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Abstract. A finite subset A of integers tiles the discrete line Z if the integers

can be written as a disjoint union of translates of A. In some cases, necessary
and sufficient conditions for A to tile the integers are known. We extend this

result to a large class of nonperiodic tilings and give a new formulation of the

Coven-Meyerowitz reciprocity conjecture which is equivalent to the Flugede
conjecture in one dimension.
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1. Introduction

A tiling of the finite abelian group G (written additively) is a pair (A,C) of
subsets of G such that 0 is in both A and C and every x of G can be uniquely
written as x = a + c with a ∈ A and c ∈ C. When G is the integers Z, we said
that the subset A (0 ∈ A) tiles the integers if there is a set C (0 ∈ C) such that
Z = A⊕C. The set A is called a tile and C the translation set. This decomposition
of a finite abelian group in two subsets had been studied by Hajós [8], Rédei [13],
Sands [15, 16], and others.

It is well known that any tiling (A,C) of the integers must be periodic. There
is a finite subset B of Z, and a nonnegative integer n such that C = B + nZ
with |A| · |B| = n. This leads to focuse on the factorisation of the abelian group
Zn = Z/nZ for some nonnegative integer n in two factors

A⊕B = Zn

The factorization of finite abelian groups was introduced by Hajós in 1941 [7] in
order to solve the Minkowski’s conjecture (see [11]) on homogeneous linear forms. A
subset A ⊂ G is periodic if there is some nonidentity element k ∈ G\{0} such that
A + k = A. The factorization G = A ⊕ B is periodic if one of the subsets A or B
is periodic, otherwise the sets and the factorization are aperiodic. Hajós asked for
which groups the factorization is periodic and this leads to a new definition. A finite
abelian group is a Hajós group (also called a ”good group” in the literature, or has
the 2-Hajós property) if in each factorization of G into two subsets G = A⊕ B at
least one factor is periodic. Otherwise, G is a non-Hajós group (also called a ”bad
group”). Restricted to G = Zn, the Hajós question was to determine the values of
n for which the factorization is periodic. The problem was solved by N.G. de Bruijn
[2] and A. Sands. In 1962, A. Sands [16] gave a complete classification of all Hajós
groups.

Theorem 1. Zn is a Hajós group if and only if n is of the form: pk for k ≥ 0, pkq
for k ≥ 1, p2q2, pqr, p2qr or pqrs for distinct primes p, q, r, s.
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Corollary 2. Zn is a non-Hajós group if and only if n can be expressed in the form
p1p2n1n2n3 where p1, p2 are primes, pini ≥ 2, i = 1, 2, 3 and gcd(n1p1, n2p2) = 1.

The smallest values of n for which Zn is a non-Hajós group are: 72, 108, 120,
144, 168, etc.

In 1977, Newman [12] found which sets of prime power size (|A| = pk, for p prime
and k ≥ 1) tile the integers. Later, Coven and Meyerowitz [4] found necessary
and sufficient conditions for A to tile the integers when |A| has at most two prime
factors. To review these conditions, we introduce for each finite set A of nonnegative
integers, the characteristic polynomial

A(x) =
∑
a∈A

xa

such that A(1) = |A|. The factorization of Zn = A ⊕ B is thus equivalent to the
algebraic expression

A(x)B(x) ≡ 1 + x+ x2 + ...+ xn−1 mod xn − 1

Let Φs(x) be the s-th cyclotomic polynomial and SA be the set of prime powers s
such that the s-th cyclotomic polynomial Φs(x) divides A(x). The pair (A,B) is a
factorization of Zn if and only if |A| |·B| = n and Φs(x) divides A(x)B(x) for all
s 6= 1 factors of n. The Coven-Meyerowitz conditions are
(T1) A(1) =

∏
s∈SA

Φs(1)

(T2) If s1, ..., sm ∈ SA are powers of different primes then Φs1...sm
(x) divides A(x).

Coven and Meyerowitz [4] proved that (we summarize their results in one theorem):

Theorem 3. (1) If A(x) satisfies (T1) and (T2), then A tiles the integers.
(2) If A tiles the integers, then A(x) satisfies (T1).
(3) If A tiles the integers, and |A| has at most two prime factors then (T2) holds.

Granville, Laba and Wang [6] extend this result to certain set A. More precisely, if
A and B are two sets of integers such that |A| = pαqβrγ and |B| = pqr with p, q, r
distincts primes that tile Zn, they show that if Φp(x), Φq(x), Φr(x) divide A(x)
then so do Φpq(x), Φpr(x), Φqr(x) and Φpqr(x). But in general, it is not known if
(T1) and (T2) are necessary and sufficient conditions for A to tiles the integers.
We will show that it is true for periodic canons and for some aperiodic canons.

2. Aperiodic canons

Each factorization of a non-Hajós group Zn = A ⊕ B in two aperiodic subsets
(A,B) is called an aperiodic canon. The problem arises in music theory and had
been studied by Vuza [20, 21], Fripertinger [5], Amiot [1] and others. The set
A describes the time location of the events of the canon or the ground voice (also
called the inner rhythm) and the set B corresponds to the attack times of the voices
of the canon (also called onsets or outer rhythm). All voices are just copies of the
ground voice translated in time. Vuza gave an algorithm to determine what he
called regular complementary canons of maximal category (here aperiodic canons),
but it has been shown that not all aperiodic canons are given by this method. At the
present time, a suitable algorithm to determine all aperiodic canons is not known
for all values of n.
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For nonnegative integers r, n > 1, we denote n the set n = {0, 1, ..., n − 1} and
r · n = {0, r, ..., r(n − 1)} the set obtained by multiplying each element of n by r.
The following result shows that it exists an infinity of aperiodic canons and gives
the expression of one canon for each non-Hajós group.

