
MERCI WP DD. Deep Discovery, Deliverable DD.1 (V1)

Report Embedding spaces and multivariate time [1]

Tristan Carsault, Jérôme Nika

January 28, 2022

Abstract

Our goal in this work is twofold: to develop an intelligent listening and predictive module
of chord sequences, and to propose an adapted evaluation of the associated Music Information
Retrieval (MIR) tasks that are the real-time extraction of musical chord labels from a live audio
stream and the prediction of a possible continuation of the extracted symbolic sequence. Therefore,
we propose two independent modules that allows to extract chords in real-time and to predict a
possible continuation of an input chord sequence. Both modules are available online1, along with
tutorials. This modules are aimed to be used in co-creative context such as through an integration
within the DYCI2 (Nika et al., 2017) or SoMax (Bonnasse-Gahot, 2014).

In the case of chords, there exists some strong inherent hierarchical and functional relationships.
However, most of the research in the field of MIR focuses mainly on the performance of chord-
based statistical models, without considering music-based evaluation or learning. Indeed, usual
evaluations are based on a binary qualification of the classification outputs (right chord predicted
versus wrong chord predicted). Therefore, our research that are detailed in the following introduce
a specifically-tailored chord analyzer that allows to measure the performances of chord-based
models in term of functional qualification of the classification outputs (by taking into account the
harmonic function of the chords). Then, in order to introduce musical knowledge into the learning
process for the automatic chord extraction task, we also present a specific musical distance for
comparing predicted and labeled chords. Finally, we conduct investigations into the impact of
including high-level metadata in chord sequence prediction learning (such as information on key
or downbeat position). We show that a model can obtain better performances in term of accuracy
or perplexity, but output biased results. At the same time, a model with a lower accuracy score
can output errors with more musical meaning. Therefore, performing a goal-oriented evaluation
allows a better understanding of the results and a more adapted design of MIR models.

1 Introduction

The concept of musical structure can be defined as the arrangement and relations between musical
elements across time. Furthermore, a piece of music possesses different levels of structure depending on
the analyzed temporal scale. Indeed, elements of music such as notes (defined by their pitch, duration
and timbre) can be gathered into groups like chords, motifs and phrases. Equivalently, these can be
combined into larger structures such as chord progressions or choruses and verses. Thus, there can be
complex and multi-scaled hierarchical and temporal relationships between different types of musical
elements.

Among these different levels of music description, chords are one of the most prominent mid-level
features in Western music such as pop or jazz music. The chord structure defines, at a high level
of abstraction, the musical intention along the evolution of a song. Indeed, in the case of musical
improvisation, it is common for musicians to agree upon a sequence of chords beforehand in order
to develop an actual musical discourse along this high-level structure. Thus, a musical piece can
be roughly described by its chord sequence that is commonly referred to as its harmonic structure.
Some real-time music improvisation systems, such as DYCI2 (Nika et al., 2017), generate music by
combining reactivity to the environment and anticipation with respect to a musical specification which
can for example take the form of a chord sequence in the case we are considering. However, it would

1https://github.com/carsault/chord extraction prediction lib

1

be a real improvement if the system were able to predict a continuation of the extracted sequence
dynamically as a musician plays. Hence, in this work, we focus on the extraction and prediction of
musical chords sequences from a given musical signal. However, this application case invites us to raise
questions about the evaluation processes and methodology that are currently applied to chord-based
MIR models. Indeed, we want here models that reach a high level of understanding of the underlying
harmony. Therefore, the classification score that is mainly used to evaluate chord-based MIR models
does not seem to be sufficient, and the use of specifically tailored evaluation process appears to be
essential.

In this work, our application goal is to combine chord extraction and chord prediction models
in a intelligent listening system predicting short-term continuation of a chord sequence (architecture
detailed in section 2). The musical motivation, discussed in section 3, comes from the field of human-
machine music co-improvisation. Here, we chose to work with chord labels because chords and chord
progressions are high-level abstractions that summarize the original signal without a precise level of
description, but with a high level of understanding of the musician’s intent. Hence, our application case
invites us to raises questions on the methodology and evaluation processes applied to MIR chord-based
models. In this line of thought, we discuss in section 4, the differences between the nature and function
of chord labels, as well as the particularity of evaluation processes when chord labels are used with
Machine Learning (ML) models. In order to reach our application objective, we divided the project
into two main tasks: a listening module and a symbolic generation module. The listening module,
presented in section 5, extracts the musical chord structure played by the musician. Subsequently, the
generative module (detailed in section 6), predicts musical sequences based on the extracted features.
In order to provide a consistent functional qualification of the classification outputs, specifically-tailored
evaluation processes are carried out for both chord-based models.

2 Objectives: extracting and predicting chord progressions
from a real-time audio stream

2.1 Designing a predictive module that infer chord sequences based on
real-time chord extraction

Although musical improvisation is associated with spontaneity, it is largely based on rules and struc-
tures that allow different musicians to play together properly. In blues or jazz improvisation, these
structure are usually based on fixed progression of chords that define guidelines for the whole perfor-
mance, and their inference becomes very useful. Indeed, in a collective improvisation, it is essential to
understand underlying musical structures. Hence, our application case is the development of a system
that interacts with a musician in real-time by inferring expected chord progressions.

2.2 An intelligent listening module performing continuation of chord pro-
gressions

Figure 1 illustrates the general workflow of the proposed intelligent listening and predictive archi-
tecture. In this architecture, the input is an audio waveform obtained by recording a musician in
real-time. First, the musical signal is processed to obtain a time-frequency representation, from which
we extract chord sequences. Thus, a chord label is assigned for each beat of the input signal. Finally,
the prediction module receives this chord sequence and proposes a possible continuation. We also add
a feedback loop in order to use the predictions to reinforce the local extraction of chords (more detailed
information on the connection between the two chord-based models will be given in section 7).

3 Musical motivation: inform human-machine music co-improvisation

Our motivation lies in the field of human-machine musical co-improvisation, where the improvisation
structure is generated by listening of a human musician and provides specifications to artificial musical
agents. Indeed, a first autonomous creative use of the intelligent listening and predictive module could
be to use a musician’s playing as input, with the interactive outputs providing chord sequences that
can be improvisation guides for other musicians.

2

In the field of computer science applied to music, co-improvisation processes stem from the interplay
between humans and computer agents. That is, a digital system able to play music coherently with a
musician in real time. This leads to a co-creation process, where the human listens to the real-time
output of the system, itself conditioned by the musician audio stream (see Figure 2).

A prominent example of this idea is Omax (Assayag et al., 2006), which learns the specific charac-
teristics of the musician style in real-time, and then plays along with him from this learned model. Its
generative strategy (step number two in Figure 2) is based on Factor Oracle automatons (Assayag and
Bloch, 2007), allowing to generate stylistically coherent music using an online or offline audio database.

In recent years, another family of software that provides musical control, while being style-sensitive
has been proposed by Nika and al. (Nika, 2016). In this work, the generative strategy is further
improved through the concept of guidance. In this field of human-machine co-improvisation, the notion
of guided music generation has two different meanings. On the one hand, guiding can be seen as a
purely reactive and gradual process. This approach offers rich possibilities for interaction but cannot
take advantage of prior knowledge of a temporal structure to introduce anticipatory behaviour. On
the other hand, guiding can use temporal structures (named scenario) to drive the generation process
of the entire musical sequence. These scenario-based systems are capable of introducing anticipatory
behaviors, but require a prior knowledge of the musical context (a predefined scenario).

3.1 Guiding step-by-step

The step-by-step process aims to produce automatic accompaniment by using purely reactive mecha-
nisms without relying on prior knowledge. Hence, the input signal from the musician is analyzed in
real-time and the system compares this information to its corpus, allowing to select the most relevant
parts to generate accompaniments. For instance, SoMax (Bonnasse-Gahot, 2014) uses a pre-annotated
corpus and extracts multimodal observations of the input musical stream in real-time. Then, it re-
trieves the most relevant slices of music from the corpus to generate an accompaniment.

Other software such as VirtualBand (Moreira et al., 2013) or Reflexive Looper (Pachet et al., 2013),
also rely on feature extraction (e.g. spectral centroid or chroma) to select the audio accompaniment
from the database. Furthermore, improvisation software such as MASOM (Tatar and Pasquier, 2017)
use specific listening modules to extract higher-features like eventfulness, pleasantness or timbre.

