Extension of Synchronous Data-flow Languages:
main achievements, new perspectives

Marc Pouzet

DI, Ecole normale supérieure
Marc.Pouzet@ens.fr

Seminar MaMux, IRCAM, February 3, 2012

Marc.Pouzet@ens.fr

Reactive systems

» They react continuously to the external environment.
» At the speed imposed by this environment.

» Statically bounded memory and response time.

Conciliate three notions in the programming model:

» Parallelism, concurrency while preserving determinism.
e.g, control at the same time rolling and pitching
— parallel description of the system

» Strong temporal constraints.
e.g, the physics does not wait!
— temporal constraints should be expressed in the system

» Safety is important (critical systems).
— well founded languages, verification methods

Synchronous Kahn Networks

M1 M2

M3

» parallel processes communicating through data-flows

» communication in zero time: data is available as soon as it is
produced.

» a global logical time scale even though individual rhythms may differ

these drawings are computer programs

SAQO (Spécification Assistée par Ordinateur)—Airbus 80's

Describe the system as block diagrams (synchronous communicating
machines)

e i r\ | L
—

EE Ik

| PECTEET)
===
| Z it i
PEYRESES
[
L = £348a16 | x383:27
344az f T
n =
Ll D LWTELOT - !
O =g FILT L |
o | >q afidzs 1 t
& 1T _[v, EEEREF i) i
PEE T
xitim —
AT L)
L3 2 M XisaEdd
Tt = = E e
= — e
& o =
g) £3Ta2I0
EOTRE LT FEIVEEr R
1 E x_ PECTEE 15.5 -
h] R AIT2LE
KRB0 O — RIREED - —
[r— et E FimEr L

E[|7rmu% .f_=
Wyme ’
[

2344202 EFLAE0T
PR e e

[z r |
a3 [T =
M ki FEral]

e fux

SCADE 4 (Safety Critical Application Development Env. — Esterel-Tech.)

From computer assisted drawings to executable (sequential /parallel) code!

-lojx|
=181

[[®e st yow toce Froect ginuek Tods fronse Widow tep
IEEE R e R e St X0 g A0 wumpoe®@|sm @ vE s> wDE|a@

|¢woo|sovecoet oppep conses (ooooooeebons|
Er] =

I
U

sen oou

PO, o

> Toagk

TR0\ Messages ADump RBua Sl

For el press 1

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1 1 1

operators X +y =Xo+tYo X1+y1 xX2+y2 X3+¥3

(z = x +y means that at every instant i : z; = x; + y;)

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1 1 1

operators X +y =Xo+tYo X1+y1 xX2+y2 X3+¥3

(z = x +y means that at every instant i : z; = x; + y;)

unit delay 0fby (x +y) = 0 X+Yo Xx1+tx1 X2+Xx

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams
constants 1 = 1 1 1 1
operators X +y =Xo+tYo X1+y1 xX2+y2 X3+¥3

(z = x +y means that at every instant i : z; = x; + y;)

unit delay Ofby (x +y) = O X+Y x1+x1 X+ x
pre (x +y) = nil X0+Y x1+x1 x+x

Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1 1 1
operators X +y =Xx0+tYo x1+ty1 xx+y: x3+y3
(z = x + y means that at every instant i : z;, = x; + y;)

unit delay Ofby (x +y) = O x+yo x1+x1 x+x
pre (x +y) = nil X0+Y x1+x1 x+x
0—pre(x+y)= 0 X0+tyo x1tx1 x2+x

Lustre: a dataflow programming language

X

V=C*X —exy

Lustre: a dataflow programming language

t t 4

X

u=bx*xx—dx*xy+ (0.0 fby v)

and v =c#*x —exy

Lustre: a dataflow programming language

_>_y

rec y =ax*x + (0.0 fby u)

and u=bxx—d=x*y+ (0.0 fby v)

and v =c*x —exy

Lustre: a dataflow programming language

rec y =axx + (0.0 fby u)

andu=bxx—d=xy+ (0.0 fby v)

and v =c#*x —exy

Lustre: a dataflow programming language

let node iir_filter_2 x =y where

rec y =ax*x + (0.0 fby u)
and u =b*xx —dxy+ (0.0 fby v)

and v =c*x —exy

Lustre: beautiful ideas

Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

» Parallel composition is

> well-defined
» deterministic: very important in practice for reproducibility

Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

» Parallel composition is

> well-defined
» deterministic: very important in practice for reproducibility

» Parallelism is compiled: programs can be translated into efficient
sequential

Lustre: beautiful ideas
» A simple and pure notion of execution in discrete time
» Parallel composition is

