
FAUST
Functional Synchronous Programming for

Signal Processing

Y. Orlarey

GRAME – Centre National de Création Musicale

Séminaire MaMux/Langages Synchrones

1-Introduction

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
A simple FAUST program

Figure: Source code of a simple 1-voice mixer
Figure:
Resulting
application

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

2-Block Diagram Algebra

Block-Diagram Algebra

Programming by patching is familiar to musicians :

Block-Diagram Algebra
Today programming by patching is widely used in Visual
Programming Languages like Max/MSP:

Figure: Block-diagrams can be a mess

Block-Diagram Algebra

Faust allows structured block-diagrams

allpass_combs(8) feedbackmatrix(8)

delayfilters(...1, 8, 0.1))))fbdelaylines(8)

zita_rev_fdn(...1, 8, 0.1))))(48000)

Figure: A complex but structured block-diagram

Block-Diagram Algebra
Faust syntax is based on a block diagram algebra

5 Composition Operators

(A,B) parallel composition

(A:B) sequential composition

(A<:B) split composition

(A:>B) merge composition

(A~B) recursive composition

2 Constants

! cut

_ wire

Block-Diagram Algebra
Parallel Composition

The parallel composition (A,B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

Figure: Example of parallel composition (10,*)

Block-Diagram Algebra
Sequential Composition

The sequential composition (A : B) connects the outputs of A to
the inputs of B. A[0] is connected to [0]B, A[1] is connected to
[1]B, and so on.

Figure: Example of sequential composition ((*,/):+)

Block-Diagram Algebra
Split Composition

The split composition (A <: B) operator is used to distribute A
outputs to B inputs.

Figure: example of split composition ((10,20) <: (+,*,/))

Block-Diagram Algebra
Merge Composition

The merge composition (A :> B) is used to connect several
outputs of A to the same inputs of B.

Figure: example of merge composition ((10,20,30,40) :> *)

Block-Diagram Algebra
Recursive Composition

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

Figure: example of recursive composition +(12345) ~ *(1103515245)

3-Some examples

Block-Diagram Algebra
Example 1

Noise Generator

random = +(12345)~*(1103515245);

noise = random /2147483647.0;

process = noise * vslider("vol", 0, 0, 1, 0.1);

Block-Diagram Algebra
Example 2

Stereo Pan

p = hslider("pan", 0.5, 0, 1, 0.01);

process = _ <: *(sqrt(1 - p)), *(sqrt(p));

3-Primitive operations

Faust Primitives
Arithmetic operations

Syntax Type Description
+ S2 → S1 addition: y(t) = x1(t) + x2(t)
- S2 → S1 subtraction: y(t) = x1(t)− x2(t)
* S2 → S1 multiplication: y(t) = x1(t) ∗ x2(t)

∧ S2 → S1 power: y(t) = x1(t)x2(t)

/ S2 → S1 division: y(t) = x1(t)/x2(t)
% S2 → S1 modulo: y(t) = x1(t)%x2(t)
int S1 → S1 cast into an int signal: y(t) = (int)x(t)
float S1 → S1 cast into an float signal: y(t) = (float)x(t)

Faust Primitives
Bitwise operations

Syntax Type Description
& S2 → S1 logical AND: y(t) = x1(t)&x2(t)
| S2 → S1 logical OR: y(t) = x1(t)|x2(t)
xor S2 → S1 logical XOR: y(t) = x1(t) ∧ x2(t)
<< S2 → S1 arith. shift left: y(t) = x1(t) << x2(t)
>> S2 → S1 arith. shift right: y(t) = x1(t) >> x2(t)

Faust Primitives
Comparison operations

Syntax Type Description
< S2 → S1 less than: y(t) = x1(t) < x2(t)
<= S2 → S1 less or equal: y(t) = x1(t)⇐ x2(t)
> S2 → S1 greater than: y(t) = x1(t) > x2(t)
>= S2 → S1 greater or equal: y(t) = x1(t) >= x2(t)
== S2 → S1 equal: y(t) = x1(t) == x2(t)
!= S2 → S1 different: y(t) = x1(t)! = x2(t)

