

Morphologie mathématique et traitement de la spatialité pour l'analyse des images

Séminaire MaMux - IRCAM - 5 avril 2013

Laurent Najman¹

Principaux contributeurs: Thierry Géraud² et Yongchao Xu^{1,2}

Labex Bézout ¹Université Paris-Est LIGM A3SI ESIEE Paris, France ²EPITA Research and Development Laboratory (LRDE)

L. Najman

Spatialité et Imagerie

Motivation: going beyond metric spaces

du discret au continu

L. Najman Spatialité et Imagerie

Motivation: going beyond metric spaces

du continu au discret

L. Najman Spatialité et Imagerie

Motivation: going beyond metric spaces

Question

Is there a need for metric spaces?

- Discrete Exterior Calculus: algebraic differential calculus
- Discrete (Alexandrov) topology
- Set-valued analysis

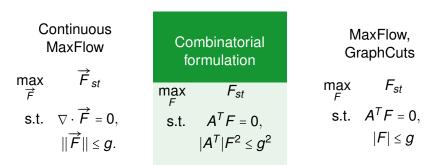
What we want

Notions should easily be implementable on a computer

크

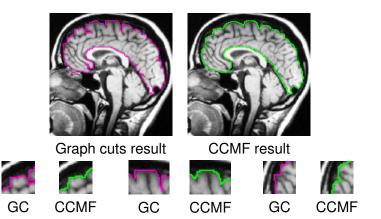
An example of Discrete Exterior Calculus: CCMF

- CCMF: Combinatorial Continuous Maximum Flow
- Incidence matrix of a graph plays the role of a gradient



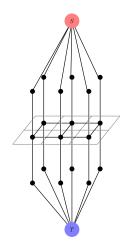
・ 同 ト ・ ヨ ト ・ ヨ ト

An example of Discrete Exterior Calculus: CCMF



C. Couprie et al.: Combinatorial Continuous Max flows. In SIAM journal on imaging sciences, 2011.

An example of Discrete Exterior Calculus: CCMF



Unseeded segmentation

Classification

ヘロア ヘヨア ヘヨア ヘ

Continuity is different from differentiablity

Problem

We are going to look at a problem where continuity and topology are keys.

L. Najman Spatialité et Imagerie

・ロト ・四ト ・ヨト ・ヨト

1

- Topology reminder
- Set-valued maps
- 3

Interval-valued maps

- Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Outline

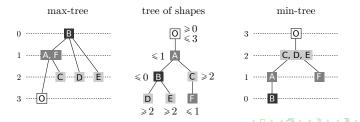
- Set-valued continuity on discrete spaces
 - Topology reminder
 - Set-valued maps
- Interval-valued maps
 Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation
- 6 Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Trees and shapes: a schematic example

O C F

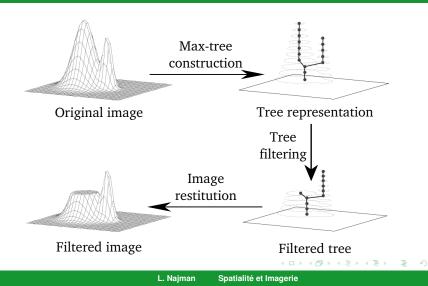
image



L. Najman Spatia

Spatialité et Imagerie

Max-tree filtering [Salembier, ITIP, 2000]



Self-dual connected filters

・ コ ト ・ 日 ト ・ 回 ト ・

tree + pruning

grain filters κ :

- connected filters (preserve some level lines $\partial [u \leq \lambda]$)
- based on a single and self-dual tree, called the tree of shapes.

What's stange with the continuous world

Processing either u or -u should give the same result.

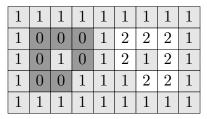
Continuous definition:

connected components of:

- upper level sets $\{x; u(x) \ge \lambda\}_{\lambda \in \mathbb{R}}$
- and lower level sets $\{x; u(x) < \lambda\}_{\lambda \in \mathbb{R}}$.
- only a "<u>quasi</u>-self-dual" tree of shapes...
- and some topological inconsistencies...