3.2 “Guiding” with formal temporal structures

Some research projects have introduced temporal specifications to guide the process of music gener-
ation. For example, Alexandraki (Alexandraki and Bader, 2016) uses real-time listening system to
perform an audio-to-score alignment and then informs an accompaniment system which concatenates
pre-recorded and automatically segmented audio units. Another approach to co-improvisation is to
introduce different forms of guidance as constraints for the generation of musical sequences. Indeed,
constraints can be used to preserve certain structural patterns already present in the database. In
this line of thought, the authors of (Herremans et al., 2015) built a system to generate bagana music,
a traditional Ethiopian lyre based on a first-order Markov model. A similar approach using Markov
models was proposed by Eigenfeldt (Eigenfeldt and Pasquier, 2010), producing corpus-based genera-
tive electronic dance music. Other research, such as that by Donze (Donzé et al., 2014), applied this
concept to generate monophonic solo lines similar to a given training melody based on a given chord
progression.

The specification of high-level musical structures that define hard constraints on the generated
sequences has been defined by Nika (Nika, 2016) as a musical scenario. This approach allows to
define a global orientation of the music generation process. When applied to tonal music, for instance,
constraining the model with a specific temporal structure allows the generation to be directed toward
a harmonic resolution (e.g. by going to the tonic).

Scenario: In this work, we define a scenario as a formalized temporal structure guiding a music
generation process.

An example of scenario-based systems is ImproteK (Nika, 2016), which uses pattern-matching algo-
rithms on symbolic sequences. The generation process navigates a memory while matching predefined

3

scenarios at a symbolic level. This approach is dedicated to compositional workflows as well as inter-
active improvisation, as the scenario can be modified via a set of pre-coded rules or with parameters
controlled in real-time by an external operator.

3.3 Guiding strategies

In 1969, Schoenberg (Schoenberg and Stein, 1969) formulated a fundamental distinction between pro-
gression and succession. From their point of view, a progression is goal-oriented and future-oriented,
whereas a succession only specifies a step-by-step process.

Co-improvisation systems using formal temporal structures include this notion of progression and
introduce a form of anticipatory behaviour. However, the concept of scenario is limited to a predefined
configuration of the system (e.g. defined before the performance), which limits the algorithm ability
to predict future movements or changes within musical streams.

One idea to enrich the reactive listening would be to extract high-level structures from the musical
stream in order to infer possible continuations of this structure. This model, inferring short-term
scenarios for the future (e.g. chord progression) to feed a scenario-based music generation system
in real-time, would provide anticipatory improvisations from an inferred (and not just predefined)
structure.

The DYCI2 library (Nika et al., 2017) 2, has been developed to merge the ”free”, ”reactive” and
”scenario-based” music generation paradigms. It proposes an adaptive temporal guidance of generative
models. Based on a listening module that extract musical features from the musician’s input or
manually informed by an operator, the system will propose a scenario at each generation step. Each
query is compared to previous ones and is dynamically merged, aborted and / or reordered, then
launched in due time. The sound generation is then performed with a concatenative synthesis process
so that the output sequences matches the required short-term progression received from the listening
module. Therefore, the DYCI2 library opens a promising path for the use of short-term scenarios.

Nevertheless, the short-term scenarios proposed by DYCI2 are currently generated from simple
heuristics and from low-level musical features (e.g. CQT, MFCC, Chromagram). Thus, using a module
that infers a short-term scenario (i.e. predicted chord sequence) from high-level feature discovery
(i.e. extracted chord sequence) would be a significant improvement. Based on this inference, music
generation processes could fully combine the advantages of both forms of ”guidance” mentioned above.

The Figure 3 illustrates the integration of our system with DYCI2. Hence, each chord sequence
constitutes a ”short-term scenario” for the agent, which generates a musical sequence in real-time
corresponding to this specification. This sequence is an ”anticipation” that is stored in a buffer,
waiting to unfold its rendering in due time or to be partly rewritten depending on the next scenarios
sent by the listening module. At each new chord sequence received from the listening module (one per
beat), the agent refines the anticipations generated in the previous step, maintaining both consistency
with the future scenario, and the outputs played so far. Therefore, depending of the scenario (if the
prediction at t-1 is coherent with the prediction at t (in orange on Figure 3) or not (in yellow)),
DYCI2 will adapt the generation of the audio concatenated synthesis.

As a result, our goal is to provide a reactive (in the real-time sense) intelligent listening system
capable of anticipating and generating improvisation from an inferred (rather than purely specified)
underlying structure. In a more general perspective, our proposed intelligent listening system is a step
forward for any other co-creative interaction systems Esling and Devis (2020) that seek to be in touch
with live performers as well as musical knowledge in unknown (free), known (scenario), or uncertain
environments (continuous scenario discovery, local scenario generation, or simply adaptive discovery
of musical intentions in terms of micro-progressions).

In the next section, we raise questions about the nature and the function of chord labels. This leads
to considerations that allow us to develop a specifically tailored analyzer for MIR chord based models.
The proposed methodology and the evaluation processes are then applied to the listening module (in
section 5) and the predictive module (in section 6).

2https://github.com/DYCI2/Dyci2Lib

4

https://github.com/DYCI2/Dyci2Lib

Current time time

C#:7 D:min G:minAutomatic Chord
Extraction

Chord Sequence
Prediction

Sound synthesis
system

Previous predictions

Figure 1: General architecture of the listening and predictive module. For each beat, a sequence of
chords extracted in real time from the audio stream is sent to the chord sequence predictive system.
The predicted sequence can be sent to a sound synthesis system in order to generate an audio feedback.

Listening Generative
strategy Generation

Human player

�������
���������

��� �����������
������� ������������������

�
�

		

		

�

3

3�	=	180
AI System

Outputs

Feedback

1 2

3

Figure 2: General scheme of an interactive co-improvisation system.

Current time time

DYCI2ILM DYCI2

Current time time Current time time

ILM

Figure 3: The intelligent listening module (denoted ILM) sends a predicted chord sequence at each
beat. The DYCI2 library handles this short-term scenario for each beat and adapt the generation
accordingly.

5

4 Methodology: introducing functional qualification of the
classification outputs of MIR chord-based models by tak-
ing into account the harmonic function of the chords

Deep learning methods and modern neural networks have witnessed tremendous success in Computer
Vision (CV) (Guo et al., 2016) and Natural Language Processing (NLP) (Young et al., 2018). In
the field of Music Information Retrieval (MIR), the number of published papers using Deep Learning
(DL) models has also exploded in recent years and now represents the majority of the state-of-the-art
models (Choi et al., 2017). However, most of theses works rely straightforwardly on successful methods
that have been developed in other fields such as CV or NLP. For instance, the Convolutional Neural
Networks (CNN) (LeCun et al., 1995) were developed based on the observation of the mammalian
visual cortex, while recurrent neural networks (Mikolov et al., 2010; Cho et al., 2014) and attention-
based models (Luong et al., 2015; Vaswani et al., 2017) were first developed with a particular emphasis
on language properties for NLP.

When applied to audio, these models are often used directly to classify or infer information from
sequences of musical events, and have shown promising success in various applications, such as music
transcription (Hawthorne et al., 2017; Sturm et al., 2016), chord estimation (Humphrey and Bello,
2012; McVicar et al., 2014), orchestration (Hadjeres et al., 2017; Crestel and Esling, 2017) or score
generation (Dong et al., 2018). Nevertheless, DL models are often applied to music without considering
its intrinsic properties. Indeed, images and time-frequency representations – and similarly scores and
texts – do not share the same properties. In this perspective, chord-based MIR models could benefit
from the use of musical properties in their training as well as for efficient evaluation methods.

4.1 Nature and functions of musical chords

In CV, neural networks are commonly used for classification tasks, where a model is trained to identify
specific objects, by providing a probability distribution over a set of predefined classes. For instance,
we can train a model on a dataset containing images of ten classes of numbers. After training, this
network can predict the probabilities over unseen images. Since a digit belongs to only one class, there
is supposedly no ambiguity for the classification task.

In the case of music, high levels of abstraction such as chords can be associated with multiple classes.
C:Maj, C:Maj7, C:Maj9 are chords of 3, 4, and 5 notes that can be considered in some contexts as
labels with different levels of precision defining the same chord. Indeed, one can choose to describe
a chord with a different level of detail by deleting or adding a note and, thus, changing its precise
qualities. On the other hand, an ambiguity could be present if a note is only played furtively or is an
anticipation of the next chord. Strong relationships exist between the different chord classes depending
on the musical discourse and the hierarchical behaviour of chord labels. Hence, as underlined in recent
studies (Humphrey and Bello, 2015), even expert human annotators do not agree on the precise chord
estimation of an audio segment. This could be explained in part by the ambiguity of the Automatic
Chord Extraction (ACE) task. On the one hand, a local extraction would define the nature of the
chords, which is more related to a polyphonic pitch detection. On the other hand, one would like to
transcribe the whole track by performing a functional analysis and then taking into account high-level
structures. For our purpose, we prefer to consider a chord as a function that will be used for a piece
of music rather than an entity that belongs solely to a specific class Schoenberg and Stein (1969);
Anger-Weller (1990).

