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Motivation

Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified
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Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified

runnable specification declarative view

compact, expressive formal semantics

logic + proof procedure
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Motivation

What types of music systems?

Reactive: improvisation, interactive performance
Dynamic: evolving music structures

Those involving complex synchronization patterns
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Motivation

What constraints are used for

To communicate partial information
To synchronize concurrent processes

The type of constraints (constraint system) is a
parameter of the model
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ccp model

Components of ccp

A constraint system
A set D of tokens
An entailment relation, A ` c

A constraint is some subset of D (closed by entailment)

A store of constraints
Control mechanisms,

tell(c)
ask c then P

Some extra logical operators
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ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

tell (Note >  64) ask (Note = 66) then Q

ask (Note < 68) then Rtell (Note < 67) 

STORE

A B

D C
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Note > 64

when (Note < 68) then Rtell (Note < 67) 

STORE

B

D C

Blocked

Blocked

ask (Note = 66) then Q

() PUJ 2011 8 / 45



ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

64  <  Note  <  67

when (Note = 66)  then Q

when (Note < 68) then R
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ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

64 < Note  < 67

when (Note = 66) then Q

 R

STORE

BBlocked

R is 
launched
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ccp model

ccp a family of calculi
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ntcc

ntcc

For specifying timed reactive systems

Concurrent processes communicating
via asynchronous channels

ccp + ideas from synchronous languages:
computation proceeds in discrete time units

Considers negative information, “an event did not happen”
and choice, “select one of a given set of actions”
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ntcc

The ntcc Model

1 Receives a stimulus (i.e a constraint) from the environment.

2 Computes a CCP process in the current time-unit and wait for
stability.

3 Responds with the resulting store.
4 Executes the Residual process in the next time-unit.
* Note: Stores are not automatically transferred from a time unit to

the next one.
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ntcc

The ntcc calculus

Syntax

P,Q := skip | tell(c) | P ‖ Q |
∑
i∈S

when ci do Pi| (local ~x)P |

nextP | unless c nextP | ? P | !P

tell(c): adds constraint c to the store in the current time interval.
P ‖ Q is the concurrent execution of P and Q∑
i∈S

when ci do Pi: chooses some Pi such that ci can be deduced

from the current store.
(local ~x; c)P : behaves like P but the information about variables
in ~x is local to P
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ntcc

The ntcc calculus

Syntax

P,Q := skip | tell(c) | P ‖ Q |
∑
i∈S

when ci do Pi| (local ~x)P |

nextP | unless c nextP | ? P | !P

nextP : executes P in the next time unit.
unless c nextP : executes P in the next time unit if c cannot be
entailed now.
?P : executes P eventually.
!P : executes P now and in the future.
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ntcc

Some derived constructs

Cells: assignable variables with persistent values
c := E(x)

assigned next evaluated now

Procedure definition:
f(i) = P

restriction: recursive calls within a next construct
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ntcc

An example

A system observing occurrence of events
At some beat, if the waited for event occurs, k actions spaced m
beats are launched,
if the event does not occur, actions are launched at the next beat
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ntcc

Simple example: launching a group of actions

Set tempo = ! (when st = 0 do tell(st := tempo)
‖ tell(beat) ‖ tell(bc := bc+ 1)

‖ when st > 0 do tell(st := st− 1))

Group(i, k,m) = !when beat ∧ bc = i do
when event do Launch(i, 0, k,m)
‖ unless event nextLaunch(i+ 1, 0, k,m)

Launch(i, c, k,m) =
when beat do

when bc = i+ c ∗m do tell(launched)
‖ unless c = k nextLaunch(i, c+ 1, k,m)

‖ unless bc = i+ c ∗m nextLaunch(i, c, k,m)
‖ unless beat nextLaunch(i, c, k,m)

System = Set tempo ‖ tell(st = 0) ‖ tell(bc = 0) ‖ Group(3, 2, 2)
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ntcc

Formal semantics of ntcc

Operational semantics: reduction rules over configurations.

RT 〈tell(c), d〉 −→ 〈skip, d ∧ c〉
Denotational semantics:

What is observed of a process: the sequence of its output stores
(constraints) α = c1c2...
Semantics of P : all sequences it outputs for any input

sp(P ) = {α′ | P (α,α′)
====⇒ω for some α}
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ntcc

Proving properties of processes

View processes as formulae in linear temporal logic (LTL)

Then, for a property F to be verified of a process P , prove
P |=LTL F .
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ntcc

Proving properties of processes

View processes as formulae in linear temporal logic (LTL)

Then, for a property F to be verified of a process P , prove
P |=LTL F .

There is a proof procedure to verify
properties expressed as LTL formulae

... but only for “locally independent processes”
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ntcc

ntcc proof system (partial)
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Modeling examples: rhythm patterns

Music example: rhythm patterns

Rhythmic patterns of Central African Republic (M. Chemillier).