Theorem 4. Let Zn be a non-Hajós group with n = p1p2n1n2n3. Denote K1 and
K2 the sets

K1 = n2n3(p2 ⊕ p2n1 · p1)
K2 = n1n3(p1 ⊕ p1n2 · p2)

and let Tj(B2) = {j} ⊕ K2 be the translation of j. The canon (A,B) of lengths
|A| = n1n2 and |B| = p1p2n3, defined by

A = n3(p2n2 · n1 ⊕ p1n1 · n2)
B = K1 ∪ T1(K2) ∪ ... ∪ Tn3−1(K2)

is an aperiodic canon, called the standard aperiodic canon.

Proof. The proof uses the following properties

a⊕ a · b = ab

c · a⊕ a · bc = abc mod abc gcd(a, c) = 1

Compute the direct sum of A with K1

A⊕K1 = p2n2n3 · n1 ⊕ p1n1n3 · n2 ⊕ n2n3 · p2 ⊕ p2n1n2n3 · p1

= n2n3(p2 · n1 ⊕ ·p2)⊕ n1n3(p1 · n2 ⊕ p2n2 · p1)
= n2n3(n1p2)⊕ n1n3(p1 · n2 ⊕ p2n2 · p1)
= n2n3(n1p2 ⊕ p2n1 · p1)⊕ n1n3p1 · n2

= n2n3 · p1p2n1 ⊕ n1n3p1 · n2

= n3(n1p1 · n2 ⊕ n2 · p1p2n1)
= n3 · p1p2n1n2

The direct sum of A with K2,

A⊕K2 = p2n2n3 · n1 ⊕ p1n1n3 · n2 ⊕ n1n3 · p1 ⊕ p1n1n2n3 · p2

= p1n1n3(n2 ⊕ n2 · p2)⊕ n3(p2n2 · n1 ⊕ n1 · p1)
= n1n3(p1 ⊕ p1 · n2p2)⊕ n2n3p2 · n1

= n3(n1 · p1p2n2 ⊕ p2n2 · n1)
= n3 · p1p2n1n2

Lastly, the set A⊕B tiles the set n

A⊕B = n3 · p1p2n1n2 ∪ {1} ⊕ n3 · p1p2n1n2 ∪ .... ∪ {n3 − 1} ⊕ n3 · p1p2n1n2

= p1p2n1n2n3

= n

�

In the following, we define non-isomorphic canons and show that the (T2) prop-
erty is preserved by isomorphisms. The cyclic group Cn is the group generated by
the translation T which maps i to i+ 1 mod n. This translation acts in a natural
way on Zn and on the set of all subsets of Zn by T (A) = {T (i), i ∈ A}. Every subset
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A of Zn is identified with its characteristic function χA : Zn → {0, 1}, χA(i) = 1
if i ∈ A and 0 otherwise. The cyclic group Cn = 〈T 〉 acts on the set {0, 1}Zn of all
functions from Zn to {0, 1} by the action

Cn × {0, 1}Zn → {0, 1}Zn , (T j , f) → f ◦ T−j

Two canons (A,B) and (A′, B′) of Zn are Cm-isomorphic if they have the same
lengths |A| = |A′|, |B| = |B′| and if it exists a translation Tm and a permutation
σ such that

Tm(A+ bi) = A′ + b′σ(i)

for i = 1, .., |B| . Let I : Zn → Zn be the inversion I(i) = −i mod n. The dihedral
group Dn = 〈T, I〉 generated by T and I also acts on the subsets of Zn in the same
way as Cn does. Two canons (A,B) and (A′, B′) of Zn are Dm-isomorphic if they
have the same lengths and if it exists a translation Tm and a permutation σ such
that

Im(A+ bi) = A′ + b′σ(i)

where Im = Tm ◦ I is the commutative composition of the translation Tm with the
inversion I. The affine group An generated by the operators Ta,b(i) = ai + b acts
on the subsets of Zn. Two canons (A,B) and (A′, B′) of Zn are Am-isomorphic
if they have the same lengths and if the set A′ is an affine transformation of A
(A′ = aA+ b). Two canons are isomorphic if they are Cm, Dm or Am-isomorphic.

Example. For n = 72, Sands-de Bruijn decomposition is p1 = n1 = n3 = 2 and
p2 = n2 = 3. The previous result leads to K1 = 6 · 3⊕ 36 · 2 = {0, 6, 12, 36, 42, 48},
K2 = 4 · 2⊕ 24 · 3 = {0, 4, 24, 28, 48, 52}. The computation of

B1 = K1 ∪ T1(K2) = {0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53}
and

