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REPRESENTATION
•Which is best

• depends on the application

•Composition

• easily generate new content

•Analysis and retrieval

• easily capture important features



SYMBOLIC REPRESENTATIONS

• Strings

• n-grams

• Graphs

• Point sets

• Geometric

• Hidden Markov Models

• Spiral arrays, etc....

• Trees



ABSTRACT DATA TYPE TREE

•Suitable intermediate representation for :

•music information retrieval (MIR)

•composing
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OVERVIEW

• Background

• Intermediate 
representations

• The origin: strings

• Previous uses of trees in 
computer music

• Our tree approach

• metric tree construction

• probabilistic k-testables

• Applications

• classification and generation

• composition
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STRINGS

• A melody is represented as a sequence of symbols ni

• each symbol ni may represent a note

n1 n2 n3 n4 ··· nm

!" 4
2 ! !

Pitch

Rhythm

A combination G,0 C,1 B,3/2 [Pitch, Onset]
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DECOUPLED STRINGS

• A melody is represented as a sequence of symbols ni

• each symbol ni may represent a note or a relation

n1 n2 n3 n4 ··· nm

!" 4
2 ! ! G 0 C 1 B 3/2
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• String = sequence of symbols

• Each symbol belongs to an alphabet ∑

• String = sequence of ∑ 

• denoted by ∑* (meaning: 0 or more symbols)

• ∑+ denotes 1 or more symbols
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STRING LANGUAGES
• Language = set of strings

• An automaton can generate and recognize this kind 
of  language following states and transitions

• e.g. Let ∑ = {A, B, C}, 

the language AB+C is the set of strings

A B C

containing 1 or more Bstarting with A ending with C
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STRING LANGUAGES
• A music language can be built on strings

• if only notes are represented, 

• alphabet ∑ represents a combination pitch (∑p) and 
rhythm (∑r)
                            ∑ = ∑p ⊗ ∑r

• Coupled ∑ = ∑p x ∑r

•Decoupled ∑ = ∑p U ∑r

TODO Mostrar también en el lenguaje la polifonía



PITCH ALPHABETS ∑p

!   Scientific pitch:  F4     C5  D5   D5      G4         R     G4   A4  B4 

!   Pitch class:  5       0    2     2        7           R     7     9   11 

!   Contour:  x       +    +     =        -                   =     +    + 

!   High Def. Contour     x      +2  +1    0       -2                  0    +1  +1 

!   Intervals:  x      +7  +2    0       -7                  0    +2  +2 

!   Relative to tonic:  5       0    2     2        7          R      7     9    11 

|!p| = 89 

|!p| = 13 

|!p| = 3 

|!p| = 5 

|!p| = 49 

|!p| = 13 

Absolute magnitudes 

Relative magnitudes 

etc.....



RHYTHM ALPHABETS ∑r

!   Durations:   n      c     c    n        n           n        c    c    b 
!   Inter-onset intervals (IOIs): 

  1     1/2 1/2   1        2                  1/2 1/2  (2) 

•  Duration relative to previous 
  x     1/2   1    2        1           1     1/2   1    4 

•  Duration relative to most frequent 
  2       1    1     2       2           2       1    1    4 

•  Relation between IOIs (IORs):  
1/2      1    2     2     1/4                   1    4    x 

!   Rhythmic contour:   x       -    =     +      =            =       -    =    + 

IOIn = on+1 - on 

IORn = IOIn+1/IOIn 

Absolute magnitudes 

Relative magnitudes 

etc.....
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STRINGS - POLYPHONY

•Chord sequence approach: 

IV V INamed chord:
requires chord analysis

Onset group based {C,F,A},
0

{G,D,F,B},
2

{C,E,G,B},
4

requires segmentation

∑ = (∑r x ∑+p )

∑ = set of chord names
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STRINGS - POLYPHONY
• Individual note approach

Not interleaved: 
requires voice analysis, deal 

with divisi, etc...  

