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Reactive systems

» They react continuously to the external environment.
» At the speed imposed by this environment.

» Statically bounded memory and response time.

Conciliate three notions in the programming model:

» Parallelism, concurrency while preserving determinism.
e.g, control at the same time rolling and pitching
— parallel description of the system

» Strong temporal constraints.
e.g, the physics does not wait!
— temporal constraints should be expressed in the system

» Safety is important (critical systems).
— well founded languages, verification methods



Synchronous Kahn Networks

M1 M2

M3

» parallel processes communicating through data-flows

» communication in zero time: data is available as soon as it is
produced.

» a global logical time scale even though individual rhythms may differ

these drawings are computer programs



SAQO (Spécification Assistée par Ordinateur)—Airbus 80's

Describe the system as block diagrams (synchronous communicating
machines)
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SCADE 4 (Safety Critical Application Development Env. — Esterel-Tech.)

From computer assisted drawings to executable (sequential /parallel) code!

-lojx|
=181

[[®e st yow toce Froect ginuek Tods fronse Widow tep
IEEE R e R e St X0 g A0 wumpoe®@|sm @ vE s> wDE|a@

|¢woo|sovecoet oppep conses (ooooooeebons|
Er] =

I
U

sen oou

PO, o

> Toagk

TR0\ Messages ADump RBua Sl

For el press 1
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Lustre: a dataflow programming language

Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1 1 1
operators X +y =Xx0+tYo x1+ty1 xx+y: x3+y3
(z = x + y means that at every instant i : z;, = x; + y;)

unit delay Ofby (x +y) = O x+yo x1+x1 x+x
pre (x +y) = nil X0+Y x1+x1 x+x
0—pre(x+y)= 0 X0+tyo x1tx1 x2+x



Lustre: a dataflow programming language
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Lustre: a dataflow programming language
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rec y =ax*x + (0.0 fby u)

and u=bxx—d=x*y+ (0.0 fby v)

and v =c*x —exy



Lustre: a dataflow programming language

rec y =axx + (0.0 fby u)

andu=bxx—d=xy+ (0.0 fby v)

and v =c#*x —exy



Lustre: a dataflow programming language

let node iir_filter_2 x =y where

rec y =ax*x + (0.0 fby u)
and u =b*xx —dxy+ (0.0 fby v)

and v =c*x —exy
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Lustre: beautiful ideas

» A simple and pure notion of execution in discrete time

» Parallel composition is
> well-defined
» deterministic: very important in practice for reproducibility
» Parallelism is compiled: programs can be translated into efficient
sequential
» The code executes in bounded memory and bounded time
» Programs are finite-state and can be verified by model-checking

No need to write control programs in C!

Lustre can and need to be extended in several ways. ..



The expressiveness of Lustre

» First order functional language managing streams, no recursion.

» Types are declared; no polymorphism; no control-structures; limited
clock calculus.

Increase its expressiveness:

v

Modularity (libraries), abstraction mechanisms.

» Polymorphism; type and clock inference.

v

Control structures; imperative features (but in a safe way).

v

More efficient compilation; compile-time static analysis.



Lucid Synchrone

[ICFP'96]
Try to mix all the best of these two paradigms:
» Synchronous data-flow as a way to deal with time.

» Features from ML to increase expressiveness: E.g., type inference,
polymorphism, higher-order, (some form of) recursion.

Follow some principles:
» Streams and function composition.

» The synchronous property is checked by a dedicated type system
called the clock calculus. Inferred clocks express static constraints on
synchronization.

» Clocks are used to give a precise semantics to all programming
constructs.

» Several other type-based analysis (e.g., initialisation, causality).



Extended dataflow programming: automata

let node counter (flip, stop) = x
where
rec Ix = 0 fby x
and automaton
| Up—
do
x = Ix +1
until flip then Down
| stop then Stop(true)
done

| Down —
do
x = Ix —1
until flip then Up
| stop then Stop(false)
done

| Stop(was_up) —
do
x = Ix
until flip & was_up then Up
| flip then Down
done
end

—( Ix =0 fby x
flip

o w9
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x =k stop(t) stop(f)
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flip & was_up Stop

x = Ix
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where
and automaton
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Extended dataflow programming: automata
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where
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SCADE 6 dome:

v

Entirely new language and compiler; commercialised since 2008.

v

Most features of Lucid Synchrone are included
Used in critical systems (DO-178B certified)
Airbus flight control; Train (interlocking, on-board); Nuclear safety

v

v
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So, what's left to do?

» We want a language for programming complex discrete systems
and modelling their physical environments

> (Also: embedded software that includes physical models)

» Something like Simulink/Stateflow, but

» Simpler and more consistent semantics and compilation

» Better understand interactions between discrete and continuous
» Simpler treatment of automata

> Certifiability for the discrete parts

Understand and improve the design of such modelling tools



Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT'07.

MATLAB
SIMULINK®
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Accelerating th poco of engineering and scanca



Lee and Zheng. Operational semantics of hybrid Ptolemy and HyViSUaI
systems. HSCC 2005.

Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design » Programming |anguages perspective
of embedded systems. EMSOFT'07.

» Numerical solvers as directors

» Working tool and examples



MATLAB
SIMULINK®

‘\ The MathWorks™

Accelerating the pace of engineering and scance

Simulink/Stateflow

» Simulation ~» development

Carloni et al. Languages and tools

for hrbrid aysteme e 2006, > two distinct simulation engines

» semantics & consistency: non-obvious



Our approach

» Source-to-source compilation
» Automata ~~ data-flow
» Extend other languages (SCADE 6)
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Approach

v

Add Ordinary Differential Equations to an existing synchronous
language

» Two concrete reasons:

> Increase modelling power (hybrid programming)
» Exploit existing compiler (target for code generation)

Simulate with an external off-the-shelf numerical solver
(Sundlals CVODE Hindmarsh et al. SUNDIALS: Suite of nonlinear and )
1

differential /algebraic equation solvers. 2005

v

v

Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.
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Discrete vs Hybrid time: [CDC'11,JCSS'11]

discrete synchronous language: assume infinitely fast execution

1 1 [ ]

time is a logical sequence of instantaneous reactions—no relation to physical time

How to relate discrete and
continuous time correctly?

hybrid synchronous language: assume infinitely precise base clock

TR

assume an infinitesimal increment of the base clock—a non-standard semantics

Q . How to simulate effectively?
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Evaluate: 7

der time = 1.0 init 0.0 ’

and 5

[ ] .
y = sum(time) 4 time

Interpretation:
» Option 1: NCR

» Option 2: depends on solver 0
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let node sum(x) = cpt where 9
rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7
der time = 1.0 init 0.0 ’
and 5 _
y = sum(time) 4 time

Interpretation:
» Option 1: NCR
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Which programs make sense?

Given: 10
let node sum(x) = cpt where 9

rec cpt = (0.0 fby cpt) +. x 5
Evaluate: 7

der t = 1.0 init 0.0
andX ° _
y =&um(time) 4 time

Interpretation:
» Option1: NCR

» Option 2: depends on solver 0

» Option 3: infinitesimal steps 1

» Option 4: type and reject 2



Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

10

time

ez




Which programs make sense?

Given:
let node sum(x) = cpt where
rec cpt = (0.0 fby cpt) +. x
Evaluate:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0
Interpretation:
» Option1: NCR
» Option 2: depends on solver
» Option 3: infinitesimal steps

» Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)

10

time

ez

Try to minimize the effects of solver parameters and choices



Basic typing
Milner-like type system [LCTES'11,EMSOFT'11]

The type language

bt = float |int |bool |zero D C

t o= bt|txt|p \ /
k

o = VB, Bt <5t

k == D|C|A A

Initial conditions

(+) : int X int 5 int
(=) : VB.8 x B — bool
if : VB.bool x B x 3 SN I5;

fby. 1 VBB X B -8
up(-) : float —» zero



What about continuous automata?

Stateflow User's Guide The Mathworks, pages 16-26 to 16-29, 2011.

16 sobi o

> ‘Restricted subset of Stateflow chart semantics’

> restricts side-effects to major time steps
» supported by warnings and errors in tool (mostly)

» Our D/C/A/zero system extends naturally for the same effect

» For both discrete (synchronous) and continuous (hybrid) contexts



Demonstrations

» Bouncing ball (standard)
» Bang-bang temperature controller (Simulink/Stateflow)
» Sticky Masses (Ptolemy)



Conclusion

Lucid Synchrone: www.di.ens.fr:/~pouzet/lucid-synchrone

» A laboratory language for experimenting extensions for SCADE.

v

type/clock inference, initialization analysis, causality analysis.

v

Higher-order functions.

v

Hierarchical automata, signals.

v

Modular code generation.
Most are included in SCADE 6.

A promising perspective for synchronous languages is the treatment of
mixed (discrete/continuous) signals.
» A synchronous language extended with ODEs and/or DAEs.

» Recycle the semantics, language constructs and compilation
techniques.

» A prototype is under way.


www.di.ens.fr:/~pouzet/lucid-synchrone

Milestones

v

v

vV vV v v v Y

v

Synchronous Kahn networks [ICFP'96]

Clocks as dependent types [ICFP’96]

Modular compilation (co-induction vs co-iteration) [CMCS'98]
ML-like clock calculus [Emsoft'03]

causality analysis [ESOP'01]

initialization analysis [SLAP'03, STTT'04]

higher-order and typing [Emsoft'04]

data-flow and state machines [Emsoft'05, Emsoft'06]

N-Synchronous Kahn Networks [Emsoft'05, POPL'06, APLAS'08,
MPC'10]

Clock-directed code generation of synchronous data-flow [LCTES'08]
Modular Static Scheduling [Emsoft'09, JDAES'10]

Synchronous semantics based on non-standard for hybrid systems
[CDC'10,JCSS'11]

A Lustre-like language with ODEs [LCTES'11,Emsoft'11]
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