
Modeling music processes using temporal
concurrent constraint programming

Camilo Rueda
Frank Valencia, Carlos Olarte

Ircam 2011

() PUJ 2011 1 / 45

Motivation

Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified

() PUJ 2011 2 / 45

Motivation

Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified

runnable specification declarative view

() PUJ 2011 2 / 45

Motivation

Motivation: the idea behind using ccp

Model music systems in such a way that their
properties can be easily expressed and verified

runnable specification declarative view

compact, expressive formal semantics

logic + proof procedure

() PUJ 2011 2 / 45

Motivation

What types of music systems?

Reactive: improvisation, interactive performance
Dynamic: evolving music structures

Those involving complex synchronization patterns

() PUJ 2011 3 / 45

Motivation

What constraints are used for

To communicate partial information
To synchronize concurrent processes

The type of constraints (constraint system) is a
parameter of the model

() PUJ 2011 4 / 45

Outline

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 5 / 45

ccp model

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 6 / 45

ccp model

Components of ccp

A constraint system
A set D of tokens
An entailment relation, A ` c

A constraint is some subset of D (closed by entailment)

A store of constraints
Control mechanisms,

tell(c)
ask c then P

Some extra logical operators

() PUJ 2011 7 / 45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

tell (Note > 64) ask (Note = 66) then Q

ask (Note < 68) then Rtell (Note < 67)

STORE

A B

D C

() PUJ 2011 8 / 45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

Note > 64

when (Note < 68) then Rtell (Note < 67)

STORE

B

D C

Blocked

Blocked

ask (Note = 66) then Q

() PUJ 2011 8 / 45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

64 < Note < 67

when (Note = 66) then Q

when (Note < 68) then R

STORE

B

C

Blocked

() PUJ 2011 8 / 45

ccp model

Computation in ccp

ccp’s store-as-constraint vs Von Neumann’s store-as-valuation

64 < Note < 67

when (Note = 66) then Q

 R

STORE

BBlocked

R is
launched

() PUJ 2011 8 / 45

ccp model

ccp a family of calculi

() PUJ 2011 9 / 45

ntcc

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 10 / 45

ntcc

ntcc

For specifying timed reactive systems

Concurrent processes communicating
via asynchronous channels

ccp + ideas from synchronous languages:
computation proceeds in discrete time units

Considers negative information, “an event did not happen”
and choice, “select one of a given set of actions”

() PUJ 2011 11 / 45

ntcc

The ntcc Model

1 Receives a stimulus (i.e a constraint) from the environment.

2 Computes a CCP process in the current time-unit and wait for
stability.

3 Responds with the resulting store.
4 Executes the Residual process in the next time-unit.
* Note: Stores are not automatically transferred from a time unit to

the next one.

() PUJ 2011 12 / 45

ntcc

The ntcc Model

1 Receives a stimulus (i.e a constraint) from the environment.
2 Computes a CCP process in the current time-unit and wait for

stability.

3 Responds with the resulting store.
4 Executes the Residual process in the next time-unit.
* Note: Stores are not automatically transferred from a time unit to

the next one.

() PUJ 2011 12 / 45

ntcc

The ntcc Model

1 Receives a stimulus (i.e a constraint) from the environment.
2 Computes a CCP process in the current time-unit and wait for

stability.
3 Responds with the resulting store.

4 Executes the Residual process in the next time-unit.
* Note: Stores are not automatically transferred from a time unit to

the next one.

() PUJ 2011 12 / 45

ntcc

The ntcc Model

1 Receives a stimulus (i.e a constraint) from the environment.
2 Computes a CCP process in the current time-unit and wait for

stability.
3 Responds with the resulting store.
4 Executes the Residual process in the next time-unit.
* Note: Stores are not automatically transferred from a time unit to

the next one.

() PUJ 2011 12 / 45

ntcc

The ntcc calculus

Syntax

P,Q := skip | tell(c) | P ‖ Q |
∑
i∈S

when ci do Pi| (local ~x)P |

nextP | unless c nextP | ? P | !P

tell(c): adds constraint c to the store in the current time interval.
P ‖ Q is the concurrent execution of P and Q∑
i∈S

when ci do Pi: chooses some Pi such that ci can be deduced

from the current store.
(local ~x; c)P : behaves like P but the information about variables
in ~x is local to P

() PUJ 2011 13 / 45

ntcc

The ntcc calculus

Syntax

P,Q := skip | tell(c) | P ‖ Q |
∑
i∈S

when ci do Pi| (local ~x)P |

nextP | unless c nextP | ? P | !P

nextP : executes P in the next time unit.
unless c nextP : executes P in the next time unit if c cannot be
entailed now.
?P : executes P eventually.
!P : executes P now and in the future.