sequential arrangement of all 
monophonic lines

C

C E

F G

G
∑ = note alphabet + 

voice  

A B

F

D

C
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STRINGS - POLYPHONY
• Individual note approach

Interleaved

notes sorted lexicographically 
(e.g. first order by onset, them by 

pitch)

A,0

C,4

G,2 B,2

C,0 F,0

E,4 G,4

D,2 F2

C4

∑ = ∑r x ∑p 
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Evolve Strings to Trees

•Many possible note representations (many alphabets ∑)

• But... 

difficult to represent structure
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n1 n2 n3 n4 ··· nmString

In strings
each note /symbol is linked to | from

just other note/symbol

n1 n3 ···n2 n4 nm

If some structure is required? e.g.
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C G E G

I

D G F G

V7
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I
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V7 →D G F G

Melody → I  I  V7  I
Production:

Rewrite I as C G E G Terminals ∈ ∑

GRAMMAR

Parsing 
tree



GRAMMAR

• Generalizing the grammar

Melody → ChordRealization+

ChordRealization → Note Note Note Note

Note ∈ any ∑ 



TREE PROPERTY

Trees capture more easily structure than strings
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Formal architecture

 Grammars

Composition

Analysis

Song

1.Period 2.Period 3.Period

O-Phrase C-Phrase O-Phrase C-Phrase O-Phrase C-Phrase

1.Motive 2.Motive 1.Motive

Musical form
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Formal architecture

 Grammars
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Analysis

!" ##$#% #&' (#

CHAPTER 3. MUSIC SIMILARITY WITH TREES

!" ##$#% #&' (#
(a) First two bars of“Auld Lang Syne”

S→ ¯ | <| 4
2
+ 4

2

4
2 → ˘ “ | <| 4

1
+ 4

1

4
1 → ˇ “ | > | 8

1
+ 8

1

8
1 → ˇ “( | ? | · · ·

(b) Grammar for meter 4/4

! "" " "     · · · · ""

4
3    · · · · !!! ! !!

!
4
3    · · · · !" ! !! !## "

! "#" " "     · · · ·   |   " ""# $

(c) Some possible parses of (a) using
the grammar in (b) and that detailed in
Fig. 3.3a.

!
!

!
"

#
$

#
$

!
"

!
$

!
$

!
!

!
"

!
$

!
$

!
"

!
$

!
$

(d) Some possible parses

Figure 3.5: Longuet-Higgins grammar for meter 4/4 (from (Lee, 1985) pages 54-55) and

some possible parses.

62

!
!

!
"

#
$

#
$

!
"

!
$

!
$

!
!

!
"

!
$

!
$

!
"

!
$

!
$

Explain rhythm perception with grammars

Lee’85 grammars
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Högberg’ 05
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Formal architecture

 Grammars

Composition

Analysis

OpenMusic

Trees (list of lists) 
to encode rhythm patterns

! "" ! " !""
2
3! "! ! !! #$ %

2
4 !2

4 !"
(19/2 

(((4 2) (-7 1)) 
((4 2)(2 2 2 2)) ((3 2) (1 1 2 2)) 

((4 2) (2 1 1 2 2)) 
((4 2)  (-3 1 1 3)))

)

19/2

-7 -

(4 2)

1 (D4)

(4 2) (3 2) (4 2) (4 2)

2 (B4) 2 (D5) 2 (C5) 2 (D5) 1 (B4) 1 (G4) 2 (F#4) 2 (F#4) 2 (G4) 1 (B4) 1 (A3) 2 (G4) 2 (A4) -3 - 1 (F#4) 1 (F#4) 3 (G4)
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Use trees to represent the 
result of analyses

Schenkerian analysis



MUSIC TREE REPRESENTATION

Formal architecture

 Grammars

Composition

Analysis

Generative theory of 
tonal music (GTTM)

86

           
   
           
                
                    
         
  

Use trees to represent the 
result of analyses
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OUR APPROACH