Faust Primitives
Trigonometric functions

Syntax Type Description
acos S1 → S1 arc cosine: y(t) = acosf(x(t))
asin S1 → S1 arc sine: y(t) = asinf(x(t))
atan S1 → S1 arc tangent: y(t) = atanf(x(t))
atan2 S2 → S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1 → S1 cosine: y(t) = cosf(x(t))
sin S1 → S1 sine: y(t) = sinf(x(t))
tan S1 → S1 tangent: y(t) = tanf(x(t))

Faust Primitives
Other Math operations

Syntax Type Description
exp S1 → S1 base-e exponential: y(t) = expf(x(t))
log S1 → S1 base-e logarithm: y(t) = logf(x(t))
log10 S1 → S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2 → S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1 → S1 square root: y(t) = sqrtf(x(t))
abs S1 → S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2 → S1 minimum: y(t) = min(x1(t), x2(t))
max S2 → S1 maximum: y(t) = max(x1(t), x2(t))
fmod S2 → S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2 → S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1 → S1 largest int ≤: y(t) = floorf(x(t))
ceil S1 → S1 smallest int ≥: y(t) = ceilf(x(t))
rint S1 → S1 closest int: y(t) = rintf(x(t))

Faust Primitives
Add new ones using Foreign Functions

foreignexp

- ffunction
�� �
- (

���
- signature - ,
���
- inclfile - ,

���
- comment -)
���
�

�- fvariable
�� �
- (

���
- type - identifier - ,
���
- inclfile -)

���
�- fconstant
�� �
- (

���
- type - identifier - ,
���
- inclfile -)

���

�

-

Reference to external C functions, variables and constants can be
introduced using the foreign function mechanism.
example :

asinh = ffunction(float asinhf (float), <math.h>, "");

Faust Primitives
Delays and Tables

Syntax Type Description
mem S1 → S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
prefix S2 → S1 1-sample delay: y(t + 1) = x2(t), y(0) = x1(0)
@ S2 → S1 fixed delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3 → S1 read-only table: y(t) = T [r(t)]
rwtable S5 → S1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)]
select2 S3 → S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4 → S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

Faust Primitives
User Interface Primitives

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,inc) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,inc) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,inc) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

4-Expressions

Faust Program

program

- statement�
�

�

-

A Faust program is essentially a list of statements. These statements can
be :

I metadata declarations,
I file imports
I definitions

Example :

declare name "noise";

declare copyright "(c)GRAME 2006";

import("music.lib");

process = noise * vslider("volume", 0, 0, 1, 0.1);

Definitions
Simple Definitions

definition

- identifier - =
���
- expression - ;

���
-

A definition associates an identifier with an expression it stands for.
Example :

random = +(12345) ~ *(1103515245);

Definitions
Functions’ definitions

definition

- identifier - (
���
- parameter�

� ,
���
�

�

-)
���
- =

���
- expression - ;
���
-

Definitions with formal parameters correspond to functions’ definitions.
Example :

linear2db(x) = 20* log10(x);

Alternative notation using a lambda-abstraction:

linear2db = \(x).(20* log10(x));

Definitions
Pattern Matching Definitions

definition

- identifier - (
���
- pattern�

� ,
���
�

�

-)
���
- =

���
- expression - ;
���
-

Formal parameters can also be full expressions representing patterns.
Example :

duplicate (1,exp) = exp;

duplicate(n,exp) = exp , duplicate(n-1,exp);

Alternative notation :

duplicate = case {

(1,exp) => exp;

(n,exp) => duplicate(n-1,exp);

};

Statement
Import file

fileimport

- import
�� �
- (

���
- filename -)
���
- ;

���
-

allows to import definitions from other source files.
for example import("math.lib"); imports the definitions from
"math.lib" file, a set of additional mathematical functions provided as
foreign functions.