In MIR, high-level features are often associated to information that can give a musically under-
standing of pieces without the ability to precisely reconstruct them. For example, chords and keys can
be considered as a higher level of abstraction than musical notes. In the case of the proposed intelligent
listening module, the most important objective is to discover the underlying harmonic progression and
not a succession of precisely annotated chords. Hence, even a wrongly predicted chord label could
actually be an adequate substitute for the original chord and, therefore, still give useful information
about the harmonic progression. Indeed, two chords can have different nature (for instance C:Maj and
C:Maj7) but share the same harmonic function within a chord progression.

It is important to note that these previous observations are specific to a high-level of abstraction of
the musical characteristics. In the next section, we attempt to give different definitions of transcription
in the field of MIR. Although only the ACE task (presented in section 5) is directly related to auto-

6

matic music transcription tasks, the sub-mentioned conclusions remain valid for the chord sequence
prediction task (detailed in section 6).

4.2 Differentiate strict and high-level transcriptions in MIR

Music Information Retrieval (MIR) is a rapidly growing research field, that relies on a wide variety of
domains such as signal processing, psychoacoustics, computer science, machine learning, optical music
recognition and all fields of music analysis and composition. In the field of MIR, automatic music
transcriptions refers to several tasks that deal with different musical levels.

Klapuri (Klapuri and Davy, 2007) states that the ”music transcription refers to the analysis of an
acoustic musical signal so as to write down the pitch, onset time, duration, and source of each sound
that occurs in it. [...] Besides the common musical notation, the transcription can take many other
forms, too. For example, a guitar player may find it convenient to read chord symbols which charac-
terize the note combinations to be played in a more general manner.” In addition to this definition,
Humphrey (Humphrey and Bello, 2015) describes the chord transcription task as ”an abstract task
related to functional analysis, taking into consideration high-level concepts such as long term musical
structure, repetition, segmentation or key.” With the help of these definitions, we propose two different
kinds of transcription named strict transcription and high-level transcription (see Figure 4).

Strict transcription: We define as strict a transcription that objectively associates a unique label
for each section of a musical signal. Labels are defined on the basis of a purely physical analysis
and must not have any ambiguity in their definition. For example, the extraction of notes from
an instrument recording is a strict transcription. There is only one set of notes that defines
perfectly the recording.

High-level transcription: We define a high-level transcription as the labelling of a musical signal
into high-level musical labels. High-level musical labels include all musical information that
could be subjective, such as different chords in an harmonic context, the tonality of a song,
the structural division of a track, the musical genres, or any human-annotated labels based on
perceptual properties.

4.3 Chords alphabets and functional qualification of the classification out-
puts

By taking into account the aforementioned statements on the distinctiveness of musical data and
musical chords, we detailed in this section the chord alphabets and evaluation methods tailored for
the two studied MIR tasks: the chord extraction and the chord sequence continuation.

4.3.1 Definition of chord alphabets

There exist many qualities of musical chords (for example, maj7, min, dim) at different levels of
precision. When studying a MIR task such as chord extraction or chord sequence inference, a collection
of chord qualities is often defined to determine the level of precision. Thus, the chord alphabet used
for this task can be increasingly complex, starting from a simple alphabet containing only major and
minor chords, to one with more precisely described chords.

The chord annotations of MIR datasets (Harte et al., 2005) often includes additional notes (in
parentheses) and the base note (after the slash). With this notation, reference datasets have thousand
chord classes with a fairly sparse distribution. For the two studied MIR tasks, we don’t use these extra
notes and bass notes.

F : maj7(11)/3 → F : maj7 (1)

Nevertheless, even with this first reduction, the number of chord qualities remains large, and as detailed
in subsection 4.1 we consider a chord as a function that will be used for a piece of music rather than an
entity that belongs solely to a specific class. Therefore, we prefer a high level of understanding of the
musician’s intent instead of a precise level of description. As a result, we define three alphabets with
a fixed number of chord qualities: A0, A1, and A2. These alphabets are based on prior work on chord
extraction tasks (Carsault et al., 2018; McFee and Bello, 2017). Figure 5 depicted the three chord

7

alphabets used for the two MIR tasks. The number of classes in the alphabets increases gradually,
chord symbols that do not fit in a particular alphabet are either reduced to the equivalent standard
triad or replaced by the no chord sign N.C., as indicated by the black lines.

The first alphabet A0 contains all the major and minor chords, which defines a total of 25 classes:

A0 = {N.C} ∪ {P ×maj,min} (2)

where P represents the 12 pitch classes (with the assumption of equal temperament and harmonic
equivalency).

Nonetheless, for example in jazz music, the standard harmonic notation includes chords that are not
listed in the A0 alphabet. We propose therefore an alphabet that includes all four-note chords found
in major scale harmonization. This corresponds to the chord qualities and their parents annotated in
the A1 field in Figure 5. The no-chord class N contains other chord qualities that do not fit in a chord
class, yielding a total of 73 classes:

A1 = {N.C} ∪ {P ×maj,min, dim, dim7,maj7,min7, 7} (3)

Finally, the alphabet A2, which is the most complete chord alphabet and that contains 14 chord
qualities and 169 classes:

A2 = {N.C} ∪ {P ×maj,min, dim, aug,maj6,min6,

maj7,minmaj7,min7, 7, dim7, hdim7, sus2, sus4}
(4)

4.3.2 Proposed evaluation: functional qualification of the classification outputs (by tak-
ing into account the harmonic function of the chords)

Most of MIR evaluations for chord-based models are binary: an extracted chord will be considered
misclassified if it has a different nature than the targeted one, even if they share the same harmonic
function. Hence, usual MIR evaluation methods are at odds with our needs: to have a high level of
understanding of the musician’s intent, even without a precise level of description.

Motivated by the insights detailed in subsection 4.1, we propose to analyze chord-based models
with a functional qualification of the classification outputs. Hence, we seek to observe the qualification
of what are usually considered errors. In tonal music, the harmonic functions qualify the roles and the
tonal significance of chords, and the possible equivalences between them within a sequence (Rehding,
2003; Schoenberg and Stein, 1969). Therefore, our ACE Analyzer (Carsault et al., 2018) is used
to analyse the results. It includes two analysis modules designed in the aim of discovering musical
relationships between the chords predicted by chord-based models and the target chords. Both modules
are generic, independent, and available online3.

The first module identifies errors relating to hierarchical connections or the usual rules of chord
substitutions, i.e. the use of one chord in place of another in a chord progression. Some chords may have
different nature (i.e. chord qualities) but have the same function within a chord progression. Therefore,
a list of usual chord substitutions has been established based on musical knowledge (generally, the
substituted chords have two pitches in common with the triad they replace).

The ACE Analyzer ’s second module focuses on harmonic degrees. In music theory, a degree is
written with a Roman character and corresponds to the position of a note inside a defined scale. The
interest of using degrees is that the notation is independent of the pitch of the tonic. A degree is also
assigned for each chord obtained by the harmonization of the scale, and is defined by the position of
the root note inside the scale. Hence, this module calculates the harmonic degrees of the predicted
chord and the target chord using the key annotations in the dataset in addition to the chords: e.g. in
C, if the reduction of a chord on A0 is C it will be considered as “I”, if the reduction of a chord on
A0 is D:min it will be considered as “ii”, and so on. Then it counts the harmonic degree substitutions
when possible (e.g. in C, if the reduction of a chord on A0 is C# it will not correspond to any degree).

The aforementioned evaluation methods and the chord alphabets depicted in Figure 5 can be used
for any chord-based MIR models.

3http://repmus.ircam.fr/dyci2/ace analyzer

8

5 Automatic chord extraction tasks

In this work, we are aiming to develop a system that interacts with a musician in real-time by inferring
expected chord progressions. Hence, the two studied MIR tasks are the automatic chord extraction
and the chord sequence continuation tasks. Furthermore, the insights on chord-based MIR models
presented in the previous part will be applied to these two tasks.