A1 = 18 · 2⊕ 8 · 3 = {0, 8, 16, 18, 26, 34}
gives the standard aperiodic canon (A1, B1) for the non-Hajós group Z72. There are
three non-isomorphic solutions for the inner rhythm under Cm or Dm-equivalence,
namely A1 = {0, 18}⊕{0, 8, 16}, A2 = {0, 18}⊕{0, 8, 40}, A3 = {0, 18}⊕{0, 8, 64},
but there is only one non-isomorphic solution since A2 = 5A1 and A3 = 7A1.
In the other hand, there are six solutions for the outer rhythm under Cm, and
three solutions underDm, namely B1 = {0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53}, B2 =
K1 ∪ T5(K2) = {0, 5, 6, 9, 12, 29, 33, 36, 42, 48, 53, 57} and B3 = K1 ∪ T11(K2) =
{0, 6, 11, 12, 15, 35, 36, 39, 42, 48, 59, 63}, but there are only two non-isomorphic so-
lutions because B3 = 7B2. Thus, we found two non-isomorphic aperiodic canons
(A1, B1) and (A1, B2) for n = 72. The characteristic polynomial A1(x) can be ex-
pressed with cyclotomic polynomials A1(x) = 1+x8+x16+x26+x34 = Φ3Φ4Φ6Φ2

12

Φ24Φ36(x). The set of indices of these factors is denoted by the multiset TA1 =
{3, 4, 6, 12, 12, 24, 36}. For each set Bj with j = 1, 2, 3, the cyclotomic factorization
leads to TBj

= {2, 8, 9, 18, 72} such that TA1 ∪ TBj
= D72 where D72 is the set

of divisors of 72 minus {1}. For an isomorphic aperiodic canon, we have only an
inclusion. The set B′ = K1 ∪ T3(K2) = {0, 3, 6, 7, 12, 27, 31, 36, 42, 48, 51, 55} forms
an aperiodic canon (A1, B

′) isomorphic to (A1, B2), but Φ10(x) divise B′(x) and
TB′ = TBj

∪ {10} = {2, 8, 9, 10, 18, 72}.

Proposition 5. Let (A,B) be a canon of Zn. Then A(x) satisfies (T2) if and only
if B(x) satisfies (T2).
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Proposition 6. Let (A,B) and (A′, B′) two non-isomorphic canons of Zn, then
A(x) satisfies (T2) if and only if A′(x) satisfies (T2).

Proposition 7. If (A,B) is an aperiodic canon of Zn, and k a nonnegative integer
k > 1, then

A′ = kA⊕ {0, 1, ..., k − 1} and B′ = kB

is an aperiodic canon of Zkn.

Example. For n = 72 and k = 2, the sets A = {0, 18} ⊕ {0, 8, 16} and B =
{0, 1, 5, 6, 12, 25, 29, 36, 42, 48, 49, 53} form the standard aperiodic canon. Conse-
quently, the pair (2A, 2B) is an aperiodic canon for n = 144. The cyclotomic
polynomials A(x) = Φ3Φ4Φ6Φ2

12Φ24Φ36(x) and B(x) = Φ2Φ8Φ9Φ18Φ72ψ(x) of the
aperiodic canon for n = 72 give some information on the cyclotomic polynomials
for n = 144. Using the property,

(1) Φs(xp) =
{

Φps(x) if p is a factor of s
Φs(x)Φps(x) if p is not a factor of s

we compute the cyclotomic polynomials of A′(x) = A(x2) = Φ3Φ6Φ8Φ12Φ2
24Φ48(x)

and some of B′(x) = B(x2) = Φ4Φ16Φ9Φ18Φ36Φ144ψ(x2).

Theorem 8. Let (A,B) be a canon of Zn. If A is periodic then A(x) satisfies (T2).

Proof. If A is periodic, then Zn is a group of Hajós. Consequently, n is of the form:
pk for k ≥ 0, pkq for k ≥ 1, p2q2, pqr, p2qr or pqrs for distinct primes p, q, r, s. The
cardinality of the set A (or B) has either two prime factors and A(x) satisfies (T2)
by Coven-Meyerowitz theorem, either it has three prime factors and satisfies also
(T2) by Granville-Laba-Wang results. �

Theorem 9. Let (A,B) be a canon and (A′, B′) an isomorphic canon. Then A(x)
satisfies (T2) if and only if A′(x) satisfies (T2).

Proof. The result is obvious if A′ is a translation of A or if it is an inversion. The
lemma 1.4 of [4] shows that it is also true for A′ = kA, with k > 1. �

Theorem 10. If (A,B) denotes the standard aperiodic canon then A(x) and B(x)
satisfies (T2).

Proof. The proof is a consequence of the results given in the next section. �

Let (U, V ) be an aperiodic canon and (A,B) the standard aperiodic canon. If we
are able to show that

U(x) satisfies (T2) if and only if A(x) satisfies (T2)

then the conjecture of Coven-Meyerowitz will be true, and consequently the Flugede
conjecture in one dimension.

3. Cyclotomic structure of the standard canon

From now on, we set

p1 = p, p2 = q, n1 = rα+1, n2 = sβ+1, n3 = tγ+1

We write the characteristic polynomial of the set A :

A(x) =
∏

u|rα+1

Φu

(
xtγ+1sβ+1q

) ∏
u|sβ+1

Φu

(
xtγ+1rα+1p

)



6 FRANCK JEDRZEJEWSKI

A(x) = Φr

(
xtγ+1sβ+1q

)
Φr2

(
xtγ+1sβ+1q

)
...Φrα+1

(
xtγ+1sβ+1q

)
·

Φs

(
xtγ+1rα+1p

)
Φs2

(
xtγ+1rα+1p

)
...Φsβ+1

(
xtγ+1rα+1p

)
and the characteristic polynomial K1(x) and K2(x) :

