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Reactive systems

I They react continuously to the external environment.
I At the speed imposed by this environment.
I Statically bounded memory and response time.

Conciliate three notions in the programming model:
I Parallelism, concurrency while preserving determinism.

e.g, control at the same time rolling and pitching
↪→ parallel description of the system

I Strong temporal constraints.
e.g, the physics does not wait!
↪→ temporal constraints should be expressed in the system

I Safety is important (critical systems).
↪→ well founded languages, verification methods



Synchronous Kahn Networks

M3

M1 M2

M4

I parallel processes communicating through data-flows
I communication in zero time: data is available as soon as it is

produced.
I a global logical time scale even though individual rhythms may differ

these drawings are computer programs



SAO (Spécification Assistée par Ordinateur)—Airbus 80’s
Describe the system as block diagrams (synchronous communicating
machines)



SCADE 4 (Safety Critical Application Development Env. – Esterel-Tech.)

From computer assisted drawings to executable (sequential/parallel) code!



Lustre: a dataflow programming language
Caspi, Pilaud, Halbwachs, and Plaice. Lustre: A Declarative Language for Programming Synchronous Systems. 1987.

Programming with streams

constants 1 = 1 1 1 1 · · ·

operators x + y = x0 + y0 x1 + y1 x2 + y2 x3 + y3 · · ·

(z = x + y means that at every instant i : zi = xi + yi)

unit delay 0 fby (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·
pre (x + y) = nil x0 + y0 x1 + x1 x2 + x2 · · ·

0 → pre (x + y) = 0 x0 + y0 x1 + x1 x2 + x2 · · ·
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Lustre: a dataflow programming language

x
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let node iir_filter_2 x = y where

rec y = a ∗ x + (0.0 fby u)

and u = b ∗ x − d ∗ y + (0.0 fby v)

and v = c ∗ x − e ∗ y
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Lustre: beautiful ideas
I A simple and pure notion of execution in discrete time

I Parallel composition is
I well-defined
I deterministic: very important in practice for reproducibility

I Parallelism is compiled: programs can be translated into efficient
sequential

I The code executes in bounded memory and bounded time

I Programs are finite-state and can be verified by model-checking

No need to write control programs in C!

Lustre can and need to be extended in several ways. . .
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The expressiveness of Lustre

I First order functional language managing streams, no recursion.
I Types are declared; no polymorphism; no control-structures; limited

clock calculus.

Increase its expressiveness:
I Modularity (libraries), abstraction mechanisms.
I Polymorphism; type and clock inference.
I Control structures; imperative features (but in a safe way).
I More efficient compilation; compile-time static analysis.



Lucid Synchrone

[ICFP’96]
Try to mix all the best of these two paradigms:
I Synchronous data-flow as a way to deal with time.
I Features from ML to increase expressiveness: E.g., type inference,

polymorphism, higher-order, (some form of) recursion.

Follow some principles:
I Streams and function composition.
I The synchronous property is checked by a dedicated type system

called the clock calculus. Inferred clocks express static constraints on
synchronization.

I Clocks are used to give a precise semantics to all programming
constructs.

I Several other type-based analysis (e.g., initialisation, causality).



Extended dataflow programming: automata
l e t node coun t e r ( f l i p , s top ) = x
where
rec l x = 0 fby x
and automaton

| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop ( t r u e )
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop ( f a l s e )
done

| Stop (was_up )→
do

x = l x
u n t i l f l i p & was_up then Up

| f l i p then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I Parallel composition of
dataflow equations and automata

I x has a different definition in each mode
I But only a single definition in a reaction

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT’2005.
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| Up→
do

x = l x + 1
u n t i l f l i p then Down

| s top then Stop ( t r u e )
done

| Down→
do

x = l x − 1
u n t i l f l i p then Up

| s top then Stop ( f a l s e )
done

| Stop (was_up )→
do

x = l x
u n t i l f l i p & was_up then Up

| f l i p then Down
done

end

Up
x = lx + 1

Down
x = lx − 1

Stop
x = lx

lx = 0 fby x
flip

stop(t)

flip

stop(f)

flip & was_up

flip

I Automata are just a convenient syntax
I They can be reduced to discrete

dataflow equations by a
source-to-source transformation

lexing/
parsing

typing/
caus./init. automata . . . scheduling code gen.

Colaço, Pagano and Pouzet. A Conservative Extension of Synchronous Data-flow with State Machines. EMSOFT’2005.
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integrated design
environment for critical 
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qualifiable/certified code 
generation, and 
interoperability with other 

development tools and platforms. 

SCADE Suite is tightly integrated with Esterel 
Technologies� SCADE Display®, enabling the 
joint model-based design of control laws and
logic with the design of graphics display 
applications. 