In this section, we focus on automatic chord extraction task which consists of extracting chord label
from an audio waveform. We propose innovative procedure that allow to introduce musical knowledge
along with the training of machine learning models. Then, along with more usual evaluation (i.e.
binary qualification of the classification outputs), we rely on proposed evaluation methods that take
into account the qualification of the classification outputs in term of harmonic function. These analyses
are performed by applying the tailored chord evaluation presented in subsubsection 4.3.2.

5.1 State of the art

Due to the complexity of the chord extraction task, ACE systems are generally divided into four main
modules: feature extraction, pre-filtering, pattern matching and post-filtering. (Cho et al., 2010).

First, the raw signal can be pre-filtered using low-pass filters or harmonic and percussive source
separation methods (Zhou and Lerch, 2015; Jiang et al., 2017). This optional step removes any noise
or other percussive data that is not essential to the chord extraction objective. The audio signal is then
transformed into a time-frequency representation, such as the short-time Fourier transform (STFT) or
the Constant-Q transform (CQT), which yields a logarithmic frequency scale. These representations
are sometimes summarized in a pitch bin vector called a chromagram (Harte and Sandler, 2005). Then,
successive time frames of the spectral transform are averaged into context windows. This smooths the
extracted features and takes into account the fact that chords are larger scale events. It was shown
that this could be done effectively by feeding the STFT context windows to a CNN to obtain a clean
chromagram (Korzeniowski and Widmer, 2016a).

Then, these extracted features are classified by relying on either a rule-based chord template system
or a statistical model. Rule-based methods give fast results and a decent level of accuracy (Oudre
et al., 2009). With these methods, the extracted features are classified using a fixed dictionary of
chord profiles (Cannam et al., 2015) or with a collection of decision trees (Jiang et al., 2017). However,
these approaches are often sensitive to changes in the input signal’s spectral distribution and do not
generalize well.

Based on a training data set in which each time frame is connected with a label, the statistical
models try to uncover correlations between precomputed features and chord labels. The model is then
optimized using gradient descent algorithms to determine the most appropriate parameter configura-
tion. ACE has shown that several probabilistic models, such as the multivariate Gaussian mixture
model (Cho, 2014) and neural networks (NN), either convolutional (Korzeniowski and Widmer, 2016b;
Humphrey and Bello, 2012) or recurrent (Wu et al., 2017; Boulanger-Lewandowski et al., 2013) per-
formed well.

5.2 Proposals

We use a Convolutional Neural Network (CNN) architecture in this part because it has been shown to
be a very successful statistical model for ACE tasks (McFee and Bello, 2017). However, as discussed
in subsection 4.1, we also want to rely on the inherent relationships between musical chords to train
and analyse our ACE models. Hence, we follow the procedure proposed in (Carsault et al., 2018) to
train a network by using prior knowledge underlying chord alphabets. Afterward, the performance of
the models will be analyzed with the help of the ACE analyzer presented in subsubsection 4.3.2.

5.2.1 Dataset

Our experiments are performed on the Beatles dataset as it provides the highest confidence regarding
ground truth annotations Harte (2010). This dataset consists of 180 hand-annotated songs, where each
audio section is associated with a chord label. The CQT is calculated for each song using a window
size of 4096 samples and a hop size of 2048. The transform is mapped to a six-octave scale with three
bins per semitone, extending from C1 to C7. We augment the data by transposing everything from

9

-6 to +6 semitones and changing the labels accordingly. Finally, we divide the data into three sets to
evaluate our models: training (60 percent), validation (20 percent), and test (20 percent).

5.2.2 Models

For all the different chord alphabets, the same CNN model is trained, but adjusted with the size of
the last layer to fit the chord alphabet size. On the input layer, batch normalization and Gaussian
noise addition are applied. Then, three convolutional layers are followed by two fully-connected layers
in the CNN architecture. The architecture is quite similar to the original chord-based CNN presented
for the ACE task Humphrey and Bello (2012). Dropout is introduced between each convolution layer
to avoid over-fitting,

We utilize the ADAM optimizer for training, with a learning rate of 2.10 − 5 and 1000 epochs. If
the validation loss has not improved after 50 iterations, the learning rate is decreased. If the validation
loss does not improve after 200 iterations, we end early and keep the model with the best validation
accuracy. The results presented afterwards are the mean of 5-cross validation with a random split of
the dataset.

5.2.3 Definition of chord distances

In most CNN approach, the model does not take into account the relationships between each class
when computing the loss function. In the following this categorical distance is named D0.

D0(chord1, chord2) =

{
0 if chord1 = chord2
1 if chord1 ̸= chord2

(5)

Here, we want to directly integrate the chord relationships in our model. For example, a C:maj is
closer to a A:min than to a C#:maj. Therefore, we introduce musical distances that can be used to
define the loss function.

To provide a finer description of chord label relationships, we propose two chord distances that are
based on the representation of chords in either harmonic or pitch space.

5.2.4 Tonnetz distance

A Tonnetz-space is a geometric representation of tonal space that is based on chord harmonic relation-
ships Euler (1739); Cohn (2011). We chose a Tonnetz-space generated by three transformations of the
major and minor triads, each changing only one of the chords’ three notes: the relative transformation
(transforms a chord into its relative major / minor), the parallel transformation (same root but major
instead of minor or vice versa), and the leading-tone exchange (in a major chord the root moves down
by a semitone, in a minor chord the fifth moves up by a semitone). The use of this space to represent
chords has already yielded encouraging results for classification on the A0 alphabet Humphrey et al.
(2012).

Here, the cost of a path between two chords is the sum of the successive transformations. Every
transformation (relative, parallel and leading-tone exchange) has the same cost. In addition, if the
chords have been reduced to fit the A0 alphabet, an additional cost is applied. Chords that are not
hierarchically connected to one of the A0 chord alphabet are assigned to the No-Chord class. Thus,
a cost between the chords that belongs to A0 and the No-Chord class is also defined. Finally, D1 is
defined as the minimal distance between two chords in this space.

D1(chord1, chord2) = min(C) (6)

where C represents the set of all feasible path costs from chord1 to chord2 using a combination of
the three transformations,

5.2.5 Euclidean distance on pitch class vectors

Pitch class vectors have been employed as an intermediate representation for ACE tasks in several
studies Lee and Slaney (2006). In this work, these pitch class profiles are used to calculate chord
distances based on their harmonic content. Hence, each chord in the dictionary is assigned to a 12-
dimensional binary pitch vector, with 1 indicating that the pitch is present in the chord and 0 indicating

10

that it is not (for instance C:maj7 becomes (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1)). Afterward, the Euclidean
distance between two binary pitch vectors is used to define the distance between two chords.

D2(chord1, chord2) =

√√√√ 11∑
i=0

(chordi1 − chordi2)2 (7)

As a result, this distance account for the number of pitches that two chords share.

5.2.6 Introducing the relations between chords

In order to train the model with the proposed distances, the original labels from the Isophonics dataset4

are reduced so that they fit one of our three alphabets A0, A1, A2. Then, we denote ytrue as the one-hot
vector where each bin corresponds to a chord label in the chosen alphabet Ai. The model’s output,
noted ypred, is a vector of probabilities over all the chords in a given alphabet Ai. In the case of D0, we
train the model with a loss function that simply compares ypred to the original label ytrue. However,
for our proposed distances (D1 and D2), a similarity matrix M that associates each couple of chords
to a similarity ratio is introduced.

Mi,j =
1

Dk(chordi, chordj) + K
(8)

K is an arbitrary constant to avoid division by zero. The matrix M is symmetric and normalized by
its maximum value to obtain M̄ . Then ¯ytrue is computed and corresponds to the matrix multiplication
of the old ytrue and the normalized matrix M̄ .

¯ytrue = ytrueM̄ (9)

Finally, the loss function for D1 and D2 is defined by a comparison between this new ground
truth ¯ytrue and the output ypred. Therefore, this loss function can be seen as a weighted multi-label
classification.

5.3 Results

The CNN models are trained with the aforementioned chord distances and on the three chord al-
phabets presented in subsubsection 4.3.1. The results are split in two parts, the first part that is
the classification score of the extraction, and the second part that rely on musical rules defined in
subsubsection 4.3.2.

5.3.1 Proposed methodology

For the ACE task, we propose to perform an evaluation based on the functional qualification of the
classification outputs (i.e. by studying the harmonic function of the prediction errors). Therefore, we
introduced the notion of weak or strong errors depending on the nature of the misclassified chords.
Thus, using the two modules (explained in subsubsection 4.3.2) that evaluate the results according
to chord substitution rules and harmonic degrees, will help to evaluate the ACE models by using
a functional approach. For our experiments, we first evaluate models with the usual evaluation (a
binary qualification of the classification outputs), then we perform our proposed analysis in order to
understand the functional qualification of the errors for the different models.