Patterns: two-beat groups separated by 3-beat elements:

3 2 2 2 2 3 2 2 2 2 2

Playing can be started at any position in the sequence:

startstop 1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

start

stop

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

(a) (b)
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Modeling examples: rhythm patterns

ntcc example: the model

Beatp
def= tell(beat) ‖

∏
i∈Ii

next itell(beat)

Startp
def= tell(start) +

∑
i∈I2

next i(tell(start))

Check
def= !when start do next 12(tell(stop))

System
def= Beatp ‖ Startp ‖ Check

where I1 = {3, 5, 7, 9, 11, 14, 16, 18, 20, 22}
and I2 = {3, 5, 7, 9, 11}

Asymmetry property:

“cannot break the circle of the pattern in two equal parts”
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Modeling examples: rhythm patterns

ntcc example: proofs

Encoding

[[Beatp]] = beat ∧̇
·∧

i∈I1

◦ibeat

[[Startp]] = start ∨̇
·∨

i∈I2

◦istart

[[Check]] = �(start ⇒̇ ◦12stop)
[[System]] = [[Beat]] ∧̇[[Start]] ∧̇[[Check]]

Asymmetry property:
[[System]] |= ♦(start ∧̇ ◦11(beat ∧̇ ◦stop))
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Modeling examples: rhythm patterns

ntcc example: a refinement

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property.

Beat′
def= tell(beat) ‖ next 3

∑
i∈I3

(tell(pos = i) ‖ Beat Aux(i− 1))

Beat Aux(N) def= tell(beat) ‖
when N = 1 do next 3Beat Aux(0)

+when N 6= 1 do next 2Beat Aux(N − 1)
System′

def= Beat′ ‖ Start ‖ Check

where I3 = {2, 3, 4, 5, 6}
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Modeling examples: rhythm patterns

ntcc example: properties

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property (I3 = {2, 3, 4, 5, 6}).

Beat′
def= tell(beat) ‖ next 3

∑
i∈I3

(tell(pos = i) ‖ Beat Aux(i− 1))

Beat Aux(N) def= tell(beat) ‖
when N = 1 do next 3Beat Aux(0)

+when N 6= 1 do next 2Beat Aux(N − 1)
System′

def= Beat′ ‖ Start ‖ Check

[[System′]] |= ♦((pos = x) ⇒̇♦(stop ∧̇ ◦beat))
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Example: Dynamic Interactive Scores

Dynamic interactive structures

Movable hierarchical structures containing interaction points

“mobility” is understood as in the π-calculus: communication of links
(private variables) between processes.

This cannot be expressed in ntcc
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Example: Dynamic Interactive Scores

A ntcc with mobility: utcc

The utcc calculus (C. Olarte) replaces ntcc construct when c do P
by (abs ~x; c)P

(abs ~x; c)P : executes P [~t/~x] for each ~t s.t. c[~t/~x] can be deduced from
the current store.

Communicating private link a thru channel ch:

(local a) tell(ch(a)) ‖ (abs ~x; ch(x))P
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Example: Dynamic Interactive Scores

Interactive Scores

(M. Desainte-Catherine)

A B

D

R

C

Allen relations:
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Example: Dynamic Interactive Scores

Interactive Scores

A B

D

R

C Score relations:
A precedes B A meets D
D overlaps B R contains C
R contains D C contains A

An Interactive Score is a pair composed of temporal objects and
structural and temporal (Allen) relations.
Each object is comprised of a start-time, a duration, and a
procedure (operational meaning).
The idea: Dynamic changes in the hierarchy. E.g., if an interaction
does not occur, the composer may move the interval to a similar
musical context.
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Example: Dynamic Interactive Scores

Dynamic Interactive Scores

A B

D

R

C

Dynamic Reconfiguration:

Moving boxes.
Adding/deleting intervals.
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Example: Dynamic Interactive Scores

The Model

BoxOp
def= (abs id, d;mkbox(id, d)) (local s) tell(box(id, d, s))

‖ (abs id;destroy(id))
(abs x, sup;in(x, id) ∧ in(id, sup))

unless play(id) next tell(in(x, sup))
‖ (abs x, y;before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do

unless play (y) next tell(bf(x, y))
‖ (abs x, y;into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y;out(x, y))when in(x, y) do

unless play (x) next (abs z,in(y, z); tell(in(x, z)))

Const
def= (abs x, y;in(x, y)) (abs dx, sx;box(x, dx, sx))

(abs dy, sy;box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y;bf(x, y)) (abs dx, sx;box(x, dx, sx))
(abs dy, sy;box(y, dy, sy)) tell(sx + dx ≤ sy)
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Example: Dynamic Interactive Scores

The Model(2)

Clock(t, v) def= tell(t = v) ‖ nextClock(t, v + 1)

Play(x, t) def= when t ≥ 1 do tell(play(x)) ‖
unless t ≤ 1 nextPlay(x, t− 1)

