movements
is given by Z12 acting along the semitone scale. Thus both the control group and fiber
group will have the structure of Z12, and, to distinguish between these two roles, we will
let the control group be denoted by G(C), and the fiber group by G(F ). Furthermore,
both the control set and fiber set will be the set of twelve semitones, and, again, to
distinguish between these two roles, the control set will be denoted by C and the fiber
set by F . Members of these two sets will be indicated by ci and fi respectively.

Now, for each of the 12 members ci of the control semitone set C, make a copy
of the fiber action. Thus there will now be 12 copies {Fc1 , Fc2 , . . . , Fc12} of the fiber
set, indexed in the control semitone scale C. Each of these copies will itself be the
semitone scale (as fiber) rooted at a different tonic ci, within the control semitone scale.
That is, we now understand the control semitone set to be the set of available tonics for
modulation.

Corresponding to the 12 fiber-set copies, there will be 12 copies {G(F )c1 , G(F )c2 ,
. . . , G(F )c12} of the fiber group, also indexed in the control set C. Each fiber-group
copy (copy of the group of scale movements) will act on its own "personal" copy of the
fiber-set; i.e., its own personal scale.

One can now define the regular wreath product:

G(F )w©G(C) = Z12 w© Z12 (17)

where this group is the semi-direct product:

[G(F )c1 ×G(F )c2 × · · · ×G(F )c12 ] s© G(C). (18)

The automorphic action of the control group G(C), on the fiber-group product G(F )c1×
G(F )c2 × · · · ×G(F )c12 , corresponds to the action of G(C) on the control set {c1, c2,
. . . , c12}, whose elements are the tonics and now appear as the indexes on the 12 fiber-
group copies G(C)ci . This means that the fiber-group copies are moved up and down
the control scale; i.e., there is modulation. In fact, in accord with the structure of a
semi-direct product, G(C) = Z12 carries out this action by conjugating the fiber-scale
groups onto each other. The following observations are crucial:

(1) The above discussion clearly illustrates our claim that modulation is a relative motion
system. That is, the control group G(C) = Z12, which represents the modulation
movement, corresponds to the absolute motion, with respect to which any fiber-group
copy represents the relative motion within the "frame" that has been moved by the
absolute motion.
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(2) The above discussion also illustrates our claim that modulation is an object-oriented
inheritance system. In accord with our algebraic theory of inheritance (section 10), the
parent corresponds to the control group and the child corresponds to the fiber group.
Thus, any movement by the parent is inherited by the child.

The wreath product gives the complete symmetry of the scale structure, as follows:
The data set F × C, in this example, is decomposable into the set of fiber-scale sets,
rooted at the different tonics. It will be called the scale system. The wreath product
G(F )w©G(C) = Z12 w©Z12 acts on the scale system, in the following way: By inspec-
tion of the semi-direct product form (18) of the wreath product, an individual element
from the wreath product is of the form

〈 ( Tc1 , Tc2 , . . . , Tc12 ) | M 〉 (19)

where Tci ∈ G(F )ci and M ∈ G(C). The action of the group element (19) is then
interpreted as follows: Each scale movement Tci

shifts the notes of its own scale Fci
, and

then the remaining component M performs a modulation across scales. Notice therefore
that the group element (19) maps the scale system to itself, and that consequently the
wreath product at (18) is a symmetry group of the scale system.

The following profound point should be observed:

The object-oriented structure arises from the symmetry structure.

That is, in the symmetry structure we have developed, the fiber of the symmetry cor-
responds to a child object whose group of command operations consists of movements
within a scale, and the control level of the symmetry corresponds to a parent object
whose command group is modulation.

The reader can see that successive modulation from the home key is given by an
iterated wreath product:

. . . w© S w© S w© S w© S.

Notice that this is structurally equivalent to the type of group we gave for the serial-
link manipulator in expression (16); that is, the recursive substitution of a group action
within itself. The reason is simple but profound: In both cases, the hierarchy represents
a hierarchy of workspaces. Furthermore, in both cases, the workspace on any level has
the same structure as the workspace on any other level. This means that a workspace
moves an identical workspace about itself.