SCADE Suite�s design environment facilitates the 
tight combination of development and 
management activities of system and software 
engineering, down to code integration on
target, into a seamless workflow. 

Read more about SCADE Suite:

• Software Design Modeling
• Verification and Validation
• Automatic Code Generation
• SCADE Tools Integration

Software Design Modeling

Advanced Model-Based Design

• Graphical editing of flexible/nested dataflows 
and hierarchical Safe State Machines (SSM®)

• Graphical decision diagrams 
• Array iterators to facilitate operator multi-

instantiation and perform complex data 
processing in control laws and filters

• Model completeness and determinism 
guaranteed

• Strongly-typed language
• Static consistency checking
• Intuitive and familiar visual representation
• Easy reuse and readability of design
• Efficient editing features such as multiple

connection drawing, navigation in model, 
search, unlimited undo

• Comparison of semantic differences between 
models, packages, operators, or state 
machines with location and reporting features 

Tailored for Critical Applications
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• Software Configuration Index (SCI)
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More information can be found in the Technical 
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DO-178B Certification Plans provide a set of generic 
plans supporting the certification of applications
developed with SCADE Suite at level A and B.
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I Entirely new language and compiler; commercialised since 2008.
I Most features of Lucid Synchrone are included
I Used in critical systems (DO-178B certified)
I Airbus flight control; Train (interlocking, on-board); Nuclear safety



So, what’s left to do?

I We want a language for programming complex discrete systems
and modelling their physical environments

I (Also: embedded software that includes physical models)

Dassault Systèmes Delmia and Catia http://www.3ds.com/products

I Something like Simulink/Stateflow, but
I Simpler and more consistent semantics and compilation
I Better understand interactions between discrete and continuous
I Simpler treatment of automata
I Certifiability for the discrete parts

Understand and improve the design of such modelling tools
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Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.
Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT’07.

Simulink® 7
User’s Guide

Ptolemy and HyVisual
I Programming languages perspective
I Numerical solvers as directors
I Working tool and examples



Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.
Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT’07.

Simulink® 7
User’s Guide

Simulink/Stateflow

I Simulation  development
I two distinct simulation enginesCarloni et al. Languages and tools

for hybrid systems design. 2006.

I semantics & consistency: non-obvious



Lee and Zheng. Operational semantics of hybrid
systems. HSCC 2005.
Lee and Zheng. Leveraging synchronous language
principles for heterogeneous modeling and design
of embedded systems. EMSOFT’07.

Simulink® 7
User’s Guide

Our approach
I Source-to-source compilation
I Automata  data-flow
I Extend other languages (SCADE 6)



Approach

I Add Ordinary Differential Equations to an existing synchronous
language

I Two concrete reasons:
I Increase modelling power (hybrid programming)
I Exploit existing compiler (target for code generation)

I Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, Hindmarsh et al. SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. 2005. )

I Conservative extension: synchronous functions are compiled,
optimized, and executed as per usual.
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Discrete vs Hybrid time: [CDC’11,JCSS’11]
discrete synchronous language: assume infinitely fast execution

ignore execution time

N

time is a logical sequence of instantaneous reactions—no relation to physical time

bl
ah Q. How to relate discrete and

continuous time correctly?

hybrid synchronous language: assume infinitely precise base clock

?Rassume an infinitesimal increment of the base clock—a non-standard semantics

Q. How to simulate effectively?
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Which programs make sense?
Given:

l e t node sum( x ) = cpt where
rec cpt = (0 . 0 fby cpt ) +. x

Evaluate:
der time = 1 .0 i n i t 0 .0
and
y = sum( t ime )

every up(ez) init 0.0

Interpretation:
I Option 1: N ⊆ R
I Option 2: depends on solver
I Option 3: infinitesimal steps
I Option 4: type and reject
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Basic typing
Milner-like type system [LCTES’11,EMSOFT’11]

The type language

bt ::= float | int | bool | zero
t ::= bt | t × t | β
σ ::= ∀β1, ..., βn.t

k−→ t
k ::= D | C | A A

D C

Initial conditions
(+) : int× int A−→ int
(=) : ∀β.β × β A−→ bool
if : ∀β.bool× β × β A−→ β

· fby · : ∀β.β × β D−→ β

up(·) : float C−→ zero



What about continuous automata?

Stateflow User’s Guide The Mathworks, pages 16-26 to 16-29, 2011.
16 Modeling Continuous-Time Systems in Stateflow® Charts

Design Considerations for Continuous-Time Modeling in
Stateflow Charts

In this section...

