In Lemma 2 you prove that the polynomial J, corresponding to 11001,
is irreducible over GF(2). Then in Lemma 3 you prove that GF(2)/(.J) is
isomorphic to GF(16). (In general, when .J is an irreducible polynomial of
degree d, then GF(2)/(J) is isomorphic to GF(29).)

Then in Lemma 4 you prove that all elements in GF(16)* (thus different
from 0) satisfy z'5 = 1. (In general, all elements in GF'(2)* satisfy 22t =
1.) This is just a general result.

The next important fact is to compute the order of the roots of J in
the multiplicative group G'F(16)*. And it turns out, that this order is 15.
Hence, in this special example, they are of maximal order. In general it is
not important that they are of maximal order. In general, we get that the
order (in the cyclic group GF'(24)*) of the roots of an irreducible polynomial
of degree d over GI'(2) is a divisor of 2¢ — 1, but it is not a divisor of 2¥ — 1
for k£ < d. Moreover, the orders of two different roots of the same irreducible
polynomial coincide.

Finally, in Lemma 6 you prove that when oo € G'F'(16) is a root of .J, then
also 2" is a root of J. This follows also immediately in general situations,
when applying the Frobenius Automorphism: v : GF(2%) — GF(2%), v
Y(x) := 2% Tt is an automorphism of GF(2¢) which does not change any
element of the prime field G'F(2).

How to generalize this proof? First it is very easy to generalize it to other
irreducible polynomials J. Since these polynomials come from 01-sequences
and we want to partition a line we always assume that the sequences start
with a 1, whence the polynomial J starts always with the constant term 1,
thus J =1+ ... and consequently J(0) = 1.

In general for polynomials J such that J(0) # 0 the exponent (or the
order) of J is defined to be the smallest non-negative integer e, such that .J
is a divisor of #° — 1. In other words, the exponent of J is

min {e € N | J is a divisor of 2 —1}.

If moreover .J is a monic, irreducible polynomial of degree d with .J(0) # 0,
then the following holds.

— The exponent of J is the order of any root of J in the multiplicative
GF(24)~.

— The exponent of .J is a divisor of 2¢ — 1, but not a divisor of 2 — 1 for
k < d. Hence, we can compute the set of all exponents which can occur as
exponents of such polynomials of degree d.



— The polynomial J is a divisor of 2" — 1 if and only if the exponent of J
is a divisor of n.

For that reason it is possible to generalize this approach for irreducible
polynomials J of degree d. Lemma 2 is satisfied by assumption, Lemma 3
yields the field GF(2?). Lemma 4 must be generalized to GF'(2%). Lemma
5 reads as follows: The order of any root of J equals the exponent of J.
Lemma 6 is also clear.

How to formulate the Theorem. Let J be an irreducible polynomial com-
ing from a 0l-sequence, such that J(0) # 0, .J is of degree d and exponent e,
and there are exactly & summands in .J different from 0 (i.e. there are exactly
k entries equal to 1 in the 01-sequence corresponding to .J). Then, any tiling
of the line by the pattern corresponding to J and its binary augmentations
has a length that is a multiple of lem (&, €).

In the Johnson problem & = 3 is a divisor of e = 15. But there exist
situations, where we we have to consider the least common multiple. For
instance consider the sequence 1101. Hence J(x) = 1 4+« + 22, which is
irreducible, of degree d = 3 and exponent e = 7 and has k = 3 components
1. Thus lem (k,e) = 21. Here is a tiling of shortest length:

1101
1010001
1000100000001
1000100000001
1000100000001
1101
1010001

It is still possible to generalize this approach by considering polynomials
J which are not irreducible, but still with the natural property J(0) # 0.
Then J can be decomposed into irreducible polynomials over G'F'(2) which
don’t vanish at 0. Then the following can be useful.

— If ¢ is an irreducible polynomial over GF'(2), ©(0) # 0, and if n is a
positive integer, then the exponent of " equals €2, where ¢ is the exponent
of ¢ and t is the minimum of all positive integers r, such that p” > n. In

other words
t =min{r € N|p" > n}.

— If J is the product of ¢! for 1 = 1,...,s then the exponent of .J is the
least common multiple of the exponents of .



— The polynomial J is a divisor of 2" — 1 if and only if the exponent of J
is a divisor of n.

Then also in this situation the generalized version of the Theorem holds.

More information about exponents of polynomials can be found in R. Lidl
and H. Niederreiter, Finite Fields. Addison-Wesley Publishing Company.
Encyclopedia of Mathematics and its Applications Nr. 20, (1983).