14 Recoverability

According to our theory, people call a structure, an art-work, if it is maximally complex,
but allows the maximal conversion of the complexity into understandability. Our theory
says that this conversion is achieved by maximizing transfer and recoverability. We
have begun to examine the algebraic structure of transfer. It is now necessary to bring
in the factor of recoverability. By recovery, we mean the following problem:
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Given a data set, recover or infer a sequence of operations that generate
the set.

Our first book [21] was a 600-page analysis of this problem, and one of the main
conclusions of this analysis was the following:

ASYMMETRY PRINCIPLE. The only recoverable operations are symmetry-breaking
ones. That is, a generative program is recoverable only if it is symmetry-breaking on
each of the successively generated states.

Now it is clear that there are many processes in the world that a not symmetry-breaking,
but are symmetry-increasing; e.g., a tank of gas settling to equilibrium under the standard
entropy-increasing process. Our theory says this:

SYMMETRY-INCREASING PROCESSES. A symmetry-increasing process is re-
coverable only if it is symmetry-decreasing on successive data sets.

So, for example, you can recover the fact that the tank of gas was entropy-increasing
over time, if you kept a set of records (e.g., photographs) and the records are linearly
ordered, e.g., they are laid out from left to right on a table, in which case the sequence
of photographs breaks the left-right symmetry of the table. In other words, the increase
in spatial symmetry in the tank of gas corresponded to a decrease in spatial symmetry
of the record structure.

15 Theory of Symmetry-Breaking

A basic factor emerges from the above discussion: In order to ensure recoverability,
the control group must be symmetry-breaking on its fiber. Thus, the following should
be observed: The transfer component of our theory leads to wreath products, and the
recoverability component adds the construct that the wreath products are symmetry-
breaking.

Close examination reveals that this gives a far more powerful theory of symmetry-
breaking than the conventional one that underlies physics and chemistry.

CONVENTIONAL VIEW OF SYMMETRY-BREAKING. Symmetry-breaking is
a reduction of symmetry group.

Thus the transition from a square to a parallelogram is conventionally given by the
following reduction in symmetry group:

D4 −→ Z2.
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That is, the eight operations in D4 are reduced to the two operations in Z2.
However, according to our view, this is inherently weak because it means a loss of

algebraic structure.
In contrast, our approach to symmetry-breaking can be illustrated with the example

given in section 8 of the transition from a square to a parallelogram: This transition was
modelled by adding, to the symmetry group of the square, the general linear linear group,
via a wreath product. Thus, in our approach, symmetry-breaking actually preserves the
original group. The breaking of a symmetry group G1 is carried out by extending G1 by
another symmetry group G2 via a wreath product thus: G1 w©G2. The original symmetry
is given by the fiber copy of G1 which corresponds to the identity element in the control
group G2. Non-identity elements in G2 break the symmetry of the fiber group. Wreath
products of this kind will be called symmetry-breaking wreath products.

NEW VIEW OF SYMMETRY-BREAKING. Symmetry-breaking is extension via
a wreath product. The extending group is the symmetry group of the asymmetrizing
action.

Most crucially, in our view, symmetry-breaking corresponds to an increase in symmetry
group! More deeply, this undermines the standard notion that groups represent sym-
metry. Rather, we argue that they are maximally compact descriptions of asymmetry.

16 New Foundations to Geometry

Essentially, the recoverability of generative operations from the data set means that the
shape acts as a memory store for the operations. More strongly, we argue in the book
that all memory storage takes place via geometry. In fact, a fundamental proposal of
our theory is this:

Geometry ≡ Memory Storage.

This theory of geometry is fundamentally opposite to that of Klein’s in which geometric
objects are defined as invariant under actions. If an object is invariant under actions,
the actions are not recoverable from the object. Therefore Klein’s theory of geometry
concerns memorylessness, and ours concerns memory retention.

17 Rigorous Theory of Aesthetics

Near the beginning of this paper, we proposed that aesthetics is the maximization of
transfer. It will be useful for us, at this moment, to consider this in the area of physics.
The term aesthetics is used in physics with respect to symmetries of the dynamic equation
(law) of any particular branch of physics. This in fact means that the symmetry group

140



of the equation is transferring flow lines of the dynamic equation onto each other. So
the attempt to identify symmetries of the equation is an example of our principle of the
maximization of transfer.