Some topological inconsistencies

Consider these examples:



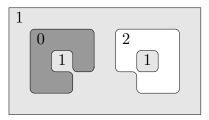
Tree of Shapes?

Tree of Shapes?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

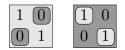
Some topological inconsistencies

Consider these examples:



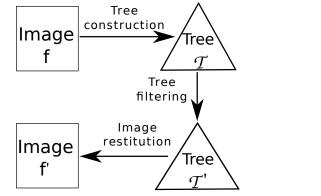
a non symmetrical tree!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



two possible trees!

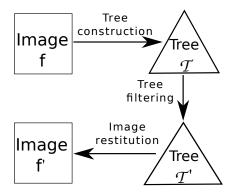
Tree filtering, or why discrete space?



Works well with increasing attributes $X \subseteq Y \Rightarrow \mathcal{A}(X) \leq \mathcal{A}(Y)$

Why discrete spaces: filtering in shape-spaces

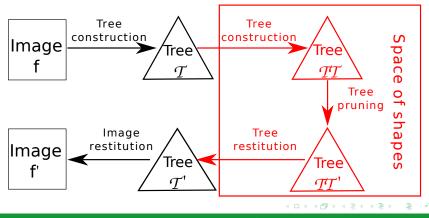
[Xu & Géraud & Najman, ICPR, 2012]



・ロト ・ 母 ト ・ ヨ ト ・ ヨ

Why discrete spaces: filtering in shape-spaces

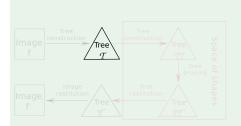
[Xu & Géraud & Najman, ICPR, 2012]

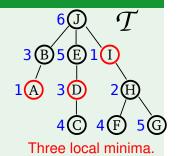


L. Najman Spatialité et Imagerie

Filtering in shape-spaces: more details

What's T?





- Node *N*: connected component,
- Attribute *A*: interesting feature,
- Parenthood: inclusion relationship between \mathcal{N} .

Filtering in shape-spaces: more details

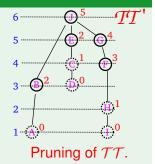
What's TT?

Min-tree of \mathcal{T} .

- Node *NN*: a set of neighboring connected components,
- New attribute AA: new features based on A or image,
- Parenthood: inclusion relationship between $\mathcal{N}\mathcal{N}$.

Filtering in shape-spaces: more details

What's TT'?



E

TT': pruned TT based on AA.

Filtering in shape-spaces: more details

What's \mathcal{T}' ?



Restituted tree from TT'.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E

 \mathcal{T}' : removal of \mathcal{N} represented by pruned $\mathcal{N}\mathcal{N}$.

Some illustrations and applications

(a) Input image.

(b) Shaping 1.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

(a) Input image

(c) Chan-Vese

(f) Our method

(d) Ballester, $\lambda = 2k$ (e) Ballester, $\lambda = 3k$

L. Najman Spatialité et Imagerie

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

Outline

2 Set-valued continuity on discrete spaces

- Topology reminder
- Set-valued maps
- Interval-valued maps
 Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation
- 6 Conclusion

L. Najman Spatialité et Imagerie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topology reminder Set-valued maps

Topological space (Reminder)

A set X is a topological space if

- The intersection of any number and the union of any finite number of closed sets is a closed set.
- **2** The whole set X and the empty set \emptyset are closed.
 - Closure of $M \subset X$: $cl_X(M) = \bigcap \{ C \mid C \subset X, C \text{ closed}, M \subset C \}$
 - A set *M* is <u>degenerate</u> if it contains just one point.