•We found trees a suitable representation for

• first: similarity computation

• then:

• classification

• composition

•We developed a tree representation fitted for that goal
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OUR HYPOTHESIS
“One of the most obvious facts about the experience of 
listening to practically any piece of music is that one 
perceives not merely an arbitrary sequence of note 
durations, but some sort of temporal structure in which the 
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The level of the tree determines the duration
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The level of the tree determines the duration
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1/2 bar

1/4 bar

1/8 bar

Leaves are labeled using the pitch

Nodes are created until reaching the figure duration
top-down
left-right
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TREE CONSTRUCTION
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SOME FACTS

• Initially only leaves contain note information ∑p

• This is not a parsing tree

• actually it does not represent a grammar
.... but could represent it

•Note no rhythm alphabet ∑p is required

• rhythm encoded implicitly in tree structure
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Decision:
Which node propagate?

Several propagation schemes 
are proposed:

 Heuristic

 Melodic analysis

 Partial propagation

 Always propagate left

 Always propagate right

Schenker analysis
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 Always propagate right

Schenker analysis
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Rules based on empirical experience
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Computer approach by 
Alan Marsden

• surface = actual notes
• reduction ‘chart’ with all possible reductions
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F igure 1. 
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kle, twin -scoring reduction 
derived from these bars by the software. 

R E C O G NI T I O N O F V A RI A T I O NS USIN G A U T O M A T I C 
SC H E N K E RI A N R E DU C T I O N 

!"#$%&#'()*$%
Lancaster Institute for the Contemporary Arts, Lancaster University, UK 

!"#$%&'()*+$),$&-(%"$,"./0

A BST R A C T 

Experiments on techniques to automatically recognise 
whether or not an extract of music is a variation of a giv-
en theme are reported, using a test corpus derived from 

with methods which make use of an automatically derived 
quasi-Schenkerian reduction of the theme and the extract 
in question. The maximum average F-measure achieved 
was 0.87. Unexpectedly, this was for a method of match-
ing based on the surface alone, and in general the results 
for matches based on the surface were marginally better 
than those based on reduction, though the small number 
of possible test queries means that this result cannot be 
regarded as conclusive. Other inferences on which factors 
seem to be important in recognising variations are dis-
cussed. Possibilities for improved recognition of match-
ing using reduction are outlined. 

1. SC H E N K E RI A N R E DU C T I O N 

Earlier work [6] has shown that Schenkerian analysis by 
computer is possible, though not easy. (Currently only 
short segments of music can be analysed, and confidence 
in the analyses produced cannot be high.) The aim of the 
research reported here is a first attempt at testing whether 
these automatic analyses produce information which is 
useful for information retrieval. 

Schenkerian analysis is a technique, with a long pedi-
gree in music theory, which aims to discover the struc-

r-
 (see [1], for example). Reduc-

tion according to the theory of Lerdahl & Jackendoff, 
which has also been subject to computational implemen-
tation [2], is broadly similar. Figure 1 shows the first four 
bars of the theme of a set of variations for piano by Mo-
zart, and its reduction as derived by the software used 
here. (This is by far the simplest of the themes used here; 
to show other themes and their reductions would take 

more space than is available.) 
notated in a different fashion, and also included informa-
tion not given here, but the basic information of which 
pitches are reg
in the higher levels, is similar. 

The research reported here fits into that body of MIR 
research which aims to improve MIR procedures through 
the application of ideas from music theory. 