Expressions
Environments

envexp

- expression - with
�� �
- lbrace - definition�

�
�

- rbrace�

�- environment
�� �
- lbrace - definition�

�
�

- rbrace

�- component
�� �
- (

���
- filename -)
���
�- library

�� �
- (
���
- filename -)

���
�- expression - .
���
- ident

�

-

Each Faust expression has an associated lexical environment

Environments
With Expression

withexpression

- expression - with
�� �
- lbrace - definition�

�
�

- rbrace -

With expression allows to specify a local environment, a private list of
definitions that will be used to evaluate the left hand expression
example pink noise filter :

pink = f : + ~ g with {

f(x) = 0.04957526213389*x

- 0.06305581334498* x@1

+ 0.01483220320740* x@2;

g(x) = 1.80116083982126*x

- 0.80257737639225* x@1;

};

Environments
Environment

environment

- environment
�� �
- lbrace - definition�

�
�

- rbrace -

an environment is used to group together related definitions :

constant = environment {

pi = 3.14159;

e = 2,718 ;

....

};

definitions of an environment can be easily accessed : constant.pi

Environments
Library

library

- library
�� �
- (

���
- filename -)
���
-

allows to create an environment by reading the definitions from a file.
example : library("filter.lib")

definitions are accesed like this : library("filter.lib").smooth

Environments
Component

component

- component
�� �
- (

���
- filename -)
���
-

allows to reuse a full Faust program as a simple expression.
example :

component("osc.dsp")<:component("freeverb.dsp")

equivalence between :

component("freeverb.dsp")

and

library("freeverb.dsp"). process

Expressions
Iterations

diagiteration

- par
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���
�

�- seq
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���
�- sum

�� �
- (
���
- ident - ,

���
- niter - ,
���
- expression -)

���
�- prod
�� �
- (

���
- ident - ,
���
- niter - ,

���
- expression -)
���

�

-

Iterations are analog to for(...) loops
provide a convenient way to automate some complex block-diagram
constructions.

Expressions
Iterations

The following example shows the use of seq to create a 10-bands filter:

process = seq(i, 10,

vgroup("band %i",

bandfilter(1000*(1+i))

)

);

5-Compiler/Code Generation

FAUST Compiler
Main Phases of the compiler

Faust Program

evaluation

Block-Diagram
in Normal Form

symbolic propagation

Signal Equations

normalization

Signal Equations
in Normal Form

type inference

Typed Signals

code generation

Implementation
Code (C++)

FAUST Compiler
Four Code generation modes

scalar code generator

vector code generator
(loop separation)

parallel code
generator
(OpenMP
directives)

parallel code
generator

(Work Stealing
Scheduler)

5-Performances

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Audio-visual installation involving a cube of light, reacting to
sounds, immersed in an audio feedback room (Trafik/Orlarey
2006).

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube

8 loudspeakers

6 microphones

audio software, written in FAUST, controlling the audio
feedbacks and the sound spatialization.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Compared performances of the various C++ code generation
strategies according to the number of cores :

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Sonik Cube

Mac Pro 8, Faust 0.9.20, icc 11.1.069

omp
sch
scal
vec

performance (MB/s)

n
u

m
b

e
r

o
f

c
o

re
s

6-Automatic documentation

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independetly of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independetly of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independetly of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independetly of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Files generated by Faust2mathdoc noise.dsp

H noise-mdoc/

H cpp/

� noise.cpp

H pdf/

� noise.pdf

H src/

� math.lib

� music.lib

� noise.dsp

H svg/

� process.pdf

� process.svg

H tex/

� noise.pdf

� noise.tex

7-Architectures

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
The architecture file describes how to connect the audio computation to the external
world.

DSP code

User Interface
Module

Audio Driver Module

User Interface
Module

Audio Driver Module

DSP code

Faust Architecture System
Examples of supported architectures

Audio plugins :
I LADSPA
I DSSI
I Max/MSP
I VST
I PD
I CSound
I Supercollider
I Pure
I Chuck
I Octave
I Flash

Standalone audio
applications :

I Jack
I Alsa
I CoreAudio
I iPhone

8-Multirate extension

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What is currently missing in Faust

Applications that we can’t address :
I oversampling, upsampling, downsampling
I spectral processing
I video processing

What we need :
I multirate signals
I multidimension signals

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
What we propose

Minimal extension with 4 new primitives
I Vectorize
I Serialize
I Concat
I Access

Only Vectorize and Serialize change rates (but keep the flow
constant).