5.3.2 Usual evaluation: binary qualification of the classification outputs (right chord
predicted versus wrong chord predicted)

In order to compare the results with other ACE models, the models are evaluated on three MIREX
alphabets : Major/Minor, Sevenths, and Tetrads. Raffel et al. (2014). These alphabets correspond
roughly to three alphabets defined in subsubsection 4.3.1 (Major/Minor ∼ A0, Sevenths ∼ A1, Tetrads
∼ A2).

4http://isophonics.net/content/reference-annotations-beatles

11

http://isophonics.net/content/reference-annotations-beatles

Table 1: Results of the 5-folds with the standard deviation: evaluation on MIREX Maj/Min (∼
reduction on A0), MIREX Sevenths (∼ reduction on A1) and MIREX Tetrads (∼ reduction on A2).
Model MIREX Maj/Min MIREX Sevenths MIREX Tetrads

A0-D0 74.97 ±1.20
A0-D1 75.39 ± 1.55
A0-D2 75.22 ±2.15

A1-D0 74.30 ±1.22 63.26 ±3.09
A1-D1 75.86 ± 1.11 62.38 ±3.00
A1-D2 75.47 ±2.16 63.96 ± 3.87

A2-D0 74.86 ±0.94 63.63 ±3.53 63.62 ±3.53
A2-D1 76.00 ± 1.63 61.11 ±3.86 61.14 ±3.84
A2-D2 75.29 ±2.02 64.32 ± 3.62 64.38 ± 3.61

CNN models that have the same architecture are trained with varying chord distances (D0, D1

and D2) and an initial chord reduction on different alphabets (A0, A1 and A2). Then, the models
are evaluated with the help of the MIREX evaluation library mir eval 5 on the three selected MIREX
alphabets.

According to the results of Table 1, even if the classification score are very close between models,
it appears to be better to utilize a distance that takes into consideration the musical relationships
between chords when using the Major/Minor alphabet. However, for more complex chord alphabets,
the Tonnetz-based distance (D1) applies a penalty of reduction to the A0 alphabet. Hence, this distance
seems not suited for more complex chords alphabets, at least in term of classification score. On the
other hand, the euclidean distance between pitch vectors (D2) obtains always better classification score
on every chord alphabet.

Nonetheless, the MIREX evaluation uses a binary score to compare chords. Because of this ap-
proach, the qualities of the classification errors cannot be evaluated. Indeed, for our application case,
one could prefer an ACE model with a similar accuracy score but with a better understanding of the
underlying harmony.

5.3.3 Proposed evaluation: functional qualification of the classification outputs (by tak-
ing into account the harmonic function of the chords)

In the following experiments, we rely on our specially designed ACE analyzer to understand the
performance of each model by examining their errors. Our main hypothesis is that in a real use
case, a model can have a similar classification accuracy score but produce errors that have strong
musical significance. Indeed, chords have strong inherent hierarchical and functional relationships.
For example, misclassifying a C:Maj into A:min or C#:Maj will be seen as equally incorrect under
standard evaluation criteria. However, C:Maj and A:min are relative chords, but C:Maj and C#:Maj
belong to very different sets of keys. Thus, if the harmonic function is preserved, a misclassified chord
can be accepted from a musical point of view and we call this a weak error. Therefore, in the following,
we measure the performance of the models, which includes its propensity to output weak errors instead
of strong errors (i.e errors that are not musically accepted).

Substitution rules Table 2 presents: Tot., the total fraction of errors that can be explained by the
whole set of substitution rules implemented in the ACE analyzer (see subsubsection 4.3.2), and ⊂ Maj
and ⊂ min, the errors with inclusions in the correct triad (e.g. C:maj instead of C:maj7, C:min7
instead of C:min).

Table 3 presents the percentages of errors corresponding to widely used substitution rules: rel. m
and rel. M, relative minor and major; T subs. 2, tonic substitution different from rel. m or rel. M
(e.g. E:min7 instead or C:maj7), and the percentages of errors m→M and M→m, same root but
major instead of minor (or inversely) after reduction to triad. The tables only show the categories
representing more than 1% of the total number of errors, but other substitutions (that will not be
discussed here) were analyzed: tritone substitution, substitute dominant, and equivalence of some
dim7 chords modulo inversions.

5https://craffel.github.io/mir eval/

12

Table 2: Left: total percentage of errors corresponding to inclusions or chords substitutions rules,
right: percentage of errors with inclusion in the correct triad (% of the total number of errors).

Model Tot. ⊂ Maj ⊂ min

A0-D0 34.93
A0-D1 36.12
A0-D2 35.37

A1-D0 52.40 23.82 4.37
A1-D1 57.67 28.31 5.37
A1-D2 55.17 25.70 4.21

A2-D0 55.28 26.51 4.29
A2-D1 60.47 31.61 6.16
A2-D2 55.45 25.74 4.78

Table 3: Left: percentage of errors corresponding to usual chords substitutions rules, right: percentage
of errors “major instead of minor” or inversely (% of the total number of errors).

Model rel. M rel. m T subs. 2 m→M M→m

A0-D0 4.19 5.15 2.37 7.26 12.9
A0-D1 4.40 5.20 2.47 7.66 13.4
A0-D2 5.13 4.87 2.26 8.89 10.89

A1-D0 2.63 3.93 1.53 4.46 8.83
A1-D1 3.05 3.36 1.58 5.53 7.52
A1-D2 3.02 4.00 1.62 5.84 8.07

A2-D0 2.54 4.15 1.51 4.96 8.54
A2-D1 2.79 2.97 1.54 5.29 7.46
A2-D2 3.11 4.26 1.63 5.34 7.59

First, Tot. in Table 2 shows that a huge fraction of errors can be explained by usual substitution
rules. This percentage can reach 60.47 percent, implying that many classification errors provide useful
indications since they associate chords with equivalent harmonic function. For example, Table 3
reveals that relative major/minor substitutions account for a considerable portion of errors (up to
10%). Furthermore, the percentage in Tot. (Table 2) increases with the size of the alphabet for the
three distances: larger alphabets imply more errors that preserve the harmonic function.

Second, for A0, A1, and A2, using D1 instead of D0 increases the fraction of errors attributed
to categories in Table 3 (and in almost all the configurations when using D2). Since all of these
operations are normally considered as valid chord substitutions, this shows an improvement in the
error qualification of the classification outputs in terms of harmonic function. Finally, results indicate
that a significant number of errors (between 28.19 percent and 37.77 percent) for A1 and A2 correspond
to inclusions in major or minor chords (⊂ Maj and ⊂ min, Table 2). Therefore, these classifications
can be considered as correct from a functional perspective.

Harmonic degrees The results of the second module of the analyzer reported in subsubsection 4.3.2
are analyzed in this section. As seen section 5.3.3, the module first determines whether the target chord
is diatonic (i.e. belongs to the harmony of the key).

[H] Errors occurring when the target is non-diatonic (% of the total number of errors), non-diatonic
prediction errors (% of the errors on diatonic targets).

13

Model Non-diat. targ. Non-diat. pred.

A0-D0 37.96 28.41
A0-D1 44.39 15.82
A0-D2 45.87 17.60

A1-D0 38.05 21.26
A1-D1 37.94 20.63
A1-D2 38.77 20.23

A2-D0 37.13 30.01
A2-D1 36.99 28.41
A2-D2 37.96 28.24

If it is the case, the notion of incorrect degree for the predicted chord is relevant and the percentage
of errors corresponding to substitutions of degrees is computed (see Table 4).

Table 4: Errors (> 2%) corresponding to degrees substitutions (% of the total number of errors on
diatonic targets). In this table, the column I∼IV correspond to totals of the errors that satisfy: I
substituted to IV or IV substituted to I.

Model I∼IV I∼V IV∼V I∼vi IV∼ii I∼iii

A0-D0 17.41 14.04 4.54 4.22 5.41 2.13
A0-D1 17.02 13.67 3.33 4.08 6.51 3.49
A0-D2 16.16 13.60 3.08 5.65 6.25 3.66

A1-D0 17.53 13.72 3.67 5.25 4.65 3.5
A1-D1 15.88 13.82 3.48 4.95 6.26 3.46
A1-D2 16.73 13.45 3.36 4.70 5.75 2.97

A2-D0 16.90 13.51 3.68 4.45 5.06 3.32
A2-D1 16.81 13.60 3.85 4.57 5.37 3.59
A2-D2 16.78 12.96 3.84 5.19 7.01 3.45

The first interesting fact revealed by section 5.3.3 is that 37.99% to 45.87% of the errors occur
when the target chord is non-diatonic. It also demonstrates that using D1 or D2 instead of D0 reduces
the fraction of errors corresponding to non-diatonic predicted chords (section 5.3.3, particularly A0),
which means that the errors are more likely to stay in the right key.

