Modeling music processes using temporal
concurrent constraint programming

Camilo Rueda
Frank Valencia, Carlos Olarte

[rcam 2011

PU 2011

1/45

Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified

PUJ2011 2/45

Motivation: the idea behind using ccp

— Model music systems in such a way that their
properties can be easily expressed and verified/

/

runnable specification declarative view

PUJ2011 2/45

Motivation: the idea behind using ccp

— Model music systems in such a way that their
properties can be easily expressed and verif ied/

/

runnable specification declarative view
N — \

compact, expressive formal semantics

logic + proof procedure

What types of music systems?

@ Reactive: improvisation, interactive performance
@ Dynamic: evolving music structures

Those involving complex synchronization patterns

3/45

What constraints are used for

@ To communicate partial information
@ To synchronize concurrent processes

The type of constraints (constraint system) is a
parameter of the model

PUJ 2011

4/45

Outline

0 ccp model

9 ntcc

© Modeling examples: rhythm patterns

@ Example: Dynamic Interactive Scores

e tools

@ Future work

Outline

0 ccp model

PUJ2011 6/45

Components of ccp

@ A constraint system

o Aset D of tokens
@ An entailment relation, A ¢
A constraint is some subset of D (closed by entailment)

@ A store of constraints
@ Control mechanisms,

o tell(c)
@ ask cthen P

@ Some extra logical operators

PUJ 2011

7145

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

A tell (Note > 64) B ask (Note = 66) then Q
STORE
D tell (Note < 67) c ask (Note < 68) then R

PUJ2011 8/45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

Blocked

STORE Note > 64

D tell (Note < 67) c

ask (Note = 66) then Q B

Blocked

when (Note < 68) then R

PUJ 2011

8/45

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

Blocked

STORE 64 < Note < 67

when (Note = 66) then Q

when (Note < 68) then R

PUJ 2011

8/45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

Blocked when (Note = 66) then Q B

STORE 64 < Note <67

Ris
R launched

PUJ 2011 8/45

ccp model

ccp a family of calculi

-Partial information
-Sync via blocking ask

cCcP
-Discrete time units
-Weak preemption * *
‘ TCC ‘ ‘ TCCP "BW"UEU pcc | -Probabilistic
time behavior
-Non
determinism
* Mobil v -Probabilistic
‘ nTee ‘ ‘ ki3 I;ehl:wi:r TPCC timed

behavior

Y

-Probabilistic and
PNTCC | non-deterministic

behavior

PUJ2011 9/45

Outline

9 ntcc

ntcc

For specifying timed reactive systems

Concurrent processes communicating
via asynchronous channels

@ ccp + ideas from synchronous languages:
@ computation proceeds in discrete time units

@ Considers negative information, “an event did not happen”
@ and choice, “select one of a given set of actions”

PUJ 2011

11/45

The ntcc Model

STIMULUS

STORE

TIME UNIT 1

@ Receives a stimulus (i.e a constraint) from the environment.

PUS2011 12/45

The ntcc Model

RESTING
POINT

TIME UNIT 1

@ Receives a stimulus (i.e a constraint) from the environment.

© Computes a CCP process in the current time-unit and wait for
stability.

PUS2011 12/45

ntcc

The ntcc Model

RESULTING

/ STORE

RESTING
POINT

TIME UNIT 1

@ Receives a stimulus (i.e a constraint) from the environment.

© Computes a CCP process in the current time-unit and wait for
stability.
© Responds with the resulting store.

PUJ 2011

12/45

The ntcc Model

RESTING —_— - [,
POINT RESIDUAL
TIME UNIT 1 PROCESS TIME UNIT 2

@ Receives a stimulus (i.e a constraint) from the environment.

© Computes a CCP process in the current time-unit and wait for
stability.

© Responds with the resulting store.

© Executes the Residual process in the next time-unit.

* Note: Stores are not automatically transferred from a time unit to
the next one.

PUS2011 12/45

The ntcc calculus

Syntax
P,Q := skip|tell(c) | P || Q \then ¢; do P;| (localZ) P |
iesS
next P | unlesscnextP | * P|!P

@ tell(c): adds constraint c to the store in the current time interval.

@ P || Q is the concurrent execution of P and @

° Z when ¢; do P;: chooses some P; such that ¢; can be deduced
=
from the current store.

@ (local #;c) P: behaves like P but the information about variables
in 2 is local to P

The ntcc calculus

Syntax
P,Q:= skip|tell(c) | P || Q |> when; do P (local¥) P |
€S
next P | unlesscnextP | x P|!P

@ next P: executes P in the next time unit.