“Rationale for Design Considerations” on page 16-26

“Summary of Rules for Continuous-Time Modeling” on page 16-26

Rationale for Design Considerations
To guarantee the integrity — or smoothness — of the results in
continuous-time modeling, you must constrain your charts to a restricted
subset of Stateflow chart semantics. The restricted semantics ensure that
inputs do not depend on unpredictable factors — or side effects— such as:

• Simulink solver’s guess for number of minor intervals in a major time step

• Number of iterations required to stabilize the integration loop or zero
crossings loop

By minimizing side effects, a Stateflow chart can maintain its state at minor
time steps and, therefore, update state only during major time steps when
mode changes occur. Using this heuristic, a Stateflow chart can always
compute outputs based on a constant state for continuous-time.

A Stateflow chart generates informative errors to help you correct semantic
violations.

Summary of Rules for Continuous-Time Modeling
Here are the rules for modeling continuous-time Stateflow charts:

Update local data only in transition, entry, and exit actions

To maintain precision in continuous-time simulation, you should update local
data (continuous or discrete) only during physical events at major time steps.

In Stateflow charts, physical events cause state transitions. Therefore, write
to local data only in actions that execute during transitions, as follows:

16-26
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• State exit actions, which execute before leaving the state at the beginning
of the transition

• Transition actions, which execute during the transition

• State entry actions, which execute after entering the new state at the
end of the transition

• Condition actions on a transition, but only if the transition directly reaches
a state

Consider the following chart.

In this example, the action {n++} executes even when conditions c2 and
c3 are false. In this case, n gets updated in a minor time step because
there is no state transition.

Do not write to local continuous data in during actions because these actions
execute in minor time steps.

Do not call Simulink functions in state during actions or transition
conditions

This rule applies to continuous-time charts because you cannot call functions
during minor time steps. You can call Simulink functions in state entry or
exit actions and transition actions. However, if you try to call Simulink

16-27
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functions in state during actions or transition conditions, an error message
appears when you simulate your model.

For more information, see Chapter 24, “Using Simulink Functions in
Stateflow Charts”.

Compute derivatives only in during actions

A Simulink model reads continuous-time derivatives during minor time steps.
The only part of a Stateflow chart that executes during minor time steps is the
during action. Therefore, you should compute derivatives in during actions
to give your Simulink model the most current calculation.

Do not read outputs and derivatives in states or transitions

This restriction ensures smooth outputs in a major time step because it
prevents a Stateflow chart from using values that may no longer be valid in
the current minor time step. Instead, a Stateflow chart always computes
outputs from local discrete data, local continuous data, and chart inputs.

Use discrete variables to govern conditions in during actions

This restriction prevents mode changes from occurring between major time
steps. When placed in during actions, conditions that affect control flow
should be governed by discrete variables because they do not change between
major time steps.

Do not use input events in continuous-time charts

The presence of input events makes a chart behave like a triggered subsystem
and therefore unable to simulate in continuous-time. For example, the
following model generates an error if the chart uses a continuous update
method.

16-28

· · ·

I ‘Restricted subset of Stateflow chart semantics’
I restricts side-effects to major time steps
I supported by warnings and errors in tool (mostly)

I Our D/C/A/zero system extends naturally for the same effect
I For both discrete (synchronous) and continuous (hybrid) contexts



Demonstrations

I Bouncing ball (standard)
I Bang-bang temperature controller (Simulink/Stateflow)
I Sticky Masses (Ptolemy)



Conclusion
Lucid Synchrone: www.di.ens.fr:/~pouzet/lucid-synchrone
I A laboratory language for experimenting extensions for SCADE.
I type/clock inference, initialization analysis, causality analysis.
I Higher-order functions.
I Hierarchical automata, signals.
I Modular code generation.

Most are included in SCADE 6.

A promising perspective for synchronous languages is the treatment of
mixed (discrete/continuous) signals.
I A synchronous language extended with ODEs and/or DAEs.
I Recycle the semantics, language constructs and compilation

techniques.
I A prototype is under way.

www.di.ens.fr:/~pouzet/lucid-synchrone


Milestones
I Synchronous Kahn networks [ICFP’96]
I Clocks as dependent types [ICFP’96]
I Modular compilation (co-induction vs co-iteration) [CMCS’98]
I ML-like clock calculus [Emsoft’03]
I causality analysis [ESOP’01]
I initialization analysis [SLAP’03, STTT’04]
I higher-order and typing [Emsoft’04]
I data-flow and state machines [Emsoft’05, Emsoft’06]
I N-Synchronous Kahn Networks [Emsoft’05, POPL’06, APLAS’08,

MPC’10]
I Clock-directed code generation of synchronous data-flow [LCTES’08]
I Modular Static Scheduling [Emsoft’09, JDAES’10]
I Synchronous semantics based on non-standard for hybrid systems

[CDC’10,JCSS’11]
I A Lustre-like language with ODEs [LCTES’11,Emsoft’11]
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