In fact, the term aesthetics is used also with respect to one other phenomenon in
physics: origin states. For example, current models explaining the physical constitu-
tion of the universe argue for a succession of symmetry-breakings from the underlying
starting state (first to hypercharge, isospin, and color, and then to the electromagnetic
guage group). There is considerable puzzlement in physics as to why backward sym-
metrization from the present data set should be the case. However, according to our
theory, backward symmetrization is logically necessary. Our Asymmetry Principle
states that a generative sequence is recoverable only if present asymmetries go back to
past symmetries in the generative sequence.

The above considerations therefore show that there are two uses for the term aes-
thetics in physics: (1) the characterization of transfer, and (2) the characterization of
recovered states. In fact, one can see this in all aspects of quantum mechanics.

The question therefore is this: To what extent are these two situations of aesthetic
judgement separate from each other? Our theory says that they are not separate. In
section 15, it was seen that each level of the wreath hierarchy necessarily takes on simul-
taneously the roles of transfer and recoverability. To use physics as an example: The
symmetry group acts both as the past state and as the operational structure that transfers
flow lines of the Schrödinger equation onto each other. This is clearly evidenced for
example in spectroscopy. Thus our complete definition of aesthetics can now be stated:

Aesthetics is the maximization of transfer and recoverability.

In this way, transfer becomes closely linked to memory storage. This allows us also to
give a theory of art-works:

Art-works are maximal memory stores.
The rules of aesthetics are therefore the rules of memory storage.

18 Inferred Starting States

We will now give a rule that turns out to be fundamental to the entire process of recovering
generative history:

INFERRED STARTING STATES PRINCIPLE. To maximize recoverability, the
inferred starting state of a generative sequence must be structured by an iso-regular
group.

where we define:
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LEVEL-CONTINUOUS

Plane R w© R

Sphere SO(2) w© SO(2)
Cross-Section Cylinder SO(2) w© R

Ruled Cylinder R w© SO(2)

LEVEL-DISCRETE

Cube R w© R w© Z2 w© Z3
Cross-Section Block R w© Zn w© R

Ruled or Planar-Face Block R w© R w© Zn

Table 1: Classification of surface primitives by maximizing transfer and recoverability

ISO-REGULAR GROUP. This is a group satisfying the following three conditions:

(1) It is an n-fold wreath product, G1 w©G2 w©. . . w©Gn.
(2) Each level Gi is either a cyclic group or a connected 1-parameter Lie
group.
(3) Each level Gi is represented as an isometry group.

To illustrate the concept of an iso-regular group, notice carefully that two of the groups
given earlier are examples of iso-regular groups:

Square: R w© Z4

Cylinder: SO(2) w© R.

Now turn to the Inferred Starting States Principle given above. We will soon see
deep illustrations of this in music, but as an initial intuitive example in the visual domain,
consider a bent pipe that you might see lying in the road. It is clear that, merely by
describing this as bent, you understand the generative origin to have been a straight
pipe, i.e., a cylinder. But a cylinder is given by an iso-regular group. So the generative
origin is characterized by an iso-regular group, which is what is predicted by the Inferred
Starting States Principle.

One powerful advantage of this principle is that it allows us to give a system-
atic classification of the surface primitives (starting states) of visual perception and
computer-aided design. This is shown in Table 1.

Not only do iso-regular groups characterize the starting states in human perception
and computer-aided design, but they characterize the starting states of physics (e.g.,
flat-space time universes in relativity, and sets of commuting observables in quantum
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mechanics), as shown by us in Leyton [23]. The next section will demonstrate their
crucial importance to music.

Our claim is that the fundamental power of structuring origin states by iso-regular
groups is that this allows maximal recoverability.

19 Musical Meter

With the above proposal, that origin states are iso-regular groups, it is now possible
to understand deep aspects of musical structure. We will first examine musical meter.
Standardly, one says that the beat stream is divided into a number of levels of groupings:

(1) Primary accent grouping.
(2) Secondary accent grouping.
(3) Division into beats.
(4) Division of beats.
(5) Subdivision of beats.