> well-defined
» deterministic: very important in practice for reproducibility

» Parallelism is compiled: programs can be translated into efficient
sequential

» The code executes in bounded memory and bounded time

Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

» Parallel composition is
> well-defined
» deterministic: very important in practice for reproducibility
» Parallelism is compiled: programs can be translated into efficient
sequential
» The code executes in bounded memory and bounded time
» Programs are finite-state and can be verified by model-checking

No need to write control programs in C!

Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

» Parallel composition is
> well-defined
» deterministic: very important in practice for reproducibility
» Parallelism is compiled: programs can be translated into efficient
sequential
» The code executes in bounded memory and bounded time
» Programs are finite-state and can be verified by model-checking

No need to write control programs in C!

Lustre can and need to be extended in several ways. ..

The expressiveness of Lustre

» First order functional language managing streams, no recursion.

» Types are declared; no polymorphism; no control-structures; limited
clock calculus.

Increase its expressiveness:

v

Modularity (libraries), abstraction mechanisms.

» Polymorphism; type and clock inference.

v

Control structures; imperative features (but in a safe way).

v

More efficient compilation; compile-time static analysis.

Lucid Synchrone

[ICFP'96]
Try to mix all the best of these two paradigms:
» Synchronous data-flow as a way to deal with time.

» Features from ML to increase expressiveness: E.g., type inference,
polymorphism, higher-order, (some form of) recursion.

Follow some principles:
» Streams and function composition.

» The synchronous property is checked by a dedicated type system
called the clock calculus. Inferred clocks express static constraints on
synchronization.

» Clocks are used to give a precise semantics to all programming
constructs.

» Several other type-based analysis (e.g., initialisation, causality).

Extended dataflow programming: automata

let node counter (flip, stop) = x
where
rec Ix = 0 fby x
and automaton
| Up—
do
x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

—(Ix =0 fby x
flip

o w9

(=¥F

x =k stop(t) stop(f)
e

flip & was_up Stop

x = Ix

Extended dataflow programming: automata

let node counter (flip, stop) = x x =0 fby x flip

where
o5 (1x =0 Thy) 5
and automaton Up O Down
—> [(Up— x=Ix +1 x=Ix -1
do 5 stop(t) stop(f)
x = Ix +1 ‘. .w
until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do -, .
x = Ix — 1 » Parallel composition of
until flip then Up .
topg| St then Stop(false) dataflow equations and automata
one

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

Extended dataflow programming: automata

let node counter (flip, stop) = x
where
and automaton
[(Up—
do
x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

—(Ix 0 fby x
flip

o
Up O Down

x =1Ix +1 x=Ix —1
_ 5 stop(t) stop(f) 7
N
flip & was_up
x = Ix

» Parallel composition of
dataflow equations and automata

Extended dataflow programming: automata

let node counter (flip, stop) = x
where
and automaton
[(Up—
do
x = Ix +1
(until flip then Down)
[stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

—(Ix 0 fby x
flip

o
Up O Down

—>
=1 1 =Ix —1
. stop(t) stop(f) =
N
flip & was_up
x = Ix

» Parallel composition of
dataflow equations and automata

Extended dataflow programming: automata

let node counter (flip, stop) = x x =0 fby x flip

where

rec(Ix = 0 fby x

o
and automaton Up O Down
U - — Ix —
l s: o le stop(t) stop(f) x=b—t
x = Ix + 1 ‘. .w
until flip then Down . St
| stop then Stop(true) flip & was_up
done
| (Down —
do -, .
x = Ix — 1 » Parallel composition of
until flip then Up i
top,| TP then Stop(false) dataflow equations and automata
one

| Stop (was_up) — > x has a different definition in each mode
do
x = Ix » But only a single definition in a reaction
until flip & was_up then Up
| flip then Down
done
end