In Table 4, high percentages of errors are associated to errors I∼V (up to 14.04%), I∼IV (up to
17.41%), or IV∼V (up to 4.54%). These errors are not usual substitutions, and IV∼V and I∼IV have
respectively 0 and 1 pitch in common. In most circumstances, these percentages tend to decrease on
alphabets A1 or A2 and when using more musical distances (particularly D2). Conversely, it increases
the amount of errors in the right part of Table 4 containing usual substitutions: once again, the more
precise the musical representation is, the more correct the harmonic functions tend to be.

5.4 Conclusion

In an attempt to bridge the gap between musically-informed and statistical models in ACE field, we
experimented the training of Deep Learning based models with the help of musical distances reflecting
the relationships between chords. To do so, we trained CNN models on different chord alphabets
and with different distances. In order to evaluate our models with a musically oriented approach, we
relied on a specifically tailored ACE analyzer. We concluded that training the models using distances
reflecting the relationships between chords (e.g. within a Tonnetz-space or with pitch class profiles)
improves the results both in terms of classification scores and in terms of harmonic functions.

6 Chord sequence continuation tasks

The goal of this work is to propose a system that interacts with a musician in real-time by inferring
expected chord progressions. In the previous part, we focused on the automatic chord extraction
module. This section will present studies on the chord sequence continuation model.

From a technical point of view, our aim is to predict the 8 next beat-wise chords given 8 beat-wise
chords. The 8 beat-wise chord that will be given to the model are those extracted with the ACE

14

model. However, for the training of the chord sequence inference model, we will rely on datasets that
are only made of symbolic chord progressions. The combination on the two systems will be detailed
further in ??.

For this task of automatic chord sequence continuation, it has been proven that using additional
musical high-level information, such as the key or the downbeat position, within the learning of machine
learning models would improves chord sequence continuations in term of accuracy score. Nevertheless,
studying the impact on the predictions in term of the functional qualification of the classification out-
puts (by taking into account the harmonic function of the chords) is still an open question. Therefore,
in this section, we focus on the impact in term of error qualification of using additional high-level
musical information for the task of chord sequence inference.

6.1 State of the art

Most recent works on symbolic music inference and symbolic music continuation rely on machine
learning and probabilistic models to infer musical information from a dataset of examples. Indeed,
neural networks have shown promising results in the generation of new musical material from scratch
or as the continuation of a track composed by a human (Hadjeres et al., 2017; Dong et al., 2018).
However, these works operate at the note level, and not at the level of chords or chord progressions.
In the field of chord sequence continuation or chord sequence generation, most works aim to infer the
chord transition probabilities without accounting for the duration of each chord. These researches
often entail Hidden Markov Models (HMMs) and N-Gram models (Tsushima et al., 2018; Scholz et al.,
2009; Yoshii and Goto, 2011). Nevertheless, sophisticated ACE models use a combination of statistical
models in order to extract chords along with other musical information such as the track segmentation
(Chen and Su, 2019), the chord duration (Korzeniowski and Widmer, 2018), the downbeat position
(Papadopoulos and Peeters, 2010) or the key estimation (Pauwels and Martens, 2014). Depending
on the temporal granularity, lot of inference models use in ACE act as a temporal smoothing system
and give a very high probability in the self-transition of chords (Boulanger-Lewandowski et al., 2013;
Korzeniowski and Widmer, 2018). Indeed, it has been shown that the highest predictive score is
obtained by a simple identity function in performing continuation with short time frames (Crestel and
Esling, 2017).

Relying on a beat-level quantification appears as a reasonable temporal scale for studying chord
transitions. At this time scale, promising results have already been obtained with Long Short-Term
Memory (LSTM) networks (Eck and Schmidhuber, 2002) for generating beat-wise chords sequences
matching a monophonic melody. More recent researches have focused on the continuation of a beat-
wise chord sequence using LSTM (Choi et al., 2016). In this work, the aforementioned problem of
large self-transition rates is partly alleviated by introducing a temperature factor that modifies the
output distribution. At each step of the generation this mechanism penalizes the self-transition in
the generated chord sequence. More generally, it has been repeatedly observed that using LSTM for
chord sequence continuation can propagate errors along the prediction (Cheng et al., 2006). Using
teacher forcing allows to minimize this error propagation by feeding ground-truth during the training
of the network (Williams and Zipser, 1989). However, even with this kind of training, a feed-forward
model composed by simple stacks of Multi-Layer Perceptron (MLP) can outperform LSTM for chord
sequence continuation (Carsault et al., 2019).

6.2 Proposals

The information on key is highly correlated to the nature of chords that will be present in a song.
For each key (minor or major), we have a specific set of musical notes called the scale. Besides, the
downbeat position is defined as the first beat of a measure. Depending of its time signature, a measure
is often composed by four beats. It has been shown that that beat-wise chords tends to be repeated
intensively and that any structural information could give useful information on the chord transitions.
(Carsault et al., 2019; Papadopoulos and Peeters, 2010).

Using additional musical information such as the chord duration (Rohrmeier and Graepel, 2012)
or the information on downbeat position (Hedges and Wiggins, 2016) have already shown an improve-
ment in term of perplexity or mean information content for the task of chord sequence prediction.
Nevertheless, understanding the musical impact of using such high-level musical information for the

15

inference of chord sequences is still an understudied area that we explore here through the use of
musical relationships between targeted and predicted chords.

In this section, the impact of using high-level musical information for the continuation of chord
sequences is studied through a functional qualification of the classification outputs. In this study, we
propose to train several models for the prediction of the 8 next beat-wise chords given 8 beat-wise
chords.

The inputs for baseline models are only the initial chord sequence. However, in order to study the
impact of adding extra information for the continuation of chord sequences, we add two other musical
information as input: the information on downbeat position and key. Then, we evaluate the impact
of using additional high-level information for this task with the help of the specifically tailored chord
analyzer presented in subsubsection 4.3.2.

6.2.1 Dataset

The Realbook dataset (Choi et al., 2016) is used for the training of chord sequence continuation models.
It contains 2,846 jazz songs based on band-in-a-box files6. All files come in a xlab format and contain
time-aligned beat and chord information. In order to work at the beat level, the xlab files are processed
to obtain a sequence of one chord per beat for each song. Our tests are made on three different
alphabet reductions: A0, A1 and A2 (detailed in subsubsection 4.3.1). Then, 5-fold cross-validation is
performed by randomly splitting the song files into training (0.8), validation (0.1), and test (0.1) sets
with 5 different random seeds for the splits (the statistics reported in the following correspond to the
average of the resulting 5 scores). Since we do not want a model that predicts exactly the input chord
sequence, we propose to remove from the dataset all files that contain the same A2 chord (see Figure 5)
repeated for more than 8 bars, leading to a total of 78 discarded songs. For all the remaining songs,
the beginning of the song is padded with 7 beat-wise N.C symbols and we use all chord sub-sequences
that contain 16 beat aligned chords, ending where the target is the last 8 chords of each song.

6.2.2 Key and downbeat as inputs

The inputs for baseline models are only a sequence of 8 beat-wise chords. However, we propose to give
the information on key or downbeat position as input of our neural networks along with the initial
chord sequence.

In diatonic music, the key defines a scale or a series of notes. Considering the major and the natural
minor keys for each of the 12 possible tonics plus the No-key symbol, we obtain an alphabet of 25
elements, where P represents the 12 pitch classes and N is the No-key symbol:

Dkey = {N} ∪ {P ×maj,min} (10)

Chord changes are strongly correlated with rhythmic structure and the downbeat position. The
downbeat position is defined as the first beat of each bar. In this work, the information on downbeat
position is introduced during the learning by numerating each beat in each measure of the input chord
sequence. We note that in our training dataset, the majority of the tracks have a binary metric (often
4/4). Then, the downbeat position information of each chord in the predicted sequence is a value
between 1 and 4.

For our learning task, all the musical information (chord, key and downbeat position) are encoded
through an one-hot vector that has the size of the corresponding alphabet.