() PUJ 2011 13 / 45

ntcc

Some derived constructs

Cells: assignable variables with persistent values
c := E(x)

assigned next evaluated now

Procedure definition:
f(i) = P

restriction: recursive calls within a next construct

() PUJ 2011 14 / 45

ntcc

An example

A system observing occurrence of events
At some beat, if the waited for event occurs, k actions spaced m
beats are launched,
if the event does not occur, actions are launched at the next beat

() PUJ 2011 15 / 45

ntcc

Simple example: launching a group of actions

Set tempo = ! (when st = 0 do tell(st := tempo)
‖ tell(beat) ‖ tell(bc := bc+ 1)

‖ when st > 0 do tell(st := st− 1))

Group(i, k,m) = !when beat ∧ bc = i do
when event do Launch(i, 0, k,m)
‖ unless event nextLaunch(i+ 1, 0, k,m)

Launch(i, c, k,m) =
when beat do

when bc = i+ c ∗m do tell(launched)
‖ unless c = k nextLaunch(i, c+ 1, k,m)

‖ unless bc = i+ c ∗m nextLaunch(i, c, k,m)
‖ unless beat nextLaunch(i, c, k,m)

System = Set tempo ‖ tell(st = 0) ‖ tell(bc = 0) ‖ Group(3, 2, 2)

() PUJ 2011 16 / 45

ntcc

Formal semantics of ntcc

Operational semantics: reduction rules over configurations.

RT 〈tell(c), d〉 −→ 〈skip, d ∧ c〉
Denotational semantics:

What is observed of a process: the sequence of its output stores
(constraints) α = c1c2...
Semantics of P : all sequences it outputs for any input

sp(P) = {α′ | P (α,α′)
====⇒ω for some α}

() PUJ 2011 17 / 45

ntcc

Proving properties of processes

View processes as formulae in linear temporal logic (LTL)

Then, for a property F to be verified of a process P , prove
P |=LTL F .

() PUJ 2011 18 / 45

ntcc

Proving properties of processes

View processes as formulae in linear temporal logic (LTL)

Then, for a property F to be verified of a process P , prove
P |=LTL F .

There is a proof procedure to verify
properties expressed as LTL formulae

... but only for “locally independent processes”

() PUJ 2011 18 / 45

ntcc

ntcc proof system (partial)

() PUJ 2011 19 / 45

Modeling examples: rhythm patterns

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 20 / 45

Modeling examples: rhythm patterns

Music example: rhythm patterns

Rhythmic patterns of Central African Republic (M. Chemillier).

Patterns: two-beat groups separated by 3-beat elements:

3 2 2 2 2 3 2 2 2 2 2

Playing can be started at any position in the sequence:

startstop 1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

start

stop

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

(a) (b)

() PUJ 2011 21 / 45

Modeling examples: rhythm patterns

ntcc example: the model

Beatp
def= tell(beat) ‖

∏
i∈Ii

next itell(beat)

Startp
def= tell(start) +

∑
i∈I2

next i(tell(start))

Check
def= !when start do next 12(tell(stop))

System
def= Beatp ‖ Startp ‖ Check

where I1 = {3, 5, 7, 9, 11, 14, 16, 18, 20, 22}
and I2 = {3, 5, 7, 9, 11}

Asymmetry property:

“cannot break the circle of the pattern in two equal parts”

() PUJ 2011 22 / 45

Modeling examples: rhythm patterns

ntcc example: proofs

Encoding

[[Beatp]] = beat ∧̇
·∧

i∈I1

◦ibeat

[[Startp]] = start ∨̇
·∨

i∈I2

◦istart

[[Check]] = �(start ⇒̇ ◦12stop)
[[System]] = [[Beat]] ∧̇[[Start]] ∧̇[[Check]]

Asymmetry property:
[[System]] |= ♦(start ∧̇ ◦11(beat ∧̇ ◦stop))

() PUJ 2011 23 / 45

Modeling examples: rhythm patterns

ntcc example: a refinement

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property.

Beat′
def= tell(beat) ‖ next 3

∑
i∈I3

(tell(pos = i) ‖ Beat Aux(i− 1))

Beat Aux(N) def= tell(beat) ‖
when N = 1 do next 3Beat Aux(0)

+when N 6= 1 do next 2Beat Aux(N − 1)
System′

def= Beat′ ‖ Start ‖ Check

where I3 = {2, 3, 4, 5, 6}

() PUJ 2011 24 / 45

Modeling examples: rhythm patterns

ntcc example: properties

Explore the relation between the placement of the 3 in the beat pattern
and the asymmetry property (I3 = {2, 3, 4, 5, 6}).