The first level corresponds to the bars. The second is the major division of the bar, that
occurs in the case of bars with more than three beats. For example, 4/4 time is usually
perceived as divided into two successive subgroupings of two beats. The third level is
the division into the beat itself. And the fourth and fifth levels are successive divisions
of the beat. Now for our algebraic theory of meter:

ALGEBRAIC THEORY OF METRICAL STRUCTURE. Given a metrical unit
(e.g., a bar, a subgrouping, a beat), its occurrence within the next higher unit is given
by a cyclic group Zi, and its division is given by a cyclic group Zj . The upper group
Zi transfers copies of the lower group Zj as fiber, along the musical work. Therefore,
the relation between the upper and lower group is that of a regular wreath product:

Zj w© Zi.

The full metrical hierarchy, corresponding to the accent hierarchy of the bar structure,
is therefore given by an n-fold wreath product

Zm1 w© Zm2 w© . . . w© Zmn
.

If one defines the standard invariant metric on time, then this wreath product is an
iso-regular group.

A particular aspect of this statement can be given as follows:

THEORY OF DIVISION. Division by j is wreath sub-appendment by Zj .
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Figure 13: Bach: Two-Part Inventions, No. 12.

As an illustration, consider an excerpt from Bach’s Two-Part Invention No. 12, shown
in Fig 13. The time signature 12/8 has a subgrouping structure that divides the bar into
two halves each of which has two beats. The right keyboard hand further divides the
beat by three, and the left hand creates an additional division by two. Thus the full
metrical structure is given by the following wreath product.

beatsubdivision w© beatdivision w© beat w© subgrouping

= Z2 w© Z3 w© Z2 w© Z2.

The following should be noticed: Generally, a group of the form Z2 w© Sn, where
there are n copies of the fiber Z2, and the control group Sn acts as a permutation
group on those n copies, is called the hyperoctahedral group of degree n. When n is
2, the hyperoctahedral group is Z2 w© S2, which is actually the dihedral group of order
8 (the standard symmetry group of the square). As illustrated in the above example,
the top two levels of the 12/8 signature comprise this hyperocahedral group. In the
general case, therefore, the time signature 12/8 is the wreath-subappendment of Z3 to
the hyperoctahedral group, thus:

Z3 w© Z2 w© Z2.

Now let us give a theory of simultaneous division. For example, some bars can have
double and triple division occurring simultaneously:

SIMULTANEOUS DIVISION. Simultaneous division of an interval by different
numbers D1, D2, . . . Dn, will be given by wreath sub-appendment by the direct product
ZD1 × ZD2 × . . .× ZDn .

This can be illustrated with the second movement of Brahms 1st Piano Concerto, as
shown in Fig 14. The time signature is 6/4, which is interpreted here as a sextuple
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Figure 14: Brahms: Piano Concerto No. 1, second movement.

meter due to the slowness of the tempo. Such 6/4 meter decomposes the bar into two
subgroupings, each of three quarter notes. Then the simultaneous use of simple and
compound meter divides the beat into two (in the right hand) and into three (in the left
hand). Therefore, the full group of the metrical structure is this:

[divisionA× divisionB] w© beat w© subgrouping

= [Z2 × Z3] w© Z3 w© Z2.

As a further illustration, consider Fig 15 from the second movement of Bartok’s
String Quartet No. 4. The second violin and viola are in 2/4; and the first violin and
cello are in 6/8. Both 2/4 and 6/8 are duple meters. Thus the beats coincide in all
four instruments. Nevertheless, the divisions do not. In the second violin and viola,
the division is into two; whereas in the first violin and cello, the division is into three.
Notice that there is no division between the level of the bar and the level of the beat.
That is, the full group of the metrical structure is:

[divisionA× divisionB] w© beat

= [Z2 × Z3] w© Z2.

Notice that this means that the simultaneous divisions are each children of the beat – in
accord with our algebraic theory of object-oriented inheritance.

20 Complex Shape

Using the geometric concepts developed above, it becomes possible to give a powerful
theory of musical composition. To do so, it is necessary to examine some of the main
theory of complex shape developed in the book Leyton [23]. In this section, the theory

145



Figure 15: Bartok: String Quartet No. 4, second movement.

will be illustrated using the visual domain, because, we will argue, in the next section,
that there are deep abstract relationships between the visual domain and musical com-
position. This particularly concerns a profound correspondence between the iso-regular
groups of the visual and musical domains.