2. V A RI A T I O NS 

A common type of composition in classical music is 

presented, followed by a number of variations of that 
theme. There is no single and established definition of 
what constitutes a variation of a theme, but in the Classi-
cal period (the period of Haydn, Mozart and Beethoven) 
it is clear that a variation is not simply the presentation of 
the same melody in different arrangements (as it was for 
some later composers) but rather a composition which has 
the same structural features as the theme. This is particu-

variations: they are almost always 
the same length as the theme, have the same number of 
phrases, and have matching cadences for those phrases (at 
least in their harmony; often in other features also). The 
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Schenker analysis

Computer approach by 
Alan Marsden

• surface = actual notes
• reduction ‘chart’ with all possible reductions
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kle, twin -scoring reduction 
derived from these bars by the software. 
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A BST R A C T 
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 (see [1], for example). Reduc-
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it is clear that a variation is not simply the presentation of 
the same melody in different arrangements (as it was for 
some later composers) but rather a composition which has 
the same structural features as the theme. This is particu-
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•Merge all voices in the same tree
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   - node labels are now sets of pitch classes

Bottom up 
propagation using set union
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Problem: 
set union does not respect durations
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POLYPHONIC TREES

Solution: 
use multisets to encode cardinalities
Cardinalities in multisets = normalized note durations

! 4
2 "" """ {{C},{1}} {{D,E,F,G},{.25,.25,.25,.25}}

{{D,E},{.25,.25}} {{F,G},{.25,.25}}

{{C,D,E,F,G},{1,.25,.25,.25}}

{{D},{.25}} {{E},{.25}} {{F},{.25}} {{G},{.25}}



PROBABILISTIC 
K-TESTABLE TREE LANGUAGES



TREE AUTOMATA

• String languages generated and recognized by automata

• Tree languages generated and recognized by tree automata
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K-TESTABILITY

• A deterministic tree automata (DTA) can be built using a 
positive sample of positive examples

• Extension to probabilistic languages (stochastic DTA) 
equivalent to string n-grams



Deterministic Tree Automata (DTA)

A = (Q,Σ,∆,F )

where Q : states, Σ : alphabet, ∆ : transitions, F : accepting
states.
Example:
Q = {q1, q2}
Σ = {a, b}
∆ = {
δ0(a) = q1,
δ0(b) = q2,
δ1(a, q2) = q1,
δ2(a, q1, q2) = q2

}
F = {q2}
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DETERMINISTIC TREE AUTOMATA 

Input tree
Recognized

part
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Stochastic DTA

A = (Q,Σ,∆,P, ρ)

where Q : states, Σ : alphabet, ∆ : transitions, P : probabilities, ρ
p. of the root.

Example:
Q, Σ, and ∆ like before,
but now
P = {

p0(a) = 0.5,
p0(b) = 0.3,
p1(a, q2) = 0.5,
p2(a, q1, q2) = 0.7

}
ρ(q2) = 1

a q2

a q1

a q2

a q1 b q2

b q2
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STOCHASTIC DTA

Add a probability to each transition and state being root



Stochastic DTA

A = (Q,Σ,∆,P, ρ)

where Q : states, Σ : alphabet, ∆ : transitions, P : probabilities, ρ
p. of the root.

Example:
Q, Σ, and ∆ like before,
but now
P = {

p0(a) = 0.5,
p0(b) = 0.3,
p1(a, q2) = 0.5,
p2(a, q1, q2) = 0.7

}
ρ(q2) = 1

a q2

a q1

a q2

a q1 b q2

b q2

P = 0.3× 0.3× 0.5× 0.7× 0.5× 0.7× 1
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STATE NOMENCLATURE
From now on, instead of using q0, q1, etc... we will use 

tree functional notation

a

b c

a b
If k=3, k-1 states are 2-roots

States = { a(b,c),  c(a,b) }



K=2 TREE 
PROBABILITIES LEARNING



Example: k = 2
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EXAMPLE :  k=2

First training tree

Recall that states are named
as the root label of the tree

they represent (k-1 root = 1-root)
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EXAMPLE :  k=2

Both states a and b
input b

a is not root
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EXAMPLE :  k=2

δ0(a)
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EXAMPLE :  k=2

Second training tree
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q ρ(q) δ p(δ)

b 2/2 b, a, b
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a 0 a, a, b
a

1/4
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José F. Bernabeu, Jorge Calera-Rubio, José M. Iñesta, David Rizo A probabilistic approach to melodic similarity 12 / 21