@ unless c next P: executes P in the next time unit if ¢ cannot be
entailed now.

@ x P: executes P eventually.
@ ! P: executes P now and in the future.

ntcc

Some derived constructs

@ Cells: assignable variables with persistent values

@gned next\ evaluated now

@ Procedure definition:
f@i)=r

restriction: recursive calls within a next construct

PUJ 2011

14 /45

An example

@ A system observing occurrence of events

@ At some beat, if the waited for event occurs, k actions spaced m
beats are launched,

@ if the event does not occur, actions are launched at the next beat

Simple example: launching a group of actions

Set_tempo = ! (when st = 0 do tell(st := tempo)
|| tell(beat) || tell(bec := be+ 1)
| when st > 0 do tell(st := st — 1))

Group(i, k,m) = ! when beat A bc = i do
when event do Launch(i,0,k, m)
| unless event next Launch(i + 1,0, k,m)
Launch(i,c,k,m) =
when beat do
when bc = i + ¢ x m do tell(launched)
| unless ¢ = k next Launch(i,c+ 1, k,m)
|| unless bc = i + ¢ x m next Launch(i, c, k, m)
|| unless beat next Launch(i,c, k,m)

System = Set_tempo || tell(st = 0) || tell(be = 0) || Group(3,2,2)

Formal semantics of ntcc

@ Operational semantics: reduction rules over configurations.

Rr (tell(c),d) — (skip,d A c)

@ Denotational semantics:
e What is observed of a process: the sequence of its output stores
(constraints) a = cics...

e Semantics of P: all sequences it outputs for any input

sp(P)={a"| P ool v for some a}

Proving properties of processes

@ View processes as formulae in linear temporal logic (LTL)

AB,...:=c|A>A| 2A| 3, A|0A|TA| A

@ Then, for a property F' to be verified of a process P, prove
PEprp F.

PUJ 2011

18 /45

Proving properties of processes

@ View processes as formulae in linear temporal logic (LTL)

AB,...:=c|A=>A| 2A| 3, A|0A|TA| A

@ Then, for a property F' to be verified of a process P, prove
P):LTL F.

There is a proof procedure to verify
properties expressed as LTL formulae

... but only for “locally independent processes”

PUJ 2011

18/45

ntcc proof system (partial)

tell(c) F ¢

Viel P+ A;
then ¢, do P; + \/ ci A A;) V/\ S
el el el

P-rA QFB
P||Q - AAB

PrFA
(localz) P + 3, A

PrEA
next P - OA

PUJ 2011

19/45

Outline

© Modeling examples: rhythm patterns

PUJ2011 20/45

Music example: rhythm patterns

Rhythmic patterns of Central African Republic (M. Chemillier).
Patterns: two-beat groups separated by 3-beat elements:
32222322222

Playing can be started at any position in the sequence:

ntcc example: the model

Beatp = tell(beat) || H next ‘tell(beat)
i€l;
Startp = tell(start) + Z next ‘(tell(start))
i€l
def 12
Check = !when start do next ““(tell(stop))

System = Beatp | Startp || Check

where I, = {3,5,7,9,11, 14, 16, 18, 20, 22}
and I, = {3,5,7,9,11}

Asymmetry property:

“cannot break the circle of the pattern in two equal parts”

PUJ 2011

22/45

ntcc example: proofs

Encoding '
[Beatp] = beatA /\ o'beat
el
[Startp] = startV \/ o'start
icls
[Check] = DOf(start=>o?stop)
[System] = [Beat] A[Start] A[Check]

Asymmetry property:
[System] = O(start A o't (beat A ostop))

PUJ 2011

23/45

ntcc example: a refinement

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property.

/ def

Beat tell(beat) || next > Z (tell(pos = i) || Beat_Auxz(i — 1))

i€l3
Beat_Auz(N) = tell(beat) ||
when N = 1 do next 3 Beat_Aux(0)
+when N # 1 do next *Beat_Aux(N — 1)

System’ =" Beat' || Start || Check

where I3 = {2,3,4,5,6}

PUJ2011 24/45

ntcc example: properties

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property (I3 = {2, 3,4, 5,6}).

Beat'

System

de

Beat_Aux(N

/ def

)

i€l3
C tell(beat) |

when N = 1 do next 3Beat_Aux(0)

+when N # 1 do next ?Beat_Aux(N —

Beat' || Start || Check

tell(beat) || next > Z (tell(pos = i) || Beat_Auxz(i — 1))

D

[System/] = O((pos = x) = O(stop A obeat))

PUJ 2011

25/45

Outline

@ Example: Dynamic Interactive Scores

PUJ2011 26/45

Dynamic interactive structures

Movable hierarchical structures containing interaction points

“mobility” is understood as in the w-calculus: communication of links
(private variables) between processes.