Consider the main problem for establishing a generative theory of complex structure.
According to section 14, recoverability is possible only if the generative operations are
symmetry-breaking. But this means that, as one proceeds forward in the generative
sequence, the symmetry group of the structure quickly reduces to nothing. This means
that there is a loss of algebriac information, which means a loss of generativity. This
problem will now be solved, using the theory of symmetry-breaking of section 15.

What we will do here is develop a symmetry group for a complex environment.
This will be a powerful structure because it will contain all the required information
for usability, navigation, manipulation, etc. The theory will become fundamental to the
theory of musical composition presented in the next section.

It is necessary to solve the fundamental problem of concatenation. Consider Fig
16. Each of the two objects individually has a high-degree of symmetry. However, the
combined structure, shown, looses much of this symmetry; i.e., causes a severe reduction
in symmetry group. We want to develop a group theory that encodes exactly what the
eye can see. In particular, in the combined situation, one can still see the individual
objects. Therefore, we want to develop a symmetry group of the concatenated structure
in which the symmetry groups of the individual objects are preserved, and yet there is
the extra information of concatenation.

The solution to be proposed is this: The generative history starts out with the two
independent objects, and therefore the symmetry of this starting situation is given thus:

Gcylinder ×Gcube

which is the direct product of the groups of the two independent objects. The reader
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Figure 16: Concatenation of cylinder and cube.

should carefully notice the following: The direct product symbol here should not be
regarded as representing a direct product between fibers, as previously. It will be within
a single fiber.

Now, by the maximization of transfer, the starting group, i.e., this direct product
group, must be transferred onto subsequent states in the generative history, and there-
fore it must be the fiber of the wreath product in which the control group creates the
subsequent generative process.

Let us take the control group to be the affine group AGL(3, R) on three-dimensional
real space.3 The full structure, fiber plus control, is therefore the following wreath
product:

[Gcylinder ×Gcube] w© AGL(3, R).

Now, it is necessary to fix the group representation of this wreath product. First,
by our theory of recoverability, the control group must have an asymmetrizing action.
Thus proceed as follows: The particular fiber-group copy

[Gcylinder ×Gcube]e

corresponding to the identity element e in the affine control group, must be the most
symmetrical configuration possible. This exists only when the cube and the cylinder
are coincident, with their symmetry structures maximally aligned. It will be called the
alignment kernel.

Next, choose one of the two objects to be a reference object. This will remain fixed
at the origin of the coordinate system. Let us choose the cube as the referent. Given
this, now describe the action of the affine control group as providing an affine motion
of the cylinder relative to the cube. Each fiber-group copy

[Gcylinder ×Gcube]g
3An element of this group is a linear transformation composed with a translation. AGL means Affine

General Linear.
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for some member g, of the control affine group, is therefore an arrangement of this
system. In fact, any fiber copy will be called a configuration of the system. For
example, Fig 16 corresponds to a configuration. The crucial concept is this: The role
of the affine control group is to transfer configurations onto configurations.

The wreath product we have presented:

[Gcylinder ×Gcube] w© AGL(3, R)

gives the complete symmetry group of the concatenated situation. It has all the internal
symmetries of the objects individually, as well as their relationships.

Let us now understand how to add a further object, for example a sphere. First of
all, the fiber becomes the following, with the added sphere group:

Gsphere ×Gcylinder ×Gcube.

In such expressions, our rule will be that each object, encoded along this sequence,
provides the reference for its left-subsequence of objects. Thus the cube is the referent
for the cylinder-sphere pair, and the cylinder is the referent for the sphere.

Accordingly, there are now two levels of control, each of which is the affine group
AGL(3, R), and each of which is added via a wreath product. Thus we obtain the
3-level wreath product:

[Gsphere ×Gcylinder ×Gcube] w© AGL(3, R) w© AGL(3, R).

This is interpreted in the following way: Initially, the three objects (cube, cylinder,
sphere) are coincident with their symmetry structures maximally aligned. This is the
fiber-group copy called the alignment kernel above. The higher affine group moves the
cylinder-sphere pair in relation to the cube. The lower affine group moves the sphere in
relation to the cylinder.

