
The mathematical language, the programming languages, etc.

Gilles Dowek

École polytechnique



From scores to programs



Changing the scale

(3/2)53/231 = 1.0020

much better than (3/2)12/27 = 1.0136

A scale with 53 intervals

• makes it more difficult to design an instrument

• makes it more difficult to play the instrument

• requires a new way to write music

In the XIXe century almost impossible

With electronic instruments : difficult, but not impossible



Using tapes as instruments (phasing)

(Inspired by) Clapping music (Reich, 1972).

A one minute piece. One musician claps 61 times (every second)

Another 62 times (every 60/61) seconds

Difficult to play without a device (but easy with tapes or

electronic instruments)

Only way to write down this piece with traditional notation:

set the tempo to 60 × 61 = 3660 quarter-note/mn

Then in one score between two notes 61 rests and 60 for the other

Not very useful



A compact notation

for i = 0 to 3660

do if i mod 61 = 0 then clap () done

The notion of complexity (in the tradition of Kolmogorov)

Size of the shortest program generating some datum

The sequence 1 2 3 4 5 6 7 ... has a simpler complexity that

4 6 2 6 3 2 9 ...

Maximal complexity : random sequence (shortest program =

sequence)

Minimal complexity : Bach’s fugues



A real time issue

Two scores :

for i = 0 to 3660

do if i mod 61 = 0 then clap () done

and

for i = 0 to 3660

do if i mod 60 = 0 then clap () done

• a rest needed when i is not a multiple of 60

• some kind of synchronization of the musicians is needed

• the tempo has to be taken into account



One step back

A score expresses some object

That can be expressed in other languages (e.g. programming

language)

But what kind of object does a score express ?

A function of time (continuous variable)

or a sequence (function of a discrete variable)

Traditional notation: a score is a function of a discrete variable



Lists

Discrete variable, finite time: finite sequence

Finite sequences are not functions but lists

let c n = if n mod 61 = 0 then Clap else Rest

in build 0 3660 c

[Clap; Rest; Rest; ... Rest; Clap; Rest; ...]

The program is a better description that the list

• shorter

• the intention of the composer are easier to understand



Streams (infinite lists)

The finiteness may be a key issue or not

let s =

let c n = if n mod 61 = 0 then Some Clap else Some Rest

in from c

note Stream.t = <abstr>

An infinite list s is “built”

Each single individual element has not been computed yet

Computed on demand

next s : Clap

next s : Rest



Stream languages

Stream languages : Synchronous languages (Lustre, Lucid

synchone, Signal, Esterel, ...)

Reactive systems

B

A

0

In state 0 (resp. 1) transmit A (resp. B) and switch to 1 (resp. 0)

From the streams 3 1 4 1 5 9 2 6 5 3 5 ... and 0 1 2 3 4

5 6 7 8 9 0 ... builds 3 1 4 3 5 5 2 7 5 9 5

Other examples : add one fifth, delay, ...

Catch



From programs to specifications



Another step back

Instead of writing one note after the other

we can describe the score in a more abstract way

as a program building an object (function, list, stream, ...)



Computational ?

Programs are computational definitions of objects

computational : music must be performed, after all

Computability can come in a second step

There is a time to define, and a time to compute



How do we define a function in mathematic ?

We define a relation

x = 2y or x = 2y + 1

(0, 0), (1, 0), (2, 1), (3, 1), (4, 2), (5, 2), ...

Then we prove that this relation is functional

∀x ∃1y (x = 2y or x = 2y + 1)

The relation x = 2y or x = 2y + 1 tells what to compute, not how



Computable a posteriori

The function

x 7→ [y | x = 2y or x = 2y + 1]

is computable

But it is not defined as an algorithm



Underspecification

Sometimes the relation is not functional

2x ≤ y

We cannot prove

∀x ∃1y 2x ≤ y

yet we can prove

∀x ∃y 2x ≤ y

The relations defined a familly of function x 7→ 2x + 5, x 7→ 3x, ...

Some of which may be computable



Proofs of programs

The relation

x = 2y or x = 2y + 1

is a specification

Define the function another time as an algorithm

let rec div x = if x <= 1 then 0 else 1 + div(x - 2)

Prove

y = f(x) ⇔ R(x, y)

(or y = f(x) ⇒ R(x, y) if underspecified)



More specifications

In this case, any property of the function can serve as a

specification

∀t f(t + 60) = f(t)

∀t g(t + 61) = g(t)

specifies Clapping music and many other phasing pieces



Specifying data

When the specified object is a function

∀x∃y R(x, y)

When the specified object is a datum (e.g. list)

∃y P (y)

e.g. ∃y∀n (nth n y) = (nth (n + 61) y)



Can we specify non computable functions ?

Yes:

(y = 1 and (x terminates)) or (y = 0 and not(x terminates))

Defines the function that maps a program to 1 if the program

terminates and 0 otherwise

This function is not computable (Turing, Church-Kleene, 1936)



Can we define non computable functions ?

But can we prove

∀x ∃y ((y = 1 and (x terminates)) or (y = 0 and not(x terminates)))

?

Yes. The proof uses the fact that

(x terminates) or not(x terminates)

A or not A

The excluded middle

A function whose proof of existence does not use the excluded

middle (constructive proof) is always computable



The witness property

From a constructive proof of

∀x ∃y S(x, y)

build a constructive proof of

∃y S(n, y)

Then, from a constructive proof of a statement

∃y S(n, y)

compute a witness, i.e. a datum p that verifies the property S(n, p)



For data specification

Even easier :

From a constructive proof of a statement

∃y P (y)

compute a witness, i.e. a datum l that verifies the property P (l)



Programming with proofs v.s. constraint programming

S(x, y)

Programming with proofs: We build a constructive proof (either

automatically or not) of ∀x∃y S(x, y)

When we have an input n, we get a proof of ∃y S(n, y) and we

compute the witness from this proof (output)

Constraint programming: When we have an input n, we

(automatically) build a constructive proof of ∃y S(n, y) and

compute the witness from this proof (output)



Programming with specifications

Old fashion design: I have something in mind, I write it down step

by step

A higher-level approach: (proofs of programs, programming with

proofs, constraint programming)

The important part is the specification what, not the program how

Describe your expectation, let the computer fulfill it

If your expectation is underspecified one solution or another may

be given to you : you accept to have only a partial control