K1(x) = Φq

(
xtγ+1sβ+1

)
Φp

(
xqrα+1sβ+1tγ+1

)
K2(x) = Φp

(
xrα+1tγ+1

)
Φq

(
xprα+1sβ+1tγ+1

)
The multisets TA = {s, Φs | A(x)} and TB = {s, Φs | B(x)}, or

TB = TK1 ∩ TK2 ∪ {t, t2, ..., tγ+1}

will be obtain using the property (1). Since gcd(n1p, n2q) = 1, we have necessarily

p 6= q p 6= s
q 6= r r 6= s

It remains 14 cases given by (if we denote only the distinct prime numbers)

1 pqrst 8 pqrqq
2 pqrsr 9 pqpst
3 pqrsp 10 pqpsp
4 pqrsq 11 pqpsq
5 pqrqt 12 pqpqt
6 pqrqr 13 pqpqp
7 pqrqp 14 pqpqq

The verification of (T2) by each of the 14 cases leads to the previous theorem,
because the result is unchanged if we replace each prime power of the form rα by
a multi-index rα1

1 rα2
2 ...rαm

m .

• Case 1: p,q, r, s, t distincts

Proposition 11. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = sβ+1 and n3 =
tγ+1 where p,q,r,s,t are distinct primes ≥ 2, then the sets of cyclotomic polynomial
indices of the standard aperiodic canon are

TA = r{1, q}{1, r, ..., rα}{1, s, ..., sβ+1}{1, t, ..., tγ+1} ∪
s{1, p}{1, r, ..., rα+1}{1, s, ..., sβ}{1, t, ..., tγ+1}

TB = {t, t2, ..., tγ+1} ∪ q{1, s, ..., sβ+1}{1, t, ..., tγ+1}
∪ p{1, r, ..., rα+1}{1, t, ..., tγ+1}
∪ pq{1, r, ..., rα+1}{1, s, ..., sβ+1}{1, t, ..., tγ+1}

and the sets of prime powers

SA = {r, ..., rα+1, s, ..., sβ+1}
SB = {t, t2, ..., tγ+1, p, q}

satisfy(T2).
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Proof. For the polynomial K1(x)

K1(x) = Φq

(
xtγ+1sβ+1

)
Φp

(
xqrα+1sβ+1tγ+1

)
We get

TK1 = q{1, s, ..., sβ+1}{1, t, ..., tγ+1} ∪ p{1, q}{1, r, ..., rα+1} ·
{1, s, ..., sβ+1}{1, t, ..., tγ+1}

In the same way, for K2(x)

K2(x) = Φp

(
xrα+1tγ+1

)
Φq

(
xprα+1sβ+1tγ+1

)
We have

TK2 = q{1, p}{1, r, ..., rα+1}{1, s, ..., sβ+1}{1, t, ..., tγ+1} ∪
p{1, r, ..., rα+1}{1, t, ..., tγ+1}

Consequently,

TB = TK1 ∩ TK2 ∪ {t, t2, ..., tγ+1}
= {t, t2, ..., tγ+1} ∪ q{1, s, ..., sβ+1}{1, t, ..., tγ+1}

∪ p{1, r, ..., rα+1}{1, t, ..., tγ+1}
∪ pq{1, r, ..., rα+1}{1, s, ..., sβ+1}{1, t, ..., tγ+1}

�

• Case 2: t = r, and p,q, r, s distincts

Proposition 12. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = sβ+1 and n3 = rγ+1

where p, q, r, s are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = rγ+2{1, q}{1, r, ..., rα}{1, s, ..., sβ+1} ∪
s{1, p}{1, r, ..., rα+γ+2}{1, s, ..., sβ}

TB = {r, r2, ..., rγ+1} ∪ q{1, s, ..., sβ+1}{1, r, ..., rγ+1}
∪p{1, r, ..., rα+1} ∪ pq{1, r, ..., rα+1}{1, s, ..., sβ+1}

and the sets of prime powers

SA = {rγ+2, ..., rα+γ+2, s, ..., sβ+1}
SB = {r, r2, ..., rγ+1, p, q}

satisfy (T2)

Proof. Replacing t by r in A(x), we have

A(x) = Φr

(
xrγ+1sβ+1q

)
Φr2

(
xrγ+1sβ+1q

)
...Φrα+1

(
xrγ+1sβ+1q

)
·

Φs

(
xrγ+1rα+1p

)
Φs2

(
xrγ+1rα+1p

)
...Φsβ+1

(
xrγ+1rα+1p

)
Using the property (1)

A(x) = Φrγ+2

(
xsβ+1q

)
Φrγ+3

(
xsβ+1q

)
...Φrα+γ+2

(
xsβ+1q

)
·

Φs

(
xrα+γ+2p

)
Φs2

(
xrα+γ+2p

)
...Φsβ+1

(
xrα+γ+2p

)
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We get

A(x) =
∏

u|qsβ+1

Φurγ+2(x)
∏

u|qsβ+1

Φurγ+3(x)...
∏

u|qsβ+1

Φurα+γ+2(x)

∏
v|prα+γ+2

Φvs(x)
∏

v|prα+γ+2

Φvs2(x)...
∏

v|prα+γ+2

Φvsβ+1(x)

Consequently,

TA = rγ+2{u, u | qrαsβ+1} ∪ s{v, v | prα+γ+2sβ}
= rγ+2{1, q}{1, r, ..., rα}{1, s, ..., sβ+1} ∪

s{1, p}{1, r, ..., rα+γ+2}{1, s, ..., sβ}
and

TB = {r, r2, ..., rγ+1} ∪ q{1, s, ..., sβ+1}{1, r, ..., rγ+1}
∪p{1, r, ..., rα+1} ∪ pq{1, r, ..., rα+1}{1, s, ..., sβ+1}