The above discussion has been illustrating a class of groups we call telescope groups,
which were proposed by us in Leyton [23]. To get an intuitive sense of a telescope group,
think of an ordinary telescope. In an ordinary telescope, you have a set of rings that are
initially maximally coincident. Then you pull them successively out of alignment with
respect to each other. A telescope group is a group structured like this.

In fact, it is part of a still larger class of groups we call unfolding groups, which
which were also proposed by us in Leyton [23]. Unfolding groups are the most important
class of algebraic structures introduced in that book. The basic idea is that any complex
structure such as a design in CAD is unfolded from a maximally collapsed form which
we call the alignment kernel. Two main properties characterize unfolding groups:

Selection: The control group acts selectively on only part of its fiber.

Misalignment. The control group is symmetry-breaking by misalignment.

Now, in order to establish a group theory of CAD, our procedure was this: We spent
several years working through every single operation in each of several of the main
CAD, solid modeling, assembly, and animation programs, including several releases of
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Figure 17: Modulation has an opening telescope structure.

AutoCAD, ProEngineer, 3D Studio Max and Viz, Architectural Desktop, Mechanical
Desktop, etc., as well as all the major manuals on each of the programs – approximately
15,000 pages of text.

Each individual situation was characterized by a group, and a new class of groups
was invented for any situation that could not be formalized in terms of a previously
created class of groups. Proceeding in this manner, we eventually found that three
classes of groups could handle any newly created situation. They were called:

(1) Telescope groups.

(2) Super-local unfoldings.

(3) Sub-local unfoldings.

The above has looked so far (intuitively) at the structure of telescope groups. The book
shows that serial-link manipulators are examples of telescope groups. Therefore:

Musical modulation is an example of a telescope group.

That is, intuitively, modulation involves a set of initially coincident scales that succes-
sively slide against each other, out of alignment – like an opening telescope. This is
illustrated in Fig 17.

Super-local unfolding groups are structured by adding a control level above the
existing wreath hierarchy, but such that it acts selectively on only part of the existing
hierarchy. Such groups model situations, for example, in AutoCAD, where one freezes
part of the existing structure and manipulates some unfrozen cross-hierarchy selection
of elements; or conversely, situations, for example, in 3D Studio Max, where the cross-
hierarchy selection is locked and manipulated over a sequence of steps.

Now consider sub-local unfoldings. Here, an extra fiber level is attached below only
some part of the existing hierarchy. We shall soon see that this is the major basis of
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musical composition. However, in order to fully understand this, it is best to first examine
an apparently different design process: mechanical CAD. This is design in mechanical
engineering – forming the basis, for example, of the aerospace and automotive industries.
It is generally accepted that mechanical CAD proceeds by a process called feature
attachment. The remainder of the paper will do the following:

1. Give an algebraic theory of feature attachment in mechanical CAD.

2. Show that this is equivalent to musical composition.

To accomplish this, it is necessary to give more of the algebraic theory of object-
oriented software, that we developed in Leyton [23]. First of all, within that theory,
there is an analysis of class structure which says that each geometric class consists of
an internal symmetry group, specified often in the invariants clauses of the software
text for the class – and an external group consisting of command operations, such as
deformations, specified in the feature clauses of the class text.

A principle claim of the theory is that the relation between the internal symmetry
group and command structure, in the software text, is a wreath product, thus:

Gsym w© G(C)

where Gsym is the internal symmetry group and G(C) is the group of command opera-
tions. This is no more than an algebraic formulation of the phenomenon of re-usability,
within the specification text of the class. That is, according to our theory, re-usability
is transfer and transfer is modelled by wreath products.

Now let us turn to cloning in object-oriented programming. It is important to notice
that, when one clones an object, one is producing a copy with the same instance values.
This means that one is essentially creating a copy that is aligned with the original, as
can be seen in such programs such as 3D Studio Max and Viz. This copy can then be
manipulated via its command operations, which will then pull the clone out of alignment,
i.e., break the symmetry of the object-clone pair.