EXAMPLE :  k=2

Probabilities are computed online
as a counter quotient



SMOOTHING

• The problem occurs when parsing a tree, a transition is found 
never seen in the training set

• therefore with a zero probability

• Solution: follow a back-off scheme similar to strings approach

• i.e. if working with K, parse tree using (K-1)

• Then: all 1≤ k ≤ K models are built
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•With probabilistic k-testable tree languages

Training samples
Set of trees representing 

different classes (e.g genres)

Model for each class
(= probabilistic tree automaton 

including backoff)

Jazz

G

C

ED
C

AC

G

Ajazz = (Q,Σ,∆,Pjazz,ρjazz)

Pjazz={
 p0(a) = 0.5, p0(b) = 0.3, 
 p1(a, q2) = 0.5, 
 p2(a,q1,q2) = 0.7
} 
ρjazz(q2) = 1



CLASSIFICATION
•With probabilistic k-testable tree languages

Training samples
Set of trees representing 

different classes (e.g genres)

Model for each class
(= probabilistic tree automaton 

including backoff)

Baroque

G
C

ED

C

AC

G

Abaro = (Q,Σ,∆,Pbar,ρbaro)

Pbaro={
 p0(a) = 0.2, p1(b) = 0.2, 
 p1(a, q3) = 0.1, 
 p2(b,q1,q1) = 0.9
} 
ρjazz(q2) = 1
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CLASSIFICATION
•With probabilistic k-testable tree languages

Training samples
Set of trees representing 

different classes (e.g genres)

Model for each class
(= probabilistic tree automaton 

including backoff)

Classification

Melody tree
Run the probabilistic tree 
automata for each model

Classify as highest probability class
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δ0(a) = q1

δ0(b) = q2
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GENERATION

q2 a

q1 q2

Now repeat operation 
for each state: q1 and q2
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• Tree automata with F = {q2}: 

• given a state q1 random choose a transition where this 
state is the target and produce a symbol and move:

δ0(a) = q1

δ0(b) = q2

δ1(a, q2) = q1

δ2(a, q1, q2) = q2

GENERATION

q2 a

q1 q2 a b
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GENERATION

•Probabilistic tree automata: 

• just follow probability distribution

•non probabilistic tree automata are just probabilistic 
tree automata with equal probability for all 
transitions



LEARNING ⇒GENERATION

• Style = just set of trees

• learnt using probabilistic k-testable tree languages

• Generate new trees that belong to that style
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similarity function or
Inverse of the distance

distances or similarity measures

Literature Our proposal

• Shasha & Zhang
• Selkow
• G.Valiente

• Similarity measure between 
   partially labeled trees
• Jiang’s alignment

(time improved alternative)
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Tree edit distance 6

v w

F G

Recurs on the rightmost root:

                        Delete v

d(F,G) = min      Delete w

                        Match v and w

TREE EDIT OPERATIONS

Perform operations 
recursively and keep 

lowest cost edit sequence
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POLYPHONIC TREES
Comparison

Use Selkow tree edit distance

Symbols to compare now are not pitches but multisets

Vector,  position 
determines pitch

Use classical vector similarity measures

Manhattan (L1), Cosine similarity, Euclidean distance (L2), Jaccard coefficient−1, 
Log distance, Matching coefficient, Multisets distance, Overlap coefficient, Probabilities, 

Variational distance, Hellinger distance, Harmonic Mean

[2,0,0,0,0,0,0,1.5,0.25,0,0]
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CONCLUSIONS

• Trees encode structure in a natural way

• Over strings: remove a parameter to be tuned (rhythm) as 
it gets encoded implicitly encoded

• Easy to manipulate with meaningful results

• Ready to incorporate in the structure more things than just 
pitch

• We are able to learn structures from examples

• this structures can be re-generated in a composition scenario
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