This cannot be expressed in ntcc

A ntcc with mobility: utcc

The utcc calculus (C. Olarte) replaces ntcc construct when ¢ do P
by (abs Z;c) P

(abs ; c) P: executes P[t/7] for each £ s.t. c[t/Z] can be deduced from
the current store.

Communicating private link a thru channel ch:

(locala) tell(ch(a)) || (abs &; ch(x)) P

Example: Dynamic Interactive Scores

Interactive Scores

(M. Desainte-Catherine)

Allen relations:

Relation

X<Y
Y=>X
XmY
YmiX
XoY
YoiX
XsY
YsiX
XdY
YdiX

Xty
YiX

X=Y

Illustration

~ |||~

Interpretation

X takes place before Y

X meets Y (i stands for inverse)

X overlaps with Y

Xstarts Y

X during Y

X finishes Y

Xisequalto Y

PUJ 2011

29/45

Interactive Scores

R

c Score relations:

E Aprecedes B A meets D
D overlaps B R contains C
E R contains D C contains A

@ An Interactive Score is a pair composed of temporal objects and
structural and temporal (Allen) relations.

@ Each object is comprised of a start-time, a duration, and a
procedure (operational meaning).

@ The idea: Dynamic changes in the hierarchy. E.g., if an interaction
does not occur, the composer may move the interval to a similar
musical context.

PUJ20T1 29/45

Dynamic Interactive Scores

Dynamic Reconfiguration:

@ Moving boxes.
@ Adding/deleting intervals.

PUJ 2011

30/45

The Model

d;

BoxOp = (abs id,d;mkbox(id, d)) (local s) tell(box(id, d, s))
|| (abs id; destroy(id))
(abs x, sup; in(x,id) A in(id, sup))
unless play(id) next tell(in(x, sup))
|| (abs z,y;before(r,y)) when 3,(in(x, z) A in(y, 2z)) do
unless play (y) next tell(bf(z,y))
|| (abs z,y; into(z,y)) unless play (z) next tell(in(z,y))
|| (abs z,y; out(z,y)) when in(z,y) do
unless play (z) next (abs z, in(y, z); tell(in(z, 2)))

The Model

d;

BoxOp = (abs id,d;mkbox(id, d)) (local s) tell(box(id, d, s))
|| (abs id; destroy(id))
(abs x, sup; in(x,id) A in(id, sup))
unless play(id) next tell(in(x, sup))
|| (abs z,y;before(r,y)) when 3,(in(x, z) A in(y, 2z)) do
unless play (y) next tell(bf(z,y))
|| (abs z,y; into(z,y)) unless play (z) next tell(in(z,y))
|| (abs z,y; out(z,y)) when in(z,y) do
unless play (z) next (abs z, in(y, z); tell(in(z, 2)))
Const = (abs z,y;in(z,y)) (abs dy, 5,3 box(z, dy, 52))
(abs dy, sy;box(y, dy, sy))
tell(s, < s;) || tell(dy + s, < dy + sy)
” (abs T, Y5 bf({L‘7 y)) (abs dy, Sz; bOX(QL dy, Sr))
(abs dy, sy;box(y,dy, sy)) tell(s, + dy < sy)

The Model(2)

Clock(t,v) = tell(t = v) || next Clock(t,v + 1)

Play(z,t) = whent > 1do tell(play(z)) |
unless ¢t < 1 next Play(z,t — 1)
Init(t) = (wait z;init(z)) do
(abs dg, $y; box(x, dy, 8z))
Clock(t,0) || tell(s, =t) ||
! (wait y, dy, sy; box(y, dy, sy) A sy < t) do Play(y, dy)

System = (localt) Init(t) ||! Constraints ||! BoxOp || UsrBozes

An Example

utce- Interactive scores

c d

]

I T 1T T T T T 1T 1T T T T T T1TT1T1TT1TT1TT1TT17T1T7T.l
12 3 45 6 7 8 9 101112131415 16 17 18 18 20 21 22 23 24

time

utce- Interactive scores

b i d
c |j

T T 11 1111 1r1rrrl
0111213 14 15 16 17 18 19 20 21 22 23 24

def
UsrBozxes =

tell(mkbox(a, 22)) ||
tell(mkbox(b, 12)) ||
tell(mkbox(c, 4)) ||
tell(mkbox(d,5))
tell(mkbox(e, 2)) ||
tell(into(b, a)) ||
tell(into(c, b)) ||
tell(into(d, b)) ||
tell(into(e,d)) ||
tell(before(c,d)) ||
whenever play(b) do
unless signal next
tell(out(d, b)) ||
tell(mkbox(f,2)) ||
tell(into(f,a)) ||
tell(before(b, f) ||
tell(before(f,d)))

PUJ 2011

33/45

Declarative Interpretation of utcc

@ Processes defined by the user may lead to inconsistent stores:
E.g. placing a box that exceeds the boundaries of the container.