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

Discrete spaces

Definition

- A topological space X is said to be a <u>T₀-space</u> if every two distinct degenerate subsets of X have distinct closures in X.
- A T₀-space is called a <u>discrete space</u> if the union of an arbitrary number of closed sets of the space is closed.

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

The Khalimsky grid is a discrete space

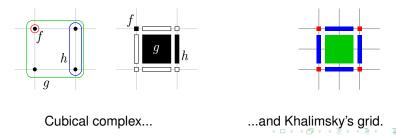
$$\begin{array}{lll} H_0^1 &=& \{\{x\} \mid x \in \mathbb{Z}\} \\ H_1^1 &=& \{\{x, x+1\} \mid x \in \mathbb{Z}\} \\ H^1 &=& H_0^1 \cup H_1^1 \\ H^n &=& \{h_1 \times \ldots \times h_n, \forall i \in [1, n], h_i \in H^1\} \end{array}$$

L. Najman Spatialité et Imagerie

크

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

The Khalimsky grid is a discrete space



Topology reminder Set-valued maps

Open sets and stars

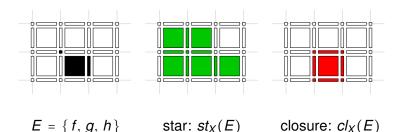
Star of $M \subset X$: $st_X(M) = \bigcap \{ O \mid O \subset X, O \text{ open}, M \subset O \}$.

If $M = \{x\}$ is <u>degenerate</u>, we write $st_X(x) = st_X(\{x\})$.

<ロト <部ト <きト <きト

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

Topological operators



Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

Connected sets

Definition

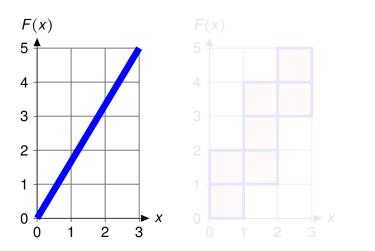
- A set is said to be <u>connected</u> if it is not the union of two disjoint nonempty closed sets.
- A <u>connected component</u> of X is a connected subset of X that is maximal for the connectivy property.

L. Najman Spatialité et Imagerie

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Interval-valued maps Shapes of Interval-Valued Maps Interpolatior Topology reminder Set-valued maps

Why set-valued analysis?



L. Najman Spatialité et Imagerie

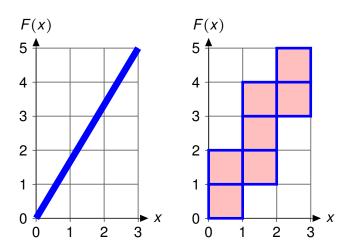
・ロト ・日下・ ・日下

ъ

E

Interval-valued maps Shapes of Interval-Valued Maps Interpolatior Topology reminde Set-valued maps

Why set-valued analysis?



L. Najman Spatialité et Imagerie

<ロト <部ト <きト < き

E

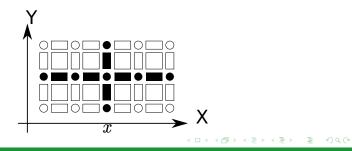
Topology reminder Set-valued maps

Upper semicontinuity

In the sequel, X and Y denotes two discrete spaces.

Definition

A set-valued map $F : X \rightsquigarrow Y$ is called <u>upper semicontinuous at</u> $\underline{x \in Dom(F)}$ (USC at x) if and only if for all $y \in st_X(x)$, $F(y) \subseteq st_Y(F(x))$.



L. Najman Spatialité et Imagerie

Topology reminder Set-valued maps

Inverse image and core

Inverse image: $F^{\oplus}(M) = \{x \in X; F(x) \cap M \neq \emptyset\}.$

• Core:
$$F^{\ominus}(M) = \{x \in X; F(x) \subseteq M\}.$$

Property

- *F* is USC if and only if $F^{\ominus}st_Y = st_X F^{\ominus}$.
- F is USC if and only if $F^{\oplus}cl_Y = cl_X F^{\oplus}$.