�

• Case 3 : t = p, and p,q,r,s distincts

Proposition 13. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = sβ+1 and n3 = pγ+1

where p,q,r,s are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = r{1, q}{1, r, ..., rα}{1, s, ..., sβ+1}{1, p, ..., pγ+1} ∪
s{1, p}{1, r, ..., rα+1}{1, s, ..., sβ}{1, p, ..., pγ+1}

TB = pγ+2{1, r, ..., rα+1} ∪ q{1, s, ..., sβ+1}{1, p, ..., pγ+1}
∪ pγ+2q{1, r, ..., rα+1}{1, s, ..., sβ+1} ∪ {p, ..., pγ+1}

and the sets of prime powers

SA = {r, ..., rα+1, s, ..., sβ+1}
SB = {p, ..., pγ+2, q}

satisfy (T2)

Proof. We get
K1(x) = Φq

(
xsβ+1pγ+1

)
Φpγ+2

(
xqrα+1sβ+1

)
and

K2(x) = Φpγ+2

(
xsβ+1pγ+1

)
Φpγ+2

(
xqrα+1sβ+1

)
Thus

TK1 = q{1, ..., sβ+1}{1, p, ..., pγ+1} ∪ pγ+2{1, q}{1, r, ..., rα+1}{1, ..., sβ+1}
and

TK2 = pγ+2{1, r, ..., rα+1} ∪ q{1, p, ..., pγ+2}{1, r, ..., rα+1}{1, ..., sβ+1}
Consequently,

TB = pγ+2{1, r, ..., rα+1} ∪ q{1, s, ..., sβ+1} ∪ {p, ..., pγ+1}
∪ pγ+2q{1, r, ..., rα+1}{1, s, ..., sβ+1}

�
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• Case 4: t = q, and p,q, r, s distincts

Proposition 14. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = sβ+1 and n3 = qγ+1

where p,q,r,s are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = r{1, q}{1, r, ..., rα}{1, s, ..., sβ+1}{1, q, ..., qγ+1} ∪
s{1, p}{1, r, ..., rα+1}{1, s, ..., sβ}{1, q, ..., qγ+1}

TB = qγ+2{1, s, ..., sβ+1} ∪ p{1, r, ..., rα+1} ∪ {q, ..., qγ+1}
∪ pqγ+2{1, r, ..., rα+1}{1, s, ..., sβ+1}

and the sets of prime powers

SA = {r, ..., rα+1, s, ..., sβ+1}
SB = {q, ..., qγ+2, p}

satisfy (T2)

Proof. We have

K1(x) = Φqγ+2

(
xsβ+1

)
Φp

(
xrα+1sβ+1qγ+2

)
and

K2(x) = Φp

(
xrα+1pγ+1

)
Φqγ+2

(
xprα+1sβ+1

)
Thus

TK1 = qγ+2{1, ..., sβ+1} ∪ p{1, r, ..., rα+1}{1, ..., sβ+1}{1, q, ..., qγ+2}
and

TK2 = p{1, p, ..., pγ+1}{1, r, ..., rα+1} ∪ qγ+2{1, p}{1, r, ..., rα+1}{1, ..., sβ+1}
Consequently,

TB = qγ+2{1, s, ..., sβ+1} ∪ p{1, r, ..., rα+1} ∪ {q, ..., qγ+1}
∪ pqγ+2{1, r, ..., rα+1}{1, s, ..., sβ+1}

�

• Case 5: s = q and p,q, r, t distincts

Proposition 15. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = qβ+1 and n3 = tγ+1

where p,q,r,t are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = r{1, r, ..., rα}{1, q, ..., qβ+2}{1, t, ..., tγ+1} ∪
q{1, q, ..., qβ}{1, p}{1, r, ..., rα+1}{1, t, ..., tγ+1}

TB = {t, ..., tγ+1} ∪ qβ+2{1, t, ..., tγ+1} ∪ p{1, r, ..., rα+1}{1, t, ..., tγ+1}
∪ pqβ+2{1, r, ..., rα+1}{1, t, ..., tγ+1}

and the sets of prime powers

SA = {r, ..., rα+1, q, ..., qβ+1}
SB = {t, ..., tγ+1, p, qβ+2}

satisfy (T2)
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Proof. We have

K1(x) = Φqβ+2

(
xtγ+1

)
Φp

(
xqβ+2rα+1tγ+1

)
and

K2(x) = Φp

(
xrα+1tγ+1

)
Φqβ+2

(
xprα+1tγ+1

)
Thus

TK1 = qβ+2{1, ..., tγ+1} ∪ p{1, q, ..., qβ+2}{1, r, ..., rα+1}{1, ..., tγ+1}
and

TK2 = p{1, r, ..., rα+1}{1, ..., tγ+1} ∪ qβ+2{1, p}{1, r, ..., rα+1}{1, ..., tγ+1}
Consequently,

TB = {t, ..., tγ+1} ∪ qβ+2{1, ..., tγ+1} ∪ p{1, r, ..., rα+1}{1, ..., tγ+1}
∪ pqβ+2{1, r, ..., rα+1}{1, ..., tγ+1}

�

• Case 6: t = r, s = q, and p,q, r distincts

Proposition 16. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = qβ+1 and n3 = rγ+1

where p,q,r are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = rγ+2{1, r, ..., rα}{1, q, ..., qβ+2} ∪
q{1, p}{1, r, ..., rα+γ+2}{1, q, ..., qβ}

