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Motivation: going beyond metric spaces

Question

Is there a need for metric spaces?

Discrete Exterior Calculus: algebraic differential calculus
Discrete (Alexandrov) topology
Set-valued analysis

What we want

Notions should easily be implementable on a computer
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An example of Discrete Exterior Calculus: CCMF
CCMF: Combinatorial Continuous Maximum Flow
Incidence matrix of a graph plays the role of a gradient

Continuous
MaxFlow

maxÐ→
F

Ð→
F st

s.t. ∇ ⋅ Ð→F = 0,

∣∣Ð→F ∣∣ ≤ g.

Combinatorial
formulation

max
F

Fst

s.t. AT F = 0,
∣AT ∣F 2 ≤ g2

MaxFlow,
GraphCuts

max
F

Fst

s.t. AT F = 0,
∣F ∣ ≤ g
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An example of Discrete Exterior Calculus: CCMF

Graph cuts result CCMF result

GC CCMF GC CCMF GC CCMF

C. Couprie et al.: Combinatorial Continuous Max flows. In SIAM journal on imaging sciences, 2011.
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An example of Discrete Exterior Calculus: CCMF

S

T

Unseeded
segmentation

Classification
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Continuity is different from differentiablity

Problem

We are going to look at a problem where continuity and
topology are keys.
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Trees and shapes: a schematic example
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Max-tree filtering [Salembier, ITIP, 2000]

Filtered image Filtered tree

Original image Tree representation

Max-tree 
construction

Tree
filtering

Image 
restitution
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Shapes of Interval-Valued Maps
Interpolation

Self-dual connected filters

tree + pruningÐÐÐÐÐÐÐÐ→

grain filters κ:
connected filters (preserve some level lines ∂[u ≤ λ ])
based on a single and self-dual tree, called the tree of
shapes.
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What’s stange with the continuous world

Processing either u or −u should give the same result.

Continuous definition:

connected components of:
upper level sets {x ;u(x) ≥ λ}λ∈R
and lower level sets {x ;u(x) < λ}λ∈R.

only a “quasi-self-dual” tree of shapes...
and some topological inconsistencies...
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Some topological inconsistencies

Consider these examples:

1 0

0 1

Tree of Shapes?

1 0 0 0 1 2

1 1 1 1 1 1 1 1

2 2

1 0

1 0

1 0

0 1

1 2

1 1

1 2

2 2

1 1 1 1 1 1 1 1

1

1

1

1

1

Tree of Shapes?
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Some topological inconsistencies

Consider these examples:

1 0

0 1

1 0

0 1

two possible trees!

0 2

1

1 1

a non symmetrical tree!
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Set-valued continuity on discrete spaces
Interval-valued maps
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Tree filtering, or why discrete space?

Image
f

Tree
construction

Tree

T

Image
restitutionImage

f'

Tree
filtering

Tree

T '
Works well with increasing attributes X ⊆ Y ⇒ A(X) ≤ A(Y )
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Why discrete spaces: filtering in shape-spaces
[Xu & Géraud & Najman, ICPR, 2012]
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Why discrete spaces: filtering in shape-spaces
[Xu & Géraud & Najman, ICPR, 2012]
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Filtering in shape-spaces: more details

What’s T ?
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Three local minima.
Node N : connected component,
Attribute A: interesting feature,
Parenthood: inclusion relationship between N .
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Filtering in shape-spaces: more details

What’s T T ?
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Min-tree of T .
Node NN : a set of neighboring connected components,
New attribute AA: new features based on A or image,
Parenthood: inclusion relationship between NN .
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Filtering in shape-spaces: more details

What’s T T ′?
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Pruning of T T .

T T ′: pruned T T based on AA.
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Filtering in shape-spaces: more details

What’s T ′?
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Restituted tree from T T ′.

T ′: removal of N represented by pruned NN .
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Interpolation

Some illustrations and applications
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Set-valued continuity on discrete spaces
Interval-valued maps

Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Outline

1 Introduction

2 Set-valued continuity on discrete spaces
Topology reminder
Set-valued maps

3 Interval-valued maps
Level sets and extrema

4 Shapes of Interval-Valued Maps

5 Interpolation

6 Conclusion

L. Najman Spatialité et Imagerie
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Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Topological space (Reminder)

A set X is a topological space if

1 The intersection of any number and the union of any finite
number of closed sets is a closed set.

2 The whole set X and the empty set ∅ are closed.

Closure of M ⊂ X : clX (M) = ⋂{C ∣ C ⊂ X ,C closed,M ⊂ C}
A set M is degenerate if it contains just one point.
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Set-valued continuity on discrete spaces
Interval-valued maps

Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Discrete spaces

Definition

A topological space X is said to be a T0-space if every two
distinct degenerate subsets of X have distinct closures in
X.
A T0-space is called a discrete space if the union of an
arbitrary number of closed sets of the space is closed.
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Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

The Khalimsky grid is a discrete space

H1
0 = {{x} ∣ x ∈ Z}

H1
1 = {{x ,x + 1} ∣ x ∈ Z}

H1 = H1
0 ∪H1

1

Hn = {h1 × . . . × hn,∀i ∈ [1,n],hi ∈ H1}
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Topology reminder
Set-valued maps

The Khalimsky grid is a discrete space

H1
0 = {{x} ∣ x ∈ Z}

H1
1 = {{x ,x + 1} ∣ x ∈ Z}

H1 = H1
0 ∪H1

1

Hn = {h1 × . . . × hn,∀i ∈ [1,n],hi ∈ H1}

f

g

h h

f

g

Cubical complex... ...and Khalimsky’s grid.
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Topology reminder
Set-valued maps

Open sets and stars

Star of M ⊂ X : stX (M) = ⋂{O ∣ O ⊂ X ,O open,M ⊂ O}.

If M = {x} is degenerate, we write stX (x) = stX ({x}).
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Set-valued continuity on discrete spaces
Interval-valued maps

Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Topological operators

E = { f , g, h } star: stX (E) closure: clX (E)
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Interval-valued maps

Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Connected sets

Definition

A set is said to be connected if it is not the union of two
disjoint nonempty closed sets.
A connected component of X is a connected subset of X
that is maximal for the connectivy property.
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Interpolation

Topology reminder
Set-valued maps

Why set-valued analysis?
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Topology reminder
Set-valued maps

Why set-valued analysis?
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Shapes of Interval-Valued Maps
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Topology reminder
Set-valued maps

Upper semicontinuity

In the sequel, X and Y denotes two discrete spaces.

Definition

A set-valued map F ∶ X ↝ Y is called upper semicontinuous at
x ∈ Dom(F) (USC at x) if and only if for all y ∈ stX (x),
F(y) ⊆ stY (F(x)).

X

Y

x
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Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Inverse image and core

Inverse image: F⊕(M) = {x ∈ X ;F(x) ∩M ≠ ∅}.
Core: F⊖(M) = {x ∈ X ;F(x) ⊆ M}.

Property

F is USC if and only if F⊖stY = stX F⊖.
F is USC if and only if F⊕clY = clX F⊕.
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Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

A single unbroken curve with no “jumps”

Property

Let F be a USC set-valued map such that, for all x ∈ X, F(x) is
a closed (resp. open) connected set.
Then, for any connected set M, F(M) is a closed (resp. open)
connected set.
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Shapes of Interval-Valued Maps
Interpolation

Topology reminder
Set-valued maps

Quasi-simple maps

Definition

A USC set-valued map F is a closed (resp. open) quasi-simple
map if for all x ∈ X, F(x) is a closed (resp. open) connected
set, and if furthermore, for any {x} = stX (x) ∈ X, F(x) is
degenerate.

X

Y
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Interpolation

Topology reminder
Set-valued maps

Simple maps

Definition

A quasi-simple map F is simple if it is the smallest of all
quasi-simple maps with the same data on open points, i.e., a
quasi-simple map F1 is simple if for any quasi-simple map F2
such that for any {x} = stX (x) ∈ X, F1(x) = F2(x), then, for all
x ∈ X, F1(x) ⊆ F2(x).
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Level sets and extrema

Intervals

An interval is a connected subset of H1.
Open sets of H1 ≡ 1

2Z ∖Z
Closed sets of H1 ≡ Z

We thus have
. . . < {0} < {0,1} < {1} < . . .,
λ + 1

2 (where λ ∈ H1),

max or min on any subset of H1

Definition

A set-valued map F is an interval-valued map if the images of
F are intervals.
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Shapes of Interval-Valued Maps
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Level sets and extrema

Intermediate value theorem

Theorem (Intermediate value theorem)

Let F be an USC interval-valued map from X to H1. If x and y
are two points of X and λ0 is a point of H1 lying between F(x)
and F(y)
(i.e., λ0 ∈ [min{µ;µ ∈ F(x) ∪ F(y)},max{µ;µ ∈ F(x) ∪ F(y)}]),
then there exists z ∈ X such that λ ∈ F(z).
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Level sets and extrema

Plain maps

Definition

A closed-valued, interval-valued simple map F from X to H1,
with dom(F) = X is called a plain map on X.

1-1-2 {1,2} 2{0,1}0

0

1

-1
{-1,0}{-2,-1}

{0,1}

{-1,0}
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Level sets and extrema

Strict level sets

In the sequel, F denotes an interval-valued map from X to H1

and λ ∈ Z.