Thus, in the baseline model called the MLP-Vanilla, the inputs of the models are only the initial
sequences of 8 chords (see Figure 6, input a). In order to study the impact of adding extra information
for the continuation of chord sequences, we add two other musical information available in the proposed
dataset. For MLP-Key, the inputs of our model is the initial chord sequence and the key (Figure 6
part a and b). For MLP-Beat we use the downbeat position but not the key (Figure 6 part a and c).
Finally, for MLP-KeyBeat, we use both key and downbeat position as inputs (Figure 6 part a, b and
c). The architecture of these three models are similar to the MLP-Vanilla, excepted for the first layers
that will be shaped to fit the size of the inputs.

6http://bhs.minor9.com/

16

http://bhs.minor9.com/

�������
���������

��� �����������
������� ������������������

�
�

		

		

�

3

3�	=	180

Spectral transformAcoustic signal

High-level
C#:7 D:min G:min

Intro Chorus

Blues

78 BPM

Strict

Figure 4: Workflow of a transcription task. The signal is first represented by its time-frequency
representation. Then, musical labels or notes can be extracted from this representation. We define
two kind of transcription named strict and abstract, depending of the nature of the extracted musical
labels.

A0 A1 A2N.C

Major Minor Diminished Augmented

Maj 7

Min 6Maj 6

7 Min 7

Min Maj 7 Half Dim 7

Dim 7

Sus 2

Sus 4

Figure 5: The three chord vocabularies A0, A1, and A2 we use in the next chapters are defined as
increasingly complex sets. The standard triads are shown in dark green.

1
0
0
0

0
1
0
0

A B

0
1
0
0

0
0
1
0

B C

0
0
1
0

C C

0
0
0
1

C D

… … …

A B B D C A A B

A B D D C A B B

Prediction

TCE Loss

Ground truth

Input
xt:t+7

<latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit>

xt+8:t+15
<latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit>

Input Chord
Sequence

0
0
1
0

0
0
1
0

1
0
0
0
0
0

A:Maj

0
1
0
0

2/4

Ke
y

Do
w

nb
ea

t
po

si
tio

n

Softmax

b

a

c

Figure 6: The architecture of the proposed models. The MLP-Vanilla takes only the part a as inputs,
the MLP-Key takes the parts a and b, the MLP-Beat takes the parts a and c, the MLP-KeyBeat takes
the three parts a, b and c.

17

6.2.3 Learning the information on key and downbeat position

Instead of using the ground-truth information such as for MLP-K and MLP-B, we propose in a prelim-
inary experiment to train a network to recognize the key or the downbeat position of an input chord
sequence. In the following, this model is named MLP-Aug.

Hence, in order to perform the training of our model, the complete loss is defined as the sum of
the prediction loss related to the accurateness of the chord sequence continuation, and the additional
losses Ldownbeat for downbeat and Lkey for key detection.

Ltotal = λpLprediction + Ldownbeat + Lkey (11)

We first train our models to improve the prediction of the downbeat and the key, by setting λp = 0.
Thus, we freeze the two sub-networks and train the network by introducing the prediction loss on the
chord sequence. The overall architecture is depicted on Figure 7.

Therefore, we observe on Table 5 that when the chord alphabet come with more classes, it increases
the prediction accuracy for the key and the downbeat position. Indeed, adding chords with enriched
notes will obviously help the network to recognized the key. Some of these chords could also be passing
chords and will be located at specific positions within the bar, helping the network to determine the
downbeat position.

Table 5: Mean prediction accuracy and standard deviation on the 5-folds for the learning of the key
and the downbeat information on A0, A1 and A2 (prediction performed on a symbolic sequence of 8
chords).

A0 A1 A2

Key 53.57±1.73 59.89±3.35 61.12±1.97
Downbeat 88.15±.60 89.56±.75 89.76±.82

6.3 Models and training

In order to evaluate the proposed models, we compare them to several state-of-the-art methods for
chord sequence continuation. In this section, we briefly introduce these models and the different
parameters used for these experiments.

6.3.1 Naive Baselines.

We consider one naive baselines: a repetition model that repeats the last chord of the input sequence.

6.3.2 N-grams.

A N -gram model is trained using the Kneser-Ney smoothing algorithm Heafield et al. (2013) , with
N = 9. This model estimates the prediction probability of the following chord given an input sequence
of the previous N − 1 chords. Unlike neural network models, we do not pad the dataset with N.C.
symbols at the beginning of each song. Furthermore, as this method does not need a validation set, we
merge the train and validation set and evaluate our model on the test set. During the decoding phase,
we use a beam search, saving only the top 100 states (each states contains a sequence of 9 chords with
their associated probabilities) at each step. The final transition probability of a chord for each step is
calculated as the sum of the normalized probabilities of each states in the beam.

6.3.3 MLP-Vanilla

An encoder-decoder architecture is used for the vanilla MLP. The inputs, that corresponds to a sequence
of 8 chords, are flattened to one vector and a two-dimensional softmax if used on the output in
order to apply a Temporal Cross-Entropy loss (see Equation 12) between the prediction and the
target. A batch normalization and a dropout of 0.6 is applied between each layer of the network. In
this task, the use of a bottleneck between the encoder and the decoder slightly improved the results
compared to the classical MLP. All encoder and decoder blocks are defined as fully-connected layers

18

with ReLU activation. We performed a grid search to select the most adapted network with a variation
on four different parameters: the number of layers (nb l ∈ [1, 2, 3]), the size of the hidden layers
(nb h ∈ [100, 200, 500, 1000]), the size of the bottleneck (nb bn ∈ [10, 20, 50, 100]) and the dropout
ratio (r do ∈ [0, 0.2, 0.4, 0.6, 0.8]). Some of these parameters are depicted on Figure 8.

Regarding the accuracy scores and the number of parameters of these models, the MLP-Van that
we selected is defined by [nb l = 1;nb h = 500;nb bn = 50, r do = 0.4]

6.3.4 LSTM

A sequence to sequence architecture is used to build our model (Sutskever et al., 2014). Thus, the
proposed network is divided into two parts (an encoder and a decoder). The encoder extracts useful
information of the input sequences and gives this hidden representation to the decoder, which generates
the output sequence. The encoder transforms the input chord sequence into a latent representation
that will be fed to the decoder at each step. We propose to introduce a bottleneck to compress the
latent variable between the encoder and the decoder. Besides, an attention mechanism is used for
the decoder (Graves, 2013). Thus, the decoder generates the prediction for the next chords for each
step of the predicted continuation sequence. This process of generating the chords of the predicted
sequence in an iterative way by using LSTM units has been described in previous papers such as with
the Seq2Seq model (Sutskever et al., 2014). In order to mitigate the problem of the decoder error
propagating across time steps of the prediction, we train our model with the teacher forcing algorithm
(Williams and Zipser, 1989). Thus, the decoder uses randomly the ground-truth label instead of his
own preceding prediction for the sequence continuation. We decrease the teacher forcing ratio from 0.5
to 0 along the training. Once again, we did a grid search to find correct model parameters. Regarding
the accuracy scores and the number of parameters of these models, the LSTM that we selected has a
bottleneck and is defined by [nb l = 1;nb h = 200;nb bn = 50, r do = 0.4]

6.3.5 MLP-MS.

A multi-scale model which predicts the next 8 chords directly, eliminating the error propagation issue
which inherently exists in single-step continuation models. It provides a multi-scale modeling of chord
progressions at different levels of granularity by introducing an aggregation approach, summarizing
input chords at different time scales. This multi-scale design allows the model to capture the higher-
level structure of chord sequences, even in the presence of multiple repeated chords (Carsault et al.,
2019).

6.3.6 Training procedure

Our neural network models are trained with the ADAM optimizer with a decreasing learning rate
starting at 10−3 and divided by a factor of two when the validation accuracy does not decrease for 10
epochs. We follow a 5-fold cross-validation training procedure, by randomly splitting the dataset into
train (0.8), valid (0.1) and test (0.1) sets. In order to evaluate the efficiency of our proposed methods,
we also train state of the art baseline models for chord sequence continuation described in previous
part.

Chord sequence continuation loss For the task of chord sequence continuation, our neural net-
work models are trained with the help of a temporal cross entropy loss. For each chord in the predicted
sequence, we apply a Cross Entropy (CE) loss between the target chord and the predicted chord at
this position.

Lprediction =

T∑
t=0

CE (pred(t), target(t)) (12)

Thus, Lprediction is the sum of the CE for each time-step of the chord sequence continuation (in
the following experiments the continuation is a sequence 8 beat-wise chords).