Set-valued continuity on discrete spaces

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminder Set-valued maps

A single unbroken curve with no "jumps"

Property

Let F be a USC set-valued map such that, for all $x \in X$, F(x) is a closed (<u>resp.</u> open) connected set. Then, for any connected set M, F(M) is a closed (<u>resp.</u> open) connected set.

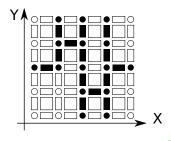
<ロト < 団 > < 団 > < 団 > < 団 >

Topology reminder Set-valued maps

Quasi-simple maps

Definition

A USC set-valued map F is a <u>closed (resp. open) quasi-simple</u> <u>map</u> if for all $x \in X$, F(x) is a closed (resp. open) connected set, and if furthermore, for any $\{x\} = st_X(x) \in X$, F(x) is degenerate.



Set-valued continuity on discrete spaces

Interval-valued maps Shapes of Interval-Valued Maps Interpolation Topology reminde Set-valued maps

Simple maps

Definition

A quasi-simple map F is <u>simple</u> if it is the smallest of all quasi-simple maps with the same data on open points, i.e., a quasi-simple map F_1 is simple if for any quasi-simple map F_2 such that for any $\{x\} = st_X(x) \in X$, $F_1(x) = F_2(x)$, then, for all $x \in X$, $F_1(x) \subseteq F_2(x)$.

<ロト < 団 > < 団 > < 団 > < 団 >

Outline

- 2 Set-valued continuity on discrete spaces
 - Topology reminder
 - Set-valued maps
- 3

Interval-valued maps

- Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation
- 6 Conclusion

L. Najman Spatialité et Imagerie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Level sets and extrema

Intervals

An interval is a connected subset of H¹.

- Open sets of $H^1 \equiv \frac{1}{2}\mathbb{Z} \setminus \mathbb{Z}$
- Closed sets of $H^1 \equiv \mathbb{Z}$

We thus have

$$\blacksquare \ldots < \{0\} < \{0,1\} < \{1\} < \ldots,$$

•
$$\lambda + \frac{1}{2}$$
 (where $\lambda \in H^1$),

max or min on any subset of H¹

Definition

A set-valued map F is an <u>interval-valued</u> map if the images of F are intervals.

Level sets and extrema

Intermediate value theorem

Theorem (Intermediate value theorem)

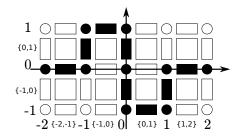
Let F be an USC interval-valued map from X to H¹. If x and y are two points of X and λ_0 is a point of H¹ lying between F(x)and F(y)(i.e., $\lambda_0 \in [\min\{\mu; \mu \in F(x) \cup F(y)\}, \max\{\mu; \mu \in F(x) \cup F(y)\}])$, then there exists $z \in X$ such that $\lambda \in F(z)$.

Level sets and extrema

Plain maps

Definition

A closed-valued, interval-valued simple map F from X to H^1 , with dom(F) = X is called a <u>plain map</u> on X.



Level sets and extrema

Strict level sets

In the sequel, *F* denotes an interval-valued map from *X* to H^1 and $\lambda \in \mathbb{Z}$.

$$\begin{bmatrix} F \triangleleft \lambda \end{bmatrix} = F^{\ominus}(] - \infty, \lambda[) = \{ x \in X \mid \forall \mu \in F(x); \mu < \lambda \}$$

$$\begin{bmatrix} F \triangleright \lambda \end{bmatrix} = F^{\ominus}(]\lambda, +\infty[)$$

The upper and lower level sets of a plain map are open.

・ロト ・ 日 ・ ・ ヨ ・

Level sets and extrema

Extrema

Definition (Extrema)

- A connected component of [F ⊲ λ] is a <u>minimum</u> of F if it does not contain any other connected component of [F ⊲ μ] for any μ < λ.</p>
- A connected component of [F ▷ λ] is a <u>maximum</u> of F if it does not contain any other connected component of [F ▷ μ] for any μ > λ.
- An <u>extremum</u> of F is either a maximum or a minimum of F.