All other operations assume arguments at the same rate

All numerical operations extended to vectors, vectors of
vectors, etc.

Extensions
Vectorize

9 8 7 6 5 4 3 2 1

7

8

9

4

5

6

1

2

3
vectorize(3)

vectorize : T r × n→ [n]T r/n

Extensions
Serialize

9 8 7 6 5 4 3 2 1

7

8

9

4

5

6

1

2

3
serialize

serialize : [n]T r/n → T r

Extensions
Access

[]

G

H

I

D

E

F

A

B

C

1 0 2

H D C

access : [n]T r × N[0..n]r → T r

Extensions
Concat

7

8

9

4

5

6

1

2

3#

7

8

9

4

5

6

1

2

3

E

F
C

D

A

B

E

F
C

D

A

B

: [n]T r × [m]T r → [n + m]T r

Extensions
Simple examples

Some very simple examples involving the multirate extension.

upsampling : up2 = vectorize(1) <: # : serialize;

downsampling : down2 = vectorize(2) : [0];

sliding window :
slide(n) = vectorize(n) <: @(1),_ : #;

Extensions
Simple examples

Some very simple examples involving the multirate extension.

upsampling : up2 = vectorize(1) <: # : serialize;

downsampling : down2 = vectorize(2) : [0];

sliding window :
slide(n) = vectorize(n) <: @(1),_ : #;

Extensions
Simple examples

Some very simple examples involving the multirate extension.

upsampling : up2 = vectorize(1) <: # : serialize;

downsampling : down2 = vectorize(2) : [0];

sliding window :
slide(n) = vectorize(n) <: @(1),_ : #;

Extensions
Simple examples

Some very simple examples involving the multirate extension.

upsampling : up2 = vectorize(1) <: # : serialize;

downsampling : down2 = vectorize(2) : [0];

sliding window :
slide(n) = vectorize(n) <: @(1),_ : #;

9-Resources

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
FAUST Quick Reference

Figure: Faust Quick Reference, Grame

Resources
Some research papers

2004 : Syntactical and semantical aspects of Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Soft Computing, vol
8(9), p623-632, Springer.

2009 : Parallelization of Audio Applications with Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Proceedings of the
SMC 2009-6th Sound and Music Computing Conference,

2011 : Dependent vector types for data structuring in
multirate Faust, Jouvelot, P. and Orlarey, Y., in Computer
Languages, Systems & Structures, Elsevier

10-Acknowledgments

Acknowledgments
OS Community

Fons Adriaensen, Thomas Charbonnel, Albert Gräf, Stefan Kersten, Victor
Lazzarini, Kjetil Matheussen, Rémy Muller, Romain Michon, Stephen Sinclair,
Travis Skare, Julius Smith

Sponsors

French Ministry of Culture, Rhône-Alpes Region, City of Lyon, National Research
Agency

Partners from the Astree project (ANR 2008 CORD 003 02)

Jérôme Barthélemy (Ircam), Karim Barkati (Ircam), Alain Bonardi (Ircam),
Raffaele Ciavarella (Ircam), Pierre Jouvelot (Mines/ParisTech), Laurent Pottier
(U. Saint-Etienne)

Former Students
Tiziano Bole, Damien Cramet, Étienne Gaudrin, Matthieu Leberre, Mathieu Leroi,
Nicolas Scaringella

	Introduction
	Block Diagram Algebra
	Block-Diagram Algebra
	Examples
	Examples
	Primitives
	Primitives
	Expressions
	Faust Program
	Definitions
	expressions
	Environment expressions

	Compiler
	Performances
	Automatic documentation
	Automatic Mathematical Documentation
	Architectures
	Multirate extension
	MRMD extension
	Resources
	Acknowledgments