TB = qβ+2{1, r, ..., rγ+1} ∪ p{1, r, ..., rα+γ+2}
∪pqβ+2{1, r, ..., rα+γ+2} ∪ {r, ..., rγ+1}

and the sets of prime powers

SA = {r, ..., rα+γ+2, q, ..., qβ+1}
SB = {r, ..., rγ+1, p, qβ+2}

satisfy (T2)

Proof. We have
K1(x) = Φqβ+2

(
xrγ+1

)
Φp

(
xrα+γ+2qβ+2

)
and

K2(x) = Φp

(
xrα+γ+2

)
Φqβ+2

(
xprα+γ+2

)
Thus

TK1 = qβ+2{1, ..., rγ+1} ∪ p{1, q, ..., qβ+2}{1, r, ..., rα+γ+2}
and

TK2 = p{1, r, ..., rα+γ+2} ∪ qβ+2{1, p}{1, r, ..., rα+γ+2}
Consequently,

TB = qβ+2{1, r, ..., rγ+1} ∪ p{1, r, ..., rα+γ+2}
∪pqβ+2{1, r, ..., rα+γ+2} ∪ {r, ..., rγ+1}

�
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• Case 7: s = q, t = p and p,q, r distincts

Proposition 17. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = qβ+1 and n3 = pγ+1

where p,q,r are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = r{1, r, ..., rα}{1, q, ..., qβ+2}{1, p, ..., pγ+1} ∪
q{1, q, ..., qβ}{1, p, ..., pγ+1}{1, r, ..., rα+1}

TB = {p, ..., pγ+1} ∪ qβ+2{1, p, ..., pγ+2} ∪ pγ+2{1, r, ..., rα+1}
∪ pγ+2qβ+2{1, r, ..., rα+1}

and the sets of prime powers

SA = {r, ..., rα+1, q, ..., qβ+1}
SB = {p, ..., pγ+2, qβ+2}

satisfy (T2)

Proof. We have
K1(x) = Φqβ+2

(
xpγ+1

)
Φpγ+2

(
xqβ+2rα+1

)
and

K2(x) = Φpγ+2

(
xrα+1

)
Φqβ+2

(
xrα+1pγ+2

)
Thus

TK1 = qβ+2{1, ..., pγ+1} ∪ pγ+2{1, q, ..., qβ+2}{1, r, ..., rα+1}
and

TK2 = pγ+2{1, r, ..., rα+1} ∪ qβ+2{1, r, ..., rα+1}{1, ..., pγ+2}
Consequently,

TB = {p, ..., pγ+1} ∪ qβ+2{1, p, ..., pγ+2} ∪ pγ+2{1, r, ..., rα+1}
∪ pγ+2qβ+2{1, r, ..., rα+1}

�

• Case 8: s = t = q, and p,q, r distincts

Proposition 18. Let n be n = pqn1n2n3. If n1 = rα+1, n2 = qβ+1 and n3 = qγ+1

where p,q,r are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = r{1, r, ..., rα}{1, q, ..., qβ+γ+3} ∪
qγ+2{1, q, ..., qβ}{1, p}{1, r, ..., rα+1}

TB = {q, ..., qγ+1} ∪ {qβ+γ+3} ∪ p{1, r, ..., rα+1}{1, q, ..., qγ+1}
∪ pqβ+γ+3{1, r, ..., rα+1}

and the sets of prime powers

SA = {r, ..., rα+1, qγ+2, ..., qβ+γ+2}
SB = {q, ..., qγ+1, qβ+γ+3, p}

satisfy (T2)
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Proof. We have
K1(x) = Φqβ+γ+3 (x) Φp

(
xqβ+γ+3rα+1

)
and

K2(x) = Φp

(
xrα+1qγ+1

)
Φqβ+γ+3

(
xprα+1

)
Thus

TK1 = {qβ+γ+3} ∪ p{1, q, ..., qβ+γ+3}{1, r, ..., rα+1}
and

TK2 = p{1, r, ..., rα+1}{1, q, ..., qγ+1} ∪ qβ+γ+3{1, p}{1, r, ..., rα+1}
Consequently,

TB = {q, ..., qγ+1} ∪ {qβ+γ+3} ∪ p{1, r, ..., rα+1}{1, q, ..., qγ+1}
∪ pqβ+γ+3{1, r, ..., rα+1}

�

• Case 9: r = p, and p,q, s, t distincts

Proposition 19. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = sβ+1 and n3 = tγ+1

where p,q,s,t are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = p{1, q}{1, p, ..., pα}{1, s, ..., sβ+1}{1, t, ..., tγ+1} ∪
s{1, p, ..., pα+2}{1, s, ..., sβ}{1, t, ..., tγ+1}

TB = {t, ..., tγ+1} ∪ q{1, s, ..., sβ+1}{1, t, ..., tγ+1}
∪ pα+2{1, t, ..., tα+1} ∪ pα+2q{1, s, ..., sβ+1}{1, t, ..., tγ+1}

and the sets of prime powers

SA = {p, ..., pα+1, s, ..., sβ+1}
SB = {t, ..., tγ+1, pα+2, q}

satisfy (T2)