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x f||p

where

rec(Ix = 0 fby x

and automaton Up Down
| Up— x = Ix +—1 x=Ix —1
do 5 stop(t) stop
x = Ix +1
flip & was_up

until flip then Down Stop
X :Ix

| stop then Stop(true)

done
| (Down —
do .
x = Ix — 1 » Parallel composition of
until flip then Up i
o Lstop then Stop(false dataflow equations and automata
one
| Stop (was_up) — > x has a different definition in each mode
do -
x = Ix » But only a single definition in a reaction

until flip & was_up then Up
| flip then Down
done
end

Extended dataflow programming: automata

let node counter (flip, stop) = x x =0 fby x flip

where

rec(Ix = 0 fby x

o
and automaton Up o Down
u \x= = -
l s: o le stop(t) stop(f) =1
x = Ix + 1 ‘. .w
until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do .
x = Ix — 1 » Parallel composition of
until flip then Up i
top,| TP then Stop(false) dataflow equations and automata
one

» x has a different definition in each mode

|(Stop(was_up) —

do
x = Ix » But only a single definition in a reaction
until flip & was_up then Up
| flip then Down
done
end

Extended dataflow programming: automata

let node counter (flip, stop) = x
where
rec Ix = 0 fby x
and automaton
| Up—
do
x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

—(Ix =0 fby x
flip

0

Up O Down

x=1Ix+1 x=Ix —1
Q

stop(t) stop(f) 5
e %

flip & was_up |
X = IX

» Automata are just a convenient syntax

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
i typin .
Iexm.g/ | VP! g./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
lexi typin .
exm.g/ | VP! g./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
. tvpi .
Iexm.g/ > yp|ng./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
i typin .
Iexm.g/ | VP! g./. > automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
i typin .
Iexm.g/ | VP! g./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
i typin .
Iexm.g/ | VP! g./. »| automata [— -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

Extended dataflow programming: automata

let node counter (flip, stop) = x x = 0 fby x flip

where
rec Ix = 0 fby x
and automaton

o
Up O Down

U > = — I —

| Z: X IXl stop(t) stop(f) x=k—t

x = Ix + 1 ‘. 0¢

until flip then Down . St
| stop then Stop(true) flip & was_up
done
| Down —
do . .
x = Ix—1 » Automata are just a convenient syntax

until flip then Up
| stop then Stop(false)
done

» They can be reduced to discrete
dataflow equations by a
source-to-source transformation

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down

done
end
i typin .
Iexm.g/ | VP! g./. »| automata — -+ —| scheduling »| code gen.
parsing caus./init.

olago, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT'2005.

SCADE 6 dome:

v

Entirely new language and compiler; commercialised since 2008.

v

Most features of Lucid Synchrone are included
Used in critical systems (DO-178B certified)
Airbus flight control; Train (interlocking, on-board); Nuclear safety

v

v

So, what's left to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

> (Also: embedded software that includes physical models)

So, what's left to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

(Also: embedded softw

RUN PROCESS o

WELDING PRODUCTION

Dassault Systémes Delmia and Catia http://www.3ds.com /products

So, what's left to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

> (Also: embedded software that includes physical models)

» Something like Simulink/Stateflow, but

» Simpler and more consistent semantics and compilation

» Better understand interactions between discrete and continuous
» Simpler treatment of automata

> Certifiability for the discrete parts

Understand and improve the design of such modelling tools

Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT'07.

MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating th poco of engineering and scanca

Lee and Zheng. Operational semantics of hybrid Ptolemy and HyViSUaI
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design » Programming |anguages perspective
of embedded systems. EMSOFT'07.