Beat′
def= tell(beat) ‖ next 3

∑
i∈I3

(tell(pos = i) ‖ Beat Aux(i− 1))

Beat Aux(N) def= tell(beat) ‖
when N = 1 do next 3Beat Aux(0)

+when N 6= 1 do next 2Beat Aux(N − 1)
System′

def= Beat′ ‖ Start ‖ Check

[[System′]] |= ♦((pos = x) ⇒̇♦(stop ∧̇ ◦beat))

() PUJ 2011 25 / 45

Example: Dynamic Interactive Scores

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 26 / 45

Example: Dynamic Interactive Scores

Dynamic interactive structures

Movable hierarchical structures containing interaction points

“mobility” is understood as in the π-calculus: communication of links
(private variables) between processes.

This cannot be expressed in ntcc

() PUJ 2011 27 / 45

Example: Dynamic Interactive Scores

A ntcc with mobility: utcc

The utcc calculus (C. Olarte) replaces ntcc construct when c do P
by (abs ~x; c)P

(abs ~x; c)P : executes P [~t/~x] for each ~t s.t. c[~t/~x] can be deduced from
the current store.

Communicating private link a thru channel ch:

(local a) tell(ch(a)) ‖ (abs ~x; ch(x))P

() PUJ 2011 28 / 45

Example: Dynamic Interactive Scores

Interactive Scores

(M. Desainte-Catherine)

A B

D

R

C

Allen relations:

() PUJ 2011 29 / 45

Example: Dynamic Interactive Scores

Interactive Scores

A B

D

R

C Score relations:
A precedes B A meets D
D overlaps B R contains C
R contains D C contains A

An Interactive Score is a pair composed of temporal objects and
structural and temporal (Allen) relations.
Each object is comprised of a start-time, a duration, and a
procedure (operational meaning).
The idea: Dynamic changes in the hierarchy. E.g., if an interaction
does not occur, the composer may move the interval to a similar
musical context.

() PUJ 2011 29 / 45

Example: Dynamic Interactive Scores

Dynamic Interactive Scores

A B

D

R

C

Dynamic Reconfiguration:

Moving boxes.
Adding/deleting intervals.

() PUJ 2011 30 / 45

Example: Dynamic Interactive Scores

The Model

BoxOp
def= (abs id, d;mkbox(id, d)) (local s) tell(box(id, d, s))

‖ (abs id;destroy(id))
(abs x, sup;in(x, id) ∧ in(id, sup))

unless play(id) next tell(in(x, sup))
‖ (abs x, y;before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do

unless play (y) next tell(bf(x, y))
‖ (abs x, y;into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y;out(x, y))when in(x, y) do

unless play (x) next (abs z,in(y, z); tell(in(x, z)))

Const
def= (abs x, y;in(x, y)) (abs dx, sx;box(x, dx, sx))

(abs dy, sy;box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y;bf(x, y)) (abs dx, sx;box(x, dx, sx))
(abs dy, sy;box(y, dy, sy)) tell(sx + dx ≤ sy)

() PUJ 2011 31 / 45

Example: Dynamic Interactive Scores

The Model

BoxOp
def= (abs id, d;mkbox(id, d)) (local s) tell(box(id, d, s))

‖ (abs id;destroy(id))
(abs x, sup;in(x, id) ∧ in(id, sup))

unless play(id) next tell(in(x, sup))
‖ (abs x, y;before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do

unless play (y) next tell(bf(x, y))
‖ (abs x, y;into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y;out(x, y))when in(x, y) do

unless play (x) next (abs z,in(y, z); tell(in(x, z)))

Const
def= (abs x, y;in(x, y)) (abs dx, sx;box(x, dx, sx))

(abs dy, sy;box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y;bf(x, y)) (abs dx, sx;box(x, dx, sx))
(abs dy, sy;box(y, dy, sy)) tell(sx + dx ≤ sy)

() PUJ 2011 31 / 45

Example: Dynamic Interactive Scores

The Model(2)

Clock(t, v) def= tell(t = v) ‖ nextClock(t, v + 1)

Play(x, t) def= when t ≥ 1 do tell(play(x)) ‖
unless t ≤ 1 nextPlay(x, t− 1)

Init(t) def= (wait x; init(x)) do
(abs dx, sx;box(x, dx, sx))
Clock(t, 0) ‖ tell(sx = t) ‖
! (wait y, dy, sy;box(y, dy, sy) ∧ sy ≤ t) do Play(y, dy)

System
def= (local t) Init(t) ‖!Constraints ‖!BoxOp ‖ UsrBoxes

() PUJ 2011 32 / 45

Example: Dynamic Interactive Scores

An Example

UsrBoxes
def
=

tell(mkbox(a, 22)) ‖
tell(mkbox(b, 12)) ‖
tell(mkbox(c, 4)) ‖
tell(mkbox(d, 5))
tell(mkbox(e, 2)) ‖
tell(into(b, a)) ‖
tell(into(c, b)) ‖
tell(into(d, b)) ‖
tell(into(e, d)) ‖
tell(before(c, d)) ‖
whenever play(b) do
unless signal next

tell(out(d, b)) ‖
tell(mkbox(f, 2)) ‖
tell(into(f, a)) ‖
tell(before(b, f) ‖
tell(before(f, d)))

() PUJ 2011 33 / 45

Example: Dynamic Interactive Scores

Declarative Interpretation of utcc

Processes defined by the user may lead to inconsistent stores:
E.g. placing a box that exceeds the boundaries of the container.
The idea: Using the declarative view of utcc processes as FLTL
formulae to verify the model.