Proof. We have

K1(x) = Φq

(
xsβ+1tγ+1

)
Φpα+2

(
xqsβ+1tγ+1

)
and

K2(x) = Φpα+2

(
xtγ+1

)
Φq

(
xpα+2sβ+1tγ+1

)
Thus

TK1 = q{1, ..., sβ+1}{1, t, ..., tγ+1} ∪ pα+2{1, q}{1, ..., sβ+1}{1, t, ..., tγ+1}
and

TK2 = pα+2{1, t, ..., tγ+1} ∪ q{1, p, ..., pα+2}{1, ..., sβ+1}{1, t, ..., tγ+1}
Consequently,

TB = {t, ..., tγ+1} ∪ q{1, s, ..., sβ+1}{1, t, ..., tγ+1}
∪ pα+2{1, t, ..., tα+1} ∪ pα+2q{1, s, ..., sβ+1}{1, t, ..., tγ+1}

�
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• Case 10: r = t = p, and p,q, s distincts

Proposition 20. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = sβ+1 and n3 = pγ+1

where p,q,s,t are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = pγ+2{1, q}{1, p, ..., pα}{1, s, ..., sβ+1} ∪
s{1, p, ..., pα+γ+3}{1, s, ..., sβ}

TB = {p, ..., pγ+1} ∪ {pα+γ+3} ∪ q{1, s, ..., sβ+1}{1, p, ..., pγ+1}
∪ pα+γ+3q{1, s, ..., sβ+1}

and the sets of prime powers

SA = {pγ+2, ..., pα+γ+2, s, ..., sβ+1}
SB = {p, ..., pγ+1, pα+γ+3, q}

satisfy (T2)

Proof. We have
K1(x) = Φq

(
xsβ+1pγ+1

)
Φpα+γ+3

(
xqsβ+1

)
and

K2(x) = Φpα+γ+3 (x) Φq

(
xpα+γ+3sβ+1

)
Thus

TK1 = q{1, ..., sβ+1}{1, p, ..., pγ+1} ∪ pα+γ+3{1, q}{1, ..., sβ+1}
and

TK2 = {pα+γ+3} ∪ q{1, p, ..., pα+γ+3}{1, ..., sβ+1}
Consequently,

TB = {p, ..., pγ+1} ∪ {pα+γ+3} ∪ q{1, s, ..., sβ+1}{1, p, ..., pγ+1}
∪ pα+γ+3q{1, s, ..., sβ+1}

�

• Case 11: r = p, t = q and p,q, s distincts

Proposition 21. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = sβ+1 and n3 = qγ+1

where p,q,s are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = p{1, p, ..., pα}{1, q, ..., qγ+2}{1, s, ..., sβ+1} ∪
s{1, p, ..., pα+2}{1, s, ..., sβ}{1, q, ..., qγ+1}

TB = {q, ..., qγ+1} ∪ qγ+2{1, s, ..., sβ+1} ∪ pα+2{1, q, ..., qγ+1}
∪ pα+2qγ+2{1, s, ..., sβ+1}

and the sets of prime powers

SA = {p, ..., pα+1, s, ..., sβ+1}
SB = {q, ..., qγ+2, pα+2}

satisfy (T2)
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Proof. We have
K1(x) = Φqγ+2

(
xsβ+1

)
Φpα+2

(
xsβ+1qγ+2

)
and

K2(x) = Φpα+2

(
xqγ+1

)
Φqγ+2

(
xpα+2sβ+1

)
Thus

TK1 = qγ+2{1, ..., sβ+1} ∪ pα+2{1, ..., sβ+1}{1, q, ..., qγ+2}
and

TK2 = pα+2{1, q, ..., qγ+1} ∪ qγ+2{1, p, ..., pα+2}{1, ..., sβ+1}
Consequently,

TB = {q, ..., qγ+1} ∪ qγ+2{1, s, ..., sβ+1} ∪ pα+2{1, q, ..., qγ+1}
∪ pα+2qγ+2{1, s, ..., sβ+1}

�

• Case 12: r = p, s = q and p,q, t distincts

Proposition 22. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = qβ+1 and n3 = tγ+1

where p,q,t are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices
of the standard aperiodic canon are

TA = p{1, p, ..., pα}{1, q, ..., qβ+2}{1, t, ..., tγ+1} ∪
q{1, p, ..., pα+2}{1, q, ..., qβ}{1, t, ..., tγ+1}

TB = {t, ..., tγ+1} ∪ qβ+2{1, t, ..., tγ+1} ∪
∪ pα+2{1, t, ..., tγ+1} ∪ pα+2qβ+2{1, t, ..., tγ+1}

and the sets of prime powers

SA = {p, ..., pα+1, q, ..., qβ+1}
SB = {t, ..., tγ+1, pα+2, qβ+2}

satisfy (T2)

Proof. We have
K1(x) = Φqβ+2

(
xtγ+1

)
Φpα+2

(
xqβ+2tγ+1

)
and

K2(x) = Φpα+2

(
xtγ+1

)
Φqβ+2

(
xpα+2tγ+1

)
Consequently,

TK1 = qβ+2{1, t, ..., tγ+1} ∪ pα+2{1, ..., qβ+2}{1, t, ..., tγ+1}
and

TK2 = pα+2{1, t, ..., tγ+1} ∪ qβ+2{1, p, ..., pα+2}{1, t, ..., tγ+1}
Thus

TB = {t, ..., tγ+1} ∪ qβ+2{1, t, ..., tγ+1} ∪
∪ pα+2{1, t, ..., tγ+1} ∪ pα+2qβ+2{1, t, ..., tγ+1}

�
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• Case 13: r = p, s = q, t = p, and p,q distincts