We are now ready to turn to object creation and feature attachment. Feature attach-
ment is the term used in mechanical design for the successive addition of structural units
and components. It is, of course, the main process in any design. Our basic proposal is
this:

THEORY OF FEATURE ATTACHMENT

When one creates objects and attaches them in the design structure,
one is entering new instances into the alignment kernel, and positioning
the command group for each new instance in the appropriate wreath
position within the unfolding group corresponding to the inheritance
hierarchy of the structure.
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21 Theory of Musical Composition

With these concepts, it is now possible to give a theory of musical composition. Recall
that our basic principle of aesthetics says:

Aesthetics is the maximization of transfer.

This was seen in section 13 with respect to the structure of modulation which was
modelled by an n-fold wreath product, i.e., hierarchical transfer, of the scale structure;
and it was seen also in section 19 with respect to musical meter which was modelled
by an iso-regular group – again, a structure of hierarchical transfer. It will now be seen
with respect to melodic form.

Significant progress has been made in understanding sequential organization by
psychologists working on the generation of serial patterns. Herbert Simon, himself an
outstanding musician, together with collegues, was the first to consider rule-systems
for psychological sequence generation, Simon & Kotovsky [35], Kotovsky & Simon
[14]. A further advance was made by Restle [32], who used hierarchies of rules. Fig
18 shows an example typical of one of Restle’s hierarchies. Three generative rules are
used in this hierarchy: T = transpose by one unit upwards in the scale; R = repeat; and
M = mirror about the scale center. Here the scale is assumed to consist of 12 notes.
Each of the operators takes the entire subsequence that it dominates via its left node
and maps it to the entire subsequence dominated by its right node. Notice that the tree
is strictly nested, a term used by Greeno & Simon [12], meaning that all the operators
within a level are exactly the same. The condition of strict nesting is equivalent to the
fact that the tree can be represented by a recursive formula. In the example shown, the
formula is:

M(T (R(T (1)))). (20)

The symbol 1, in this formula, is the left most 1 in Fig 18; and the formula generates
the remainder of the sequence.

An additional advance came when a number of researchers independently started to
use groups to structure the rules; Babbit [1], Leyton [15], Greeno & Simon [12], Jones
[13]. The major school for the use of group theory in music has become that of Guerino
Mazzola in Switzerland: Mazzola [24], [25], [26]. See also the work of Thomas Noll
[29], [30]. Further group-theoretic work has been done by Economou, [3], [4], [5]; and
also Gollin [11].

We argue that, when one examines the hierarchical theory of Restle, one must
conclude that the human mind is maximizing transfer. That is,

The process of sequence comprehension or generation is a process of
transferring previous structure onto future structure.

The fact that the mind tries to maximize this can be seen by the psychological studies
carried out by Restle to support his hierarchical rules – e.g., profiles of anticipation errors
showed that subjects were mapping previous structure onto the anticipated structure,
Restle & Brown [33].

Our generative theory of shape says that this is best modelled by wreath products. We
proceed as follows: Let us call a group generated by a set of compositional operators,
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Figure 18: An example of one of Restle’s rule hierarchies.

a rule group 	i. Given a hierarchy of the type shown in Fig 18, the levels will be
numbered upward from 1 to n. Now assign a rule group to each node. Within any level
i, the nodes should each receive the same rule group	i. We argue that the rule-structure
of the hierarchy is given by taking the wreath product of the groups 	i, thus:

	1 w©	2 w© . . . w©	n.

Observe that, with the three operators defined by Restle, the group is iso-regular.
Therefore, we now see that both the metrical and melodic structures, in their basic forms,
are given by iso-regular groups. This supports our claim that origin states are given by
iso-regular groups and that the subsequent generative process is symmetry-breaking by
breaking the iso-regularity.

Now according to our generative theory of shape, complex structure is created by
unfolding, which is selection plus misalignment. One loads a set of iso-regular groups
into the alignment kernel. These will represent the strict metrical or melodic anticipation
hierarchies of Restle.

According to our theory, the anticipation hierarchies are iso-regular groups and
complexity in a work will break the iso-regularity, and thus break the anticipated struc-
ture. This is a fundamentally important concept: Breaking the anticipation hierarchy is
equivalent to breaking the iso-regular group:

Breaking the anticipation hierarchy.



