The mathematical language, the programming languages, etc.
Gilles Dowek

Ecole polytechnique

From scores to programs

Changing the scale

(3/2)>% /2% = 1.0020
nuch better than (3/2)'?/27 = 1.0136

\ scale with 53 intervals
e makes it more difficult to design an instrument
e makes it more difficult to play the instrument
® requires a new way to write music

n the XIX® century almost impossible

Nith electronic instruments : difficult, but not impossible

Using tapes as instruments (phasing)

Inspired by) Clapping music (Reich, 1972).

\ one minute piece. One musician claps 61 times (every second)

\nother 62 times (every 60/61) seconds
Jifficult to play without a device (but easy with tapes or

lectronic instruments)

nly way to write down this piece with traditional notation:

et the tempo to 60 x 61 = 3660 quarter-note/mn

['hen in one score between two notes 61 rests and 60 for the other

Not very useful

A compact notation

or 1 = 0 to 3660
lo if i mod 61 = 0 then clap () done

'he notion of complexity (in the tradition of Kolmogorov)
ize of the shortest program generating some datum

[he sequence 1 2 3 4 5 6 7 ... has a simpler complexity that
L 626329 ...

Vaximal complexity : random sequence (shortest program =

equence)

VIinimal complexity : Bach’s tugues

A real time issue

['Wo scores :

or 1 = 0 to 3660
lo if i mod 61 = 0 then clap () done

nd

or 1 = 0 to 3660
lo if i mod 60 = O then clap () done

e a rest needed when i is not a multiple of 60
e some kind of synchronization of the musicians is needed

e the tempo has to be taken into account

One step back

\ score expresses some object

[hat can be expressed in other languages (e.g. programming

anguage)

3ut what kind of object does a score express 7
\ function of time (continuous variable)
r a sequence (function of a discrete variable)

[raditional notation: a score is a function of a discrete variable

Lists

Jiscrete variable, finite time: finite sequence

‘Inite sequences are not functions but lists

et cn = 1f n mod 61 = 0 then Clap else Rest
n build 0 3660 c

Clap; Rest; Rest; ... Rest; Clap; Rest; ...]

[he program is a better description that the list
e shorter

e the intention of the composer are easier to understand

Streams (infinite lists)
[he finiteness may be a key issue or not

et s =
et ¢cn = 1f n mod 61 = 0 then Some Clap else Some Rest

n from c

lote Stream.t = <abstr>

\n infinite list s is “built”

tach single individual element has not been computed yet
Jomputed on demand

ext s : Clap

1ext s : Rest

Stream languages

tream languages : Synchronous languages (Lustre, Lucid

ynchone, Signal, Esterel, ...)

leactive systems

n state O (resp. 1) transmit A (resp. B) and switch to 1 (resp. 0)

‘rom the streams 3 1 415926535 ...and0 12 3 4
6 7890 ... bulds3 1435527595

)ther examples : add one fifth, delay, ...

sJatch

From programs to specifications

Another step back

nstead of writing one note after the other
ve can describe the score in a more abstract way

s a program building an object (function, list, stream, ...)

Computational 7

>rograms are computational definitions of objects

omputational : music must be performed, after all

Jomputability can come in a second step

[here is a time to define, and a time to compute

How do we define a function in mathematic ?

Ne define a relation
x=2yorx=2y+1

0,0), (1,0),(2,1),(3,1), (4,2), (5,2), ...

[hen we prove that this relation is functional

Ve d1y (x =2y or x =2y + 1)

[he relation x = 2y or x = 2y + 1 tells what to compute, not how

Computable a posteriori

['he function

r—ly|z=2yorz=2y+1]

s computable

3ut it is not defined as an algorithm

Underspecification

yometimes the relation is not functional

20 <y
Ne cannot prove
Ve diy 20 <y
et we can prove
Vo dy 2z <y

[he relations defined a familly of function x — 2z + 5, xr — 3z, ...

yome of which may be computable

Proots of programs

['he relation

x=2yorx=2y+1
s a specification

Jefine the function another time as an algorithm
et rec div x = if x <= 1 then 0 else 1 + div(x - 2)

rove
y=f(z) & R(z,y)
or y = f(x) = R(x,y) if underspecified)

More specifications

n this case, any property of the function can serve as a

pecification

Vi f(t+60) = f(?)
Vt g(t +61) = g(t)

pecifies Clapping music and many other phasing pieces

Specifying data

Nhen the specified object is a function

Vedy R(z,y)

NVhen the specified object is a datum (e.g. list)

Jy P(y)
.g. JyVn (nth n y) = (nth (n +61) y)

Can we specify non computable functions 7

/es:

(y = 1 and (x terminates)) or (y = 0 and not(x terminates))

Jefines the function that maps a program to 1 if the program

erminates and 0 otherwise

his function is not computable (Turing, Church-Kleene, 1936)

Can we define non computable functions 7

3ut can we prove

‘x Jy ((y = 1 and (z terminates)) or (y = 0 and not(z terminates)))

)

'es. The proof uses the fact that

(x terminates) or not(x terminates)

A or not A

[he excluded middle

\ function whose proof of existence does not use the excluded
niddle (constructive proof) is always computable

The witness property

‘rom a constructive proof of
Vo Jy S(x,y)
yuild a constructive proof of

Jy S(n,y)

[hen, from a constructive proof of a statement

Jy S(n,y)

ompute a witness, i.e. a datum p that verifies the property S(n, p)

For data specification

Kven easier

‘rom a constructive proof of a statement

Jy P(y)

ompute a witness, i.e. a datum [that verifies the property P(I)

Programming with proofs v.s. constraint programming

S(z,y)

>rogramming with proofs: We build a constructive proof (either
utomatically or not) of Vady S(x,y)

Vhen we have an input n, we get a proof of 3y S(n,y) and we

ompute the witness from this proof (output)

onstraint programming: When we have an input n, we
automatically) build a constructive proof of dy S(n,y) and

ompute the witness from this proof (output)

Programming with specifications

)ld fashion design: I have something in mind, I write it down step
Y step

\ higher-level approach: (proofs of programs, programming with

roofs, constraint programming)

[he important part is the specification what, not the program how

Jescribe your expectation, let the computer fulfill it

f your expectation is underspecified one solution or another may

e given to you : you accept to have only a partial control