Proposition 23. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = qβ+1 and n3 = pγ+1

where p,q are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices of
the standard aperiodic canon are

TA = pγ+2{1, ..., pα}{1, q, ..., qβ+2} ∪ q{1, q, ..., qβ}{1, ..., pα+γ+3}
TB = {p, ..., pγ+1} ∪ {pα+γ+3} ∪ qβ+2{1, p, ..., pγ+1} ∪ {qβ+2pα+γ+3}

and the sets of prime powers

SA = {pγ+2, ..., pα+γ+2, q, ..., qβ+1}
SB = {p, ..., pγ+1, pα+γ+3, qβ+2}

satisfy (T2)

Proof. We have
K1(x) = Φqβ+2

(
xpγ+1

)
Φpα+γ+3

(
xqβ+2

)
and

K2(x) = Φpα+γ+3 (x) Φqβ+2

(
xpα+γ+3

)
Thus

TK1 = qβ+2{1, p, ..., pγ+1} ∪ pα+γ+3{1, ..., qβ+2}
and

TK2 = {pα+γ+3} ∪ qβ+2{1, p, ..., pα+γ+3}
�

Remark. For α = β = γ = 0, we find the sets TA = p2{1, q, q2} ∪ q{1, p, p2, p3}
and TB = p ∪ p3 ∪ q2{1, p} ∪ q2p3. For n = 72, p = 2, q = 3 we recover the
example of the previous section.

• Case 14: r = p, s = t = q, and p,q distincts

Proposition 24. Let n be n = pqn1n2n3. If n1 = pα+1, n2 = qβ+1 and n3 = qγ+1

where p,q are distinct primes ≥ 2, then the sets of cyclotomic polynomial indices of
the standard aperiodic canon are

TA = p{1, ..., pα}{1, q, ..., qβ+γ+3} ∪ qγ+2{1, q, ..., qβ}{1, ..., pα+2}
TB = {q, ..., qγ+1} ∪ {qβ+γ+3} ∪ pα+2{1, q, ..., qγ+1} ∪ {qβ+γ+3pα++2}

and the sets of prime powers

SA = {p, ..., pα+1, qγ+2, ..., qβ+γ+2}
SB = {q, ..., qγ+1, pα+2, qβ+γ+3}

satisfy (T2)

Proof. We have

K1(x) = Φqβ+γ+3 (x)Φpα+2

(
xq

β+γ+3
)

and
K2(x) = Φpα+2

(
xqγ+1

)
Φqβ+γ+3

(
xpα+2

)
Thus

TK1 = {qβ+γ+3} ∪ pα+2{1, ..., qβ+γ+3}
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and
TK2 = pα+2{1, ..., qγ+1} ∪ qβ+γ+3{1, p, ..., pα+2}

�

4. Some other tiles

Lagarias and Szabó [10] proposed the following aperiodic canon as a counterex-
ample to Tijdeman’s conjecture.

U = 36{0, 1, .., 4} ⊕ 100{0, 1, 2} ⊕ 225{0, 1}
V = {0, 30, 60, 126, 180, 210, 220, 240, 300, 306,

330, 360, 375, 390, 480, 486, 510, 520, 540, 570,
660, 666, 690, 750, 780, 820, 825, 840, 846, 870}

The indices of the cyclotomic polynomials are

TU = {2, 3, 5, 6, 6, 10, 10, 12, 15, 15, 18, 20, 30, 30, 30, 45, 50,
60, 60, 75, 90, 90, 150, 150, 180, 300, 450}

TV = {4, 9, 25, 36, 100, 225, 900}

The polynomial V (x) = Φ4Φ9Φ25Φ36Φ100Φ225Φ900ψ(x) has a complicated remain-
der ψ(x) = 1 − x2 − x3 + ... − x427 − x428 + x430. The standard aperiodic canon
corresponds to the case 12 (pqpqt) with α = β = 0, γ = 1, t = 5, p = 2,
q = 3 (or p = 3, q = 2), A = 100{0, 1, 2} ⊕ 225{0, 1}, B = K1 ∪ T1(K2) ∪
... ∪ T24(K2), K1 = 75{0, 1, 2} ⊕ 450{0, 1} and K2 = 36{0, 1, 2} ⊕ 6{0, 1}. For
K3 = 36{0, 1, ..., 4}, the characteristic polynomial leads to the following set TK3 =
{5, 10, 15, 20, 30, 45, 60, 90, 180} = 5{1, 2, 4}{1, 3, 9}. The set TA and TB are linked
to the sets TU and TV by

TA = {2, 3, 6, 6, 10, 12, 15, 18, 30, 30, 50, 60, 75, 90, 150, 150, 300, 450}
= TU \ TK3

and

TB = {4, 5, 9, 20, 25, 36, 45, 100, 180, 225, 900}
= TV ∪ {5, 20, 45, 180} = TV ∪ 5{1, 4}{1, 9}

The cyclotomic structure of the solution of Lagarias-Szabó is different from the
cyclotomic structure of the standard aperiodic canon, but closely linked to it.
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[10] J.C. Lagarias, S. Szabó, Universal Spectra and Tijdeman’s Conjecture on Factorization of

Cyclic Groups, J. Fourier Anal. Appl. 7 (2001) 63-70.

[11] H. Minkowski, Geometrie der Zahlen, Leipzig, 1896.
[12] D.J. Newman, Tesselation of integers, J. Number Theory 9 (1977), 107-111.
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