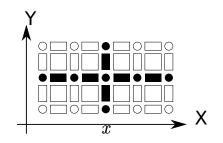
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Level sets and extrema

Flatness

A set *M* is flat for *F* if for all $x \in M$, F(x) = F(M).

- F(M) is not always a degenerate set
- An extremum of a set-valued map is not always flat.



The point x is both a minimum and a maximum. Although this extremum is flat, it is not degenerate.

Level sets and extrema

Plain maps and extrema

Lemma

The extrema of a plain map F are flat open sets. Furthermore, for any extrema M of F, F(M) is degenerate.

Property

Let F be a plain map on X that is not constant. Then the extrema of F are separated.

Outline

- Set-valued continuity on discrete spaces
 - Topology reminder
 - Set-valued maps
- Interval-valued maps
 Level sets and extrema
- 4 Shapes of Interval-Valued Maps
 - 5 Interpolation
 - 6 Conclusion

L. Najman Spatialité et Imagerie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

Let $M \subseteq X$. We call <u>cavities</u> of M in X the components of $X \setminus M$. Let $p_{\infty} \in X$ a reference point. We call <u>saturation</u> of M with respect to p_{∞} the set

 $sat(M, p_{\infty}) = X \setminus CC(X \setminus M, p_{\infty}).$

For any $\lambda \in H^1$, we call <u>quasi-shape</u> of x the set:

$$S_{\lambda}(F, x) = sat(\mathcal{CC}([F \neq \lambda], x), p_{\infty})$$

Remark

We have

e

ither
$$S_{\lambda}(F, x) = sat(\mathcal{CC}([F \triangleright \lambda], x), p_{\infty})$$

or $S_{\lambda}(F, x) = sat(\mathcal{CC}([F \triangleleft \lambda], x), p_{\infty}).$

Tree of shapes ?

$$\mathfrak{S}(F,x) = \{ S_{\lambda}(F,x) \}_{\lambda} \setminus \emptyset.$$

Definition

$$\mathfrak{S}(F) = \cup_{x \in X} \mathfrak{S}(F, x)$$

Question

Is $\mathfrak{S}(F)$ a tree?

L. Najman Spatialité et Imagerie

æ

A plain map is not enough!

			<u>∍ 24 ⊚</u> ≅ 24 ₹		
≉ 24	∜ 24	0	0-240-2400	0	24 🕫
≉ 24		ŝ 6	© 0-8 © 8 E	0	24 🕫
∜ 24		50	● 0-8 @ ● 0 ₽	24 🛛	24 ষ
∜ 24	∜ 24	∜ 24	8 0-24 6 R 24 R	24 ₹	24 🕫

 $[F \triangleleft 7] - [F \triangleright 5] - [F \triangleright 5]$

L. Najman Spatialité et Imagerie

A combinatorial definition of surface

Definition (n-surface)

- A discrete space Y is a 0-surface if Y is made of exactly two points x and y such that x ∉ st_Y(y) and y ∉ st_Y(x).
- A discrete space Y is a n-surface (n > 0)
 - if Y is connected and
 - if, for any $x \in Y$, $cl_Y(x) \cup st_Y(x) \setminus \{x\}$ is a (n-1)-surface.

Well-composedness

Definition (Well-composed set and map)

- A connected set M is <u>well-composed</u> if $\partial M = cl_X(M) \cap cl_X(X \setminus M)$ is a n-surface.
- A set N is <u>well-composed</u> if any connected component of ∂N is a n-surface.
- A plain map F is <u>well-composed</u> if if for any $\lambda \in H^1$, both $[F \triangleleft \lambda]$ and $[F \triangleright \lambda]$ are well-composed.