@ The idea: Using the declarative view of ut cc processes as FLTL
formulae to verify the model.

Definition (utcc logic characterization)

[skip] = true [tell(c)] = c

[P Q] = [PIn]Q] [(abs g, ¢) P] = Vy(c = [P])
[(local % c) P] = 3Z(cA[P]) [next P] = o[P]
[unless c next P] = cV o[P] [' P] = 0O[P]

Verification of the Model

We can verify, for example,

° [[P]]): Oax,dz,sz,y,dy,sy (box(a:, dac» 3:1:) A box(y, dya Sy) A
in(x,y) A sy +dy > s, + dy): The end time of the box y is less
than the end time of the inner box z. l.e., the box y cannot contain
x.

@ [P] = Y2(3a,,s, (box(x,dy, s2) = Oplay(z)): All the musical
structures are eventually played.

@ [P] E OVx(34, s, (box(z,dy, ;) = play(x)): At some point all the
boxes are playing simultaneously.

Outline

e tools

PUJ2011 36/45

Tools: as in the “concurrency workbench”

Max, Antescofo

A
Y
— osc)
‘—’

‘ High level user interface ‘
I 3

Y

E user)

PUJ2011 37/45

Simulators

@ sntcc, written in Mozart-Oz
o Constraints: finite domains, reals (interval arithmetic)
@ ask, tell constructs: derived directly from Oz instructions
e Concurrency: Oz threads
o Interface with music tools: none. In progress: OSC
@ ntccrt (M. Toro), written in C++, with Gecode
o Constraints: finite domains, finite sets
o tell: directly in Gecode. ask: reified constraints.
e Concurrency: threads as Gecode propagators
o Interface with music tools: Max/MSP

(sntcc has been used in an application with 1,000, 000 time units)

tools

sntcc simulator
player(i) = when beat do (tell(note(N;)) + skip)
| next player(i + 1)
|| unless beat next player(i)

Player = fun lazy {$ I}
par(when(proc{$ V} V.current.beat =: 1 end
par(sum(tell(proc {$ V} V.current.note =: N.I end)
tell(proc {$ V} 1 =: 1 end))
next({Player 1+1})))
unless(proc{$ V} V.current.beat =: 1 end {Player I}))
end

Vars = var(beat: {FD.int 0#1} note: FD.decl)
Res = {SNTCC.simulate [{Player 0}] Vars 100}

Model checkers

Strategies
@ Translation of ntcc processes and LTL formula to Buchi automata
@ Use appropriate bisimulation relation

PUJ2011 40/45

Model checkers: Buchi automaton

Since each (restricted) ntcc process is equivalent to a Buchi
automaton, to prove P |~ F:

@ Encode LTL formula F as a ntcc process Rp
@ translate P and (Rp || P) to Buchi automata, B(P), B(Rr)
© check language equivalence of both automata

Problems:

works for ntcc “locally independent processes”

Only a restricted form of negation is admitted for F'

(current) complexity of translation algorithm is hyper-exponential

PUJ2011 41/45

Model checkers: Bisimulation

@ define a suitable bisimulation relation for ntcc (done)
@ define the property as a ntcc process (done),
© use an algorithm to verify bisimilarity

PUJ 2011

42/45

Outline

@ Future work

Future work

@ Model in ntcc some synchronization strategies for Antescofo.
Identify desirable properties.

@ Integrate interfaces (OSC) to music applications for the Oz ntcc
simulator

@ Develop efficient Buchi translations for “bounded” versions of ntcc
constructs

@ Devise an algorithm for the ntcc process bisimilarity

@ Develop a user “programming language” for the ntcc
simulator+verifier

PUJ2011 44/45

Thanks!

	Main Talk
	Motivation
	Motivation
	Outline
	ccp model
	ntcc
	Modeling examples: rhythm patterns
	Example: Dynamic Interactive Scores
	tools
	Future work