Init(t) def= (wait x; init(x)) do
(abs dx, sx;box(x, dx, sx))
Clock(t, 0) ‖ tell(sx = t) ‖
! (wait y, dy, sy;box(y, dy, sy) ∧ sy ≤ t) do Play(y, dy)

System
def= (local t) Init(t) ‖!Constraints ‖!BoxOp ‖ UsrBoxes
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Example: Dynamic Interactive Scores

An Example

UsrBoxes
def
=

tell(mkbox(a, 22)) ‖
tell(mkbox(b, 12)) ‖
tell(mkbox(c, 4)) ‖
tell(mkbox(d, 5))
tell(mkbox(e, 2)) ‖
tell(into(b, a)) ‖
tell(into(c, b)) ‖
tell(into(d, b)) ‖
tell(into(e, d)) ‖
tell(before(c, d)) ‖
whenever play(b) do
unless signal next

tell(out(d, b)) ‖
tell(mkbox(f, 2)) ‖
tell(into(f, a)) ‖
tell(before(b, f) ‖
tell(before(f, d)))
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Example: Dynamic Interactive Scores

Declarative Interpretation of utcc

Processes defined by the user may lead to inconsistent stores:
E.g. placing a box that exceeds the boundaries of the container.
The idea: Using the declarative view of utcc processes as FLTL
formulae to verify the model.

Definition (utcc logic characterization)

[[skip]] = true [[tell(c)]] = c
[[P ‖ Q]] = [[P ]] ∧ [[Q]] [[(abs ~y; c)P ]] = ∀~y(c⇒ [[P ]])
[[(local ~x; c)P ]] = ∃~x(c ∧ [[P ]]) [[nextP ]] = ◦[[P ]]
[[unless c nextP ]] = c ∨ ◦[[P ]] [[!P ]] = �[[P ]]
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Example: Dynamic Interactive Scores

Verification of the Model

We can verify, for example,

[[P ]] |= ♦∃x,dx,sx,y,dy ,sy(box(x, dx, sx) ∧ box(y, dy, sy) ∧
in(x, y) ∧ sx + dx > sy + dy): The end time of the box y is less
than the end time of the inner box x. I.e., the box y cannot contain
x.
[[P ]] |= ∀x(∃dx,sx(box(x, dx, sx)⇒ ♦play(x)): All the musical
structures are eventually played.
[[P ]] |= ♦∀x(∃dx,sx(box(x, dx, sx)⇒ play(x)): At some point all the
boxes are playing simultaneously.
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tools

Tools: as in the “concurrency workbench”
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tools

Simulators

sntcc, written in Mozart-Oz
Constraints: finite domains, reals (interval arithmetic)
ask, tell constructs: derived directly from Oz instructions
Concurrency: Oz threads
Interface with music tools: none. In progress: OSC

ntccrt (M. Toro), written in C++, with Gecode
Constraints: finite domains, finite sets
tell: directly in Gecode. ask: reified constraints.
Concurrency: threads as Gecode propagators
Interface with music tools: Max/MSP

(sntcc has been used in an application with 1, 000, 000 time units)
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tools

sntcc simulator
player(i) = when beat do (tell(note(Ni)) + skip)

‖ next player(i+ 1)
‖ unless beat next player(i)

Player = fun lazy {$ I}
par(when( proc{$ V} V.current.beat =: 1 end

par(sum(tell( proc {$ V} V.current.note =: N.I end)
tell( proc {$ V} 1 =: 1 end))

next({Player I+1})))
unless(proc{$ V} V.current.beat =: 1 end {Player I}))
end

Vars = var(beat: {FD.int 0#1} note: FD.decl)
Res = {SNTCC.simulate [ {Player 0} ] Vars 100}
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tools

Model checkers

Strategies
Translation of ntcc processes and LTL formula to Buchi automata
Use appropriate bisimulation relation
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tools

Model checkers: Buchi automaton

Since each (restricted) ntcc process is equivalent to a Buchi
automaton, to prove P |= F :

1 Encode LTL formula F as a ntcc process RF

2 translate P and (RF ‖ P ) to Buchi automata, B(P ), B(RF )
3 check language equivalence of both automata

Problems:
works for ntcc “locally independent processes”
Only a restricted form of negation is admitted for F
(current) complexity of translation algorithm is hyper-exponential
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tools

Model checkers: Bisimulation

1 define a suitable bisimulation relation for ntcc (done)
2 define the property as a ntcc process (done),
3 use an algorithm to verify bisimilarity
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Future work
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Future work

Future work

Model in ntcc some synchronization strategies for Antescofo.
Identify desirable properties.
Integrate interfaces (OSC) to music applications for the Oz ntcc
simulator
Develop efficient Buchi translations for “bounded” versions of ntcc
constructs
Devise an algorithm for the ntcc process bisimilarity
Develop a user “programming language” for the ntcc
simulator+verifier
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Future work

Thanks!
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