Definition (utcc logic characterization)

[[skip]] = true [[tell(c)]] = c
[[P ‖ Q]] = [[P]] ∧ [[Q]] [[(abs ~y; c)P]] = ∀~y(c⇒ [[P]])
[[(local ~x; c)P]] = ∃~x(c ∧ [[P]]) [[nextP]] = ◦[[P]]
[[unless c nextP]] = c ∨ ◦[[P]] [[!P]] = �[[P]]

() PUJ 2011 34 / 45

Example: Dynamic Interactive Scores

Verification of the Model

We can verify, for example,

[[P]] |= ♦∃x,dx,sx,y,dy ,sy(box(x, dx, sx) ∧ box(y, dy, sy) ∧
in(x, y) ∧ sx + dx > sy + dy): The end time of the box y is less
than the end time of the inner box x. I.e., the box y cannot contain
x.
[[P]] |= ∀x(∃dx,sx(box(x, dx, sx)⇒ ♦play(x)): All the musical
structures are eventually played.
[[P]] |= ♦∀x(∃dx,sx(box(x, dx, sx)⇒ play(x)): At some point all the
boxes are playing simultaneously.

() PUJ 2011 35 / 45

tools

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 36 / 45

tools

Tools: as in the “concurrency workbench”

() PUJ 2011 37 / 45

tools

Simulators

sntcc, written in Mozart-Oz
Constraints: finite domains, reals (interval arithmetic)
ask, tell constructs: derived directly from Oz instructions
Concurrency: Oz threads
Interface with music tools: none. In progress: OSC

ntccrt (M. Toro), written in C++, with Gecode
Constraints: finite domains, finite sets
tell: directly in Gecode. ask: reified constraints.
Concurrency: threads as Gecode propagators
Interface with music tools: Max/MSP

(sntcc has been used in an application with 1, 000, 000 time units)

() PUJ 2011 38 / 45

tools

sntcc simulator
player(i) = when beat do (tell(note(Ni)) + skip)

‖ next player(i+ 1)
‖ unless beat next player(i)

Player = fun lazy {$ I}
par(when(proc{$ V} V.current.beat =: 1 end

par(sum(tell(proc {$ V} V.current.note =: N.I end)
tell(proc {$ V} 1 =: 1 end))

next({Player I+1})))
unless(proc{$ V} V.current.beat =: 1 end {Player I}))
end

Vars = var(beat: {FD.int 0#1} note: FD.decl)
Res = {SNTCC.simulate [{Player 0}] Vars 100}

() PUJ 2011 39 / 45

tools

Model checkers

Strategies
Translation of ntcc processes and LTL formula to Buchi automata
Use appropriate bisimulation relation

() PUJ 2011 40 / 45

tools

Model checkers: Buchi automaton

Since each (restricted) ntcc process is equivalent to a Buchi
automaton, to prove P |= F :

1 Encode LTL formula F as a ntcc process RF

2 translate P and (RF ‖ P) to Buchi automata, B(P), B(RF)
3 check language equivalence of both automata

Problems:
works for ntcc “locally independent processes”
Only a restricted form of negation is admitted for F
(current) complexity of translation algorithm is hyper-exponential

() PUJ 2011 41 / 45

tools

Model checkers: Bisimulation

1 define a suitable bisimulation relation for ntcc (done)
2 define the property as a ntcc process (done),
3 use an algorithm to verify bisimilarity

() PUJ 2011 42 / 45

Future work

Outline

1 ccp model

2 ntcc

3 Modeling examples: rhythm patterns

4 Example: Dynamic Interactive Scores

5 tools

6 Future work

() PUJ 2011 43 / 45

Future work

Future work

Model in ntcc some synchronization strategies for Antescofo.
Identify desirable properties.
Integrate interfaces (OSC) to music applications for the Oz ntcc
simulator
Develop efficient Buchi translations for “bounded” versions of ntcc
constructs
Devise an algorithm for the ntcc process bisimilarity
Develop a user “programming language” for the ntcc
simulator+verifier

() PUJ 2011 44 / 45

Future work

Thanks!

() PUJ 2011 45 / 45

	Main Talk
	Motivation
	Motivation
	Outline
	ccp model
	ntcc
	Modeling examples: rhythm patterns
	Example: Dynamic Interactive Scores
	tools
	Future work