Breaking the iso-regular symmetry.

Most crucially, our theory says that breaking the iso-regular group must itself be
achieved by transfer; i.e., broken iso-regularity must be perceived as the transfer of
iso-regularity. Thus, since the iso-regular components are loaded into the alignment
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Figure 19: An illustration of local meter atlas, from [8]

kernel, the breaking is carried out by adding control groups above the alignment kernel
which will selectively deform and move the iso-regular components.

To illustrate, let us return to meter. Mazzola [25], [26] invented the important concept
of a local meter atlas. This is the covering of an irregular pattern by local regular meters.
To illustrate, observe that, in Fig 19, the melody has an irregular structure of onsets, as
shown in line X of the diagram. Below this, the lines marked a-e are each regular meters
that cover the onsets in the above irregular pattern. These local meters are maximal in
the sense that they extend the furthest distance allowed by the onsets in the irregular
pattern. Nestke, & Noll [28] and Fleischer & Noll [9] call these, inner local meters,
to distinguish them from the meter structure determined by the time-signature of the
score; i.e., corresponding to the conventional hierarchy of beat accents associated with
the bar-lines, etc. The accent structure corresponding to the time-signature is called the
outer meter structure. Using this theory, extensive and insightful analyses have been
developed by Mazzola [26], Fleischer, Mazzola, Noll, [8], Fleischer [6], [7], Fleischer
& Noll [9].

What we do now is propose a generative theory of the local meter atlas. To illustrate,
return to Fig 19. Recall that lines a-e in that diagram give the inner local meters. Notice
that they all correspond to iso-regular groups (each with an occupancy subgroup). What
we argue is that the atlas, i.e., arrangement of these groups, was generated from a starting
state in which these iso-regular groups were maximally aligned, and that the subsequent
generative process misaligned those groups. That is, the atlas is the misaligned version
of the alignment kernel. The misalignments were created by wreath-appending control
groups above the alignment kernel that selectively deformed and moved the iso-regular
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groups that comprised the alignment kernel. Notice that one can regard the ultimate
reference object within the alignment kernel – i.e., the ultimate parent in the inheritance
hierarchy defined by the control groups – as the metric structure given by the time
signature.

Our musical theory is therefore mathematically equivalent to our theory of mechan-
ical CAD. To see this crucial similarity, consider the following example of an unfolding
group:

[G1 ×G2 ×G3] w© AGL(3, R) w© AGL(3, R).

The fiber [G1×G2×G3] is the direct product of iso-regular groups; and the copy of this
fiber, corresponding to the identity element in the full control group, is the alignment
kernel. The successive control groups AGL(3, R) create successive misalignments of
the iso-regular groups in the alignment kernel. The profound point is this:

Mechanical CAD: the iso-regular groups, Gi, loaded into the alignment
kernel, are the shape primitives (cylinder, sphere, cube, etc.).

Music: the iso-regular groups, Gi, loaded into the alignment kernel, are
the anticipation hierarchies.

In other words, what have been called features in mechanical CAD (e.g., the cylin-
drical hole or rectangular block) correspond to the metrical and melodic anticipation
hierarchies in music.

Therefore our theory of feature attachment in mechanical CAD, becomes equivalent
to our theory of composition in music. That is:

THEORY OF MUSICAL COMPOSITION

Musical composition proceeds by successively adding new iso-regular
groups (anticipation hierarchies) into the alignment kernel, and posi-
tioning the command group for each new instance in the appropriate
wreath position within the unfolding group corresponding to the in-
heritance hierarchy of the structure.
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[27] Meyer, B. (1997). Object-Oriented Software Construction. New Jersey: Prentice
Hall.

[28] Nestke, A. & Noll, T. (2001). Inner Metric Analysis. In: Jan Haluska (ed.) Har-
monic Analysis and Tone Systems. Tatra Mountains Mathematical Publications,
Volume 23, Bratislava.

[29] Noll, T. (1995). Fractal Depth Structure of Tonal Harmony. In R. Bidlack (Editor).
ICMC-Proceedings. Banff: The Banff Centre for the Arts.

[30] Noll, T. (1997). Morphologische Grundlagen der abendländischen Harmonik.
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