[F ⊲ λ] = F⊖(] −∞, λ[) = { x ∈ X ∣ ∀µ ∈ F(x);µ < λ }
[F ⊳ λ] = F⊖(]λ,+∞[)

The upper and lower level sets of a plain map are open.
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Level sets and extrema

Extrema

Definition (Extrema)

A connected component of [F ⊲ λ] is a minimum of F if it
does not contain any other connected component of
[F ⊲ µ] for any µ < λ.
A connected component of [F ⊳ λ] is a maximum of F if it
does not contain any other connected component of
[F ⊳ µ] for any µ > λ.
An extremum of F is either a maximum or a minimum of F .
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Level sets and extrema

Flatness

A set M is flat for F if for all x ∈ M, F(x) = F(M).
F(M) is not always a degenerate set
An extremum of a set-valued map is not always flat.

X

Y

x

The point x is both a minimum and a maximum.
Although this extremum is flat, it is not degenerate.

L. Najman Spatialité et Imagerie
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Level sets and extrema

Plain maps and extrema

Lemma

The extrema of a plain map F are flat open sets.
Furthermore, for any extrema M of F , F(M) is degenerate.

Property

Let F be a plain map on X that is not constant.
Then the extrema of F are separated.
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Interpolation

Definition

Let M ⊆ X. We call cavities of M in X the components of X ∖M.
Let p∞ ∈ X a reference point.
We call saturation of M with respect to p∞ the set

sat(M,p∞) = X ∖ CC(X ∖M,p∞).

For any λ ∈ H1, we call quasi-shape of x the set:

Sλ(F ,x) = sat(CC([F /≡ λ],x),p∞)

Remark

We have
either Sλ(F ,x) = sat(CC([F ⊳ λ],x),p∞)

or Sλ(F ,x) = sat(CC([F ⊲ λ],x),p∞).
L. Najman Spatialité et Imagerie
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Shapes of Interval-Valued Maps
Interpolation

Tree of shapes ?

S(F ,x) = {Sλ(F ,x) }λ ∖ ∅.

Definition

S(F) = ∪x∈XS(F ,x)

Question

Is S(F) a tree?
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A plain map is not enough!
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A combinatorial definition of surface

Definition (n-surface)

A discrete space Y is a 0-surface if Y is made of exactly
two points x and y such that x /∈ stY (y) and y /∈ stY (x).
A discrete space Y is a n-surface (n > 0)

if Y is connected and
if, for any x ∈ Y, clY (x) ∪ stY (x) ∖ {x} is a (n − 1)-surface.
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Shapes of Interval-Valued Maps
Interpolation

Well-composedness

Definition (Well-composed set and map)

A connected set M is well-composed if
∂M = clX (M) ∩ clX (X ∖M) is a n-surface.
A set N is well-composed if any connected component of
∂N is a n-surface.
A plain map F is well-composed if if for any λ ∈ H1, both
[F ⊲ λ] and [F ⊳ λ] are well-composed.
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Shapes of Interval-Valued Maps
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Tree of quasi-shapes

Theorem

If F is a well-composed plain map of a unicoherent finite
discrete space, then any two quasi-shapes are either disjoint or
nested. Hence S(F) is a tree.

L. Najman Spatialité et Imagerie
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Tree of shapes

Definition

We call shape of x the smallest non-empty quasi-shape of x
defined by:

S(F ,x) = ⋂
S∈S(F ,x)

S

We denote by S(F) the set formed by all the shapes of x for all
x ∈ X

Corollary

If F is a well-composed plain map,
the set S(F) is a tree (called the tree of shapes).
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Proposed Image Immersion
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ac m

b

bd

c cd d
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Shapes of Interval-Valued Maps
Interpolation

Max/Min interpolation

Property

Any plain map obtained thanks to the max- or the
min-interpolation, whatever n (the dimension of the space Z n),
is well-composed.

Remark

Such interpolations are not self-dual.
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Set-valued continuity on discrete spaces
Interval-valued maps

Shapes of Interval-Valued Maps
Interpolation

An example of Min-interpolation
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Median interpolation

Property

The median interpolation of a function defined on Z2 leads to a
self-dual plain map.

Conjecture

With the suitable space subdivision, the median interpolation
leads to a self-dual map whatever the dimension of the space.
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An example of Median-interpolation
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An example of Mean-interpolation: it does not work!
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Result

We retrieve continuity properties in discrete spaces.
From that, we can derive a quasi-linear algorithm for the
tree of shapes, whatever the dimension of the space.
We propose a true self-dual interpretation of discrete data.
Many applications follow.
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Thank for
your

attention !

Pink: http://pinkhq.com
Olena: http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena
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