Tree of quasi-shapes

Theorem

If F is a well-composed plain map of a unicoherent finite discrete space, then any two quasi-shapes are either disjoint or nested. Hence $\mathfrak{S}(F)$ is a tree.

L. Najman Spatialité et Imagerie

Tree of shapes

Definition

We call <u>shape</u> of x the smallest non-empty quasi-shape of x defined by:

$$S(F,x) = \bigcap_{S \in \mathfrak{S}(F,x)} S$$

We denote by S(F) the set formed by all the shapes of x for all $x \in X$

Corollary

If F is a well-composed plain map, the set S(F) is a tree (called the <u>tree of shapes</u>).

・ コ ト ・ 日 ト ・ 回 ト ・

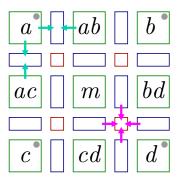
Outline

- 2 Set-valued continuity on discrete spaces
 - Topology reminder
 - Set-valued maps
- Interval-valued maps
 Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation
 - 6 Conclusion

L. Najman Spatialité et Imagerie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposed Image Immersion



æ

L. Najman Spatialité et Imagerie

Max/Min interpolation

Property

Any plain map obtained thanks to the max- or the min-interpolation, whatever n (the dimension of the space Z^n), is well-composed.

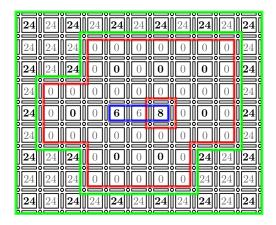
Remark

Such interpolations are not self-dual.

L. Najman Spatialité et Imagerie

<ロト < 団 > < 団 > < 団 > < 団 >

An example of Min-interpolation



 $[\boldsymbol{F} \triangleleft \boldsymbol{7}] - [\boldsymbol{F} \triangleright \boldsymbol{5}] - [\boldsymbol{F} \triangleright \boldsymbol{5}]$

L. Najman Spatialité et Imagerie

Median interpolation

Property

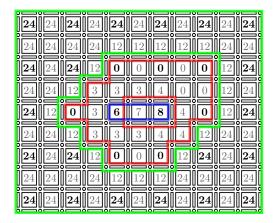
The median interpolation of a function defined on \mathbb{Z}^2 leads to a self-dual plain map.

Conjecture

With the suitable space subdivision, the median interpolation leads to a self-dual map whatever the dimension of the space.

L. Najman Spatialité et Imagerie

An example of Median-interpolation

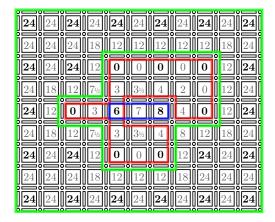


 $[\boldsymbol{F} \triangleleft \boldsymbol{7}] - [\boldsymbol{F} \triangleright \boldsymbol{5}] - [\boldsymbol{F} \triangleright \boldsymbol{5}]$

L. Najman Spatia

Spatialité et Imagerie

An example of Mean-interpolation: it does not work!



 $[F \triangleleft 7] - [F \triangleright 5] - [F \triangleright 5]$

L. Najman Spatial

Spatialité et Imagerie

Outline

- 2 Set-valued continuity on discrete spaces
 - Topology reminder
 - Set-valued maps
- Interval-valued maps
 Level sets and extrema
- 4 Shapes of Interval-Valued Maps
- 5 Interpolation
- 6 Conclusion

L. Najman Spatialité et Imagerie

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Result

- We retrieve continuity properties in discrete spaces.
- From that, we can derive a quasi-linear algorithm for the tree of shapes, whatever the dimension of the space.
- We propose a true self-dual interpretation of discrete data.
- Many applications follow.

Thank for your attention !

Mathematical Morphology

Edited by Laurent Najman and Hugues Talbot

WILEY

Pink:http://pinkhq.comOlena:http://www.lrde.epita.fr/cgi-bin/twiki/view/Olena