» Numerical solvers as directors

» Working tool and examples

MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating the pace of engineering and scance

Simulink/Stateflow

» Simulation ~» development

Carloni et al. Languages and tools

for hrbrid aysteme e 2006, > two distinct simulation engines

» semantics & consistency: non-obvious

Our approach

» Source-to-source compilation
» Automata ~~ data-flow
» Extend other languages (SCADE 6)

Approach

» Add Ordinary Differential Equations to an existing synchronous
language
» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Approach

» Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

» Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and)

1 differential /algebraic equation solvers. 2005

Approach

v

Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and)
1

differential /algebraic equation solvers. 2005

v

v

Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

-

ignore execution time

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

|

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

[

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

[B N

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

I N I

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

|

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

W’

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

ﬂ[

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

I

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

I

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

hybrid synchronous language: assume infinitely precise base clock

assume an infinitesimal increment of the base clock—a non-standard semantics

Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 []

time is a logical sequence of instantaneous reactions—no relation to physical time

How to relate discrete and
continuous time correctly?

hybrid synchronous language: assume infinitely precise base clock

TR

assume an infinitesimal increment of the base clock—a non-standard semantics

Q . How to simulate effectively?

Which programs make sense?

Given:

let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time)

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

Which programs make sense?

Given: 10

let node sum(x) = cpt where 9

rec cpt = (0.0 fby cpt) +. x 5 o

Evaluate: 7

der time = 1.0 init 0.0 ’

and 5

[] .
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0

-
-

Which programs make sense?

Given: 10]
let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0

» Option 3: infinitesimal steps 1

Which programs make sense?

Given: 10
let node sum(x) = cpt where 9

rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7

der t = 1.0 init 0.0
andX ° _
y =&um(time) 4 time

Interpretation:
» Option1: NCR

» Option 2: depends on solver 0

» Option 3: infinitesimal steps 1

» Option 4: type and reject 2

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

10

time

ez

Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)

10

time

ez

Try to minimize the effects of solver parameters and choices

Basic typing
Milner-like type system [LCTES'11,EMSOFT'11]

The type language

bt = float |int |bool |zero D C

t o= bt|txt|p \ /
k

o = VB, Bt <5t

k == D|C|A A

Initial conditions

(+) : int X int 5 int
(=) : VB.8 x B — bool
if : VB.bool x B x 3 SN I5;

fby. 1 VBB X B -8
up(-) : float —» zero

What about continuous automata?

Stateflow User's Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 sobi o

> ‘Restricted subset of Stateflow chart semantics’

> restricts side-effects to major time steps
» supported by warnings and errors in tool (mostly)

» Our D/C/A/zero system extends naturally for the same effect

» For both discrete (synchronous) and continuous (hybrid) contexts

Demonstrations

» Bouncing ball (standard)
» Bang-bang temperature controller (Simulink/Stateflow)
» Sticky Masses (Ptolemy)

Conclusion

Lucid Synchrone: www.di.ens.fr:/~pouzet/lucid-synchrone

» A laboratory language for experimenting extensions for SCADE.

v

type/clock inference, initialization analysis, causality analysis.

v

Higher-order functions.

v

Hierarchical automata, signals.

v

Modular code generation.
Most are included in SCADE 6.

A promising perspective for synchronous languages is the treatment of
mixed (discrete/continuous) signals.
» A synchronous language extended with ODEs and/or DAEs.

» Recycle the semantics, language constructs and compilation
techniques.

» A prototype is under way.

www.di.ens.fr:/~pouzet/lucid-synchrone

Milestones

v

v

vV vV v v v Y

v

Synchronous Kahn networks [ICFP'96]

Clocks as dependent types [ICFP’96]

Modular compilation (co-induction vs co-iteration) [CMCS'98]
ML-like clock calculus [Emsoft'03]

causality analysis [ESOP'01]

initialization analysis [SLAP'03, STTT'04]

higher-order and typing [Emsoft'04]

data-flow and state machines [Emsoft'05, Emsoft'06]

N-Synchronous Kahn Networks [Emsoft'05, POPL'06, APLAS'08,
MPC'10]

Clock-directed code generation of synchronous data-flow [LCTES'08]
Modular Static Scheduling [Emsoft'09, JDAES'10]

Synchronous semantics based on non-standard for hybrid systems
[CDC'10,JCSS'11]

A Lustre-like language with ODEs [LCTES'11,Emsoft'11]

	Dataflow programming
	Research objectives
	Semantics, Typing and compilation
	Demonstration and conclusion