19

…

1
0
0
0

0
1
0
0

A B

0
1
0
0

0
0
1
0

B C

0
0
1
0

C C

0
0
0
1

C D

…
…

… … …

A B B D C A A B

Concatenate

A B D D C A B B

Prediction

TCE Loss

Ground truth

Input
xt:t+7

<latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit><latexit sha1_base64="LblfDZlgFNWsx6KQIThiF+uLNFs=">AAAC5XicjVHLSsQwFD3W93vUpZviIAjC0Iow4mrQjUsFRwVHhjZmxmBfJKk4lNm6cydu/QG3+iviH+hfeBMr+EA0pe3Jufec5N4bZpFQ2vOeB5zBoeGR0bHxicmp6ZnZytz8gUpzyXiTpVEqj8JA8UgkvKmFjvhRJnkQhxE/DM+3Tfzwgksl0mRf9zJ+EgfdRHQECzRR7YrbigN9FnaKy3670Ju6pZgUmVa6F/FitV/vtytVr+bZ5f4EfgmqKNduWnlCC6dIwZAjBkcCTThCAEXPMXx4yIg7QUGcJCRsnKOPCdLmlMUpIyD2nL5d2h2XbEJ746msmtEpEb2SlC6WSZNSniRsTnNtPLfOhv3Nu7Ce5m49+oelV0ysxhmxf+k+Mv+rM7VodLBhaxBUU2YZUx0rXXLbFXNz91NVmhwy4gw+pbgkzKzyo8+u1Shbu+ltYOMvNtOwZs/K3Byv5pY0YP/7OH+Cg7Wa79X8vfVqY6sc9RgWsYQVmmcdDexgF03yvsI9HvDodJ1r58a5fU91BkrNAr4s5+4NogKdnw==</latexit>

xt+8:t+15
<latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit><latexit sha1_base64="6mN9J9KWiDVtsurbktBnrGVMJWA=">AAAC6HicjVHLSsQwFD3W1/gedemmOAiCMLSiKK5ENy5HcFRwRNqY0WhfJKk4lPkAd+7ErT/gVr9E/AP9C29iBR+IprQ9Ofeck9wkzCKhtOc99zi9ff0Dg5Wh4ZHRsfGJ6uTUrkpzyXiTpVEq98NA8UgkvKmFjvh+JnkQhxHfC883TX3vgksl0mRHdzJ+GAcniWgLFmiijqq1Vhzo07BdXHaPCr2wuqZbikmRaaU7ES8Wuv5yl1Re3bPD/Qn8EtRQjkZafUILx0jBkCMGRwJNOEIARc8BfHjIiDtEQZwkJGydo4th8uak4qQIiD2n7wnNDko2obnJVNbNaJWIXklOF3PkSUknCZvVXFvPbbJhf8subKbZW4f+YZkVE6txSuxfvg/lf32mF402Vm0PgnrKLGO6Y2VKbk/F7Nz91JWmhIw4g4+pLgkz6/w4Z9d6lO3dnG1g6y9WaVgzZ6U2x6vZJV2w//06f4Ldxbrv1f3tpdr6RnnVFcxgFvN0nytYxxYaaFL2Fe7xgEfnzLl2bpzbd6nTU3qm8WU4d2+PG55P</latexit>

In
pu

t C
ho

rd

Se
qu

en
ce

CE Loss
for key

CE Loss
for beat

Softm
ax

Softm
ax

Softmax
0
0
1
0

0
0
1
0

Figure 7: The architecture of our proposed models (MLP-Aug) that learns the key and the downbeat
position in order to improve the chord sequence continuation.

In
pu

t

O
ut
pu

t

nb_l

nb
_b

n

nb
_h

Figure 8: Varying parameters for the grid search of an Encoder Decoder neural networks. nb l is
number of layers of the encoder and the decoder, nb h is the number of hidden units for the encoder
and decoder layers, nb bn is the size of the bottleneck. We also use set different values for the dropout
ratio (r do).

20

6.4 Results

The use of specifically tailored analyzers allows a better understanding of the impact of using additional
high-level musical information. Indeed, the functional qualification of the classification outputs are
primordial in order to analyze the results beyond the classification score and understand in which
musical ways the information on key or on the downbeat position can affect the prediction of the
different models.

6.4.1 Proposed methodology

In this work, we propose to evaluate chord-based models with the help of our specifically tailored
analyzer that integrate relationships between predicted and targeted chords. Indeed, the classifica-
tion accuracy score that is used commonly for this kind of MIR tasks does not provide an in-depth
understanding on the performance of the models. Hence, in the following, we are interested in the
measurement of performance of the models, which includes its propensity to output weak errors (ac-
cepted from a musical point of view) instead of strong errors (errors that are not musically accepted).
Therefore, we rely on our ACE analyzer to perform musically oriented tests of the classification errors.

In the following, the evolution of the predictive accuracy score is first compared on the different
chord alphabet for all the different configurations. Then, complementary predictive evaluations are
performed by dividing the dataset between diatonic chords, which are built upon notes of the scale
defined by the key of the track, and non-diatonic chords. The division of chords into two subsets allows
us to see more precisely the impact of the use of musical information. We observe that the use of the
key or the position of the downbeat as input strongly constrains the network during the inference of
the continuation of a chord sequence. This encourages one to consider the evaluation of the results in
adequacy with the applicative purpose. Indeed, this work shows that it would not be relevant to use
the same metric when the objective is to obtain an accurate transcription or a functional harmonic
information. In the latter case, in the context of the development of a listening module for human
musical improvisation machine, we suggest to rely on a more musically-informed evaluation. In order
to complete this study, we rely on the ACE analyzer (presented in subsubsection 4.3.2) in order to
determine the harmonic functions of the predicted and targeted chords. Indeed, the use of this specific
analyzer allows a better musical understanding of the models’ output than a classification score. Once
again, the dataset is divided into diatonic and non-diatonic chords. Thereafter, the ACE analyzer
is used independently on both subsets in order to understand in depth the differences between the
proposed models.

6.4.2 General predictive accuracy

Our first experiment is the evaluation of the different models on the three alphabets A0, A1 and A2.
We compute the mean prediction accuracy over the output chord sequence (see Table 6). As a baseline,
we present on the first line the predictive score for the repeat model. We note that this models obtain
a rather high accuracy even for the most complex alphabets. This can be explained by the fact that
it is not rare for chords to be played more than one single beat.

Table 6: Mean prediction accuracy and the standard deviation for each method over the chord alpha-
bets A0, A1 and A2 on the 5-folds.

Model A0 A1 A2

Repeat 32.68±.75 29.86±.46 29.37±.52

9-Gram 37.87±.64 34.45±.65 33.76±.53

LSTM 40.82±.63 37.22±.44 35.29±.43
MLP-Van 41.49±.63 37.04±.40 35.47±.62
MLP-MS 41.45±.70 37.32±.32 35.91±.52

MLP-K 43.85±.62 37.72±.32 36.06±.57
MLP-B 42.06±.61 38.15±.37 36.65±.55
MLP-KB 44.86±.66 39.33±.23 37.87±.70

MLP-Aug 41.38±.72 37.50±.33 36.10±.56

21

For all the models, we observe that the accuracy decreases when using more complex chord alpha-
bets. With the binary qualification of the classification outputs, we see that the introductions of key
and/or downbeat position improve the accuracy score of the MLP on every alphabet, and that the
highest accuracy is reached when both are introduced in the MLP model. The MLP-MS models shows
globally an improvement comparing to MLP-Van models. The model that learns also the information
on key and downbeat position, denoted MLP-Aug, shows better accuracy scores than MLP-Van or
MLP-MS. We also observe that 9-Gram and LSTM models offer similar or worse results in term of
mean prediction accuracy score comparing to the MLP models. In order to study the impact of using
additional musical information in terms of functional qualifications of the classification outputs, the
following section focuses only on the MLP models.

6.4.3 Behind the score: understanding the errors

In this section, we propose to analyze the chord sequence predictions through a functional qualifica-
tion of the classification outputs (by taking into account the harmonic function of the chords). As
aforementioned, the key of a track defines a musical scale, and diatonic chords are build upon this set
of notes. Thus, in this section, we first study the evolution of the prediction score when splitting the
dataset between diatonic and non-diatonic chords.

Thereafter, we compare the functional relationships between the predicted and the targeted chords.
Our goal is twofold: to understand what causes the errors in the first place, and to distinguish “weak”
from “strong” errors with a functional approach. As detailed in subsection 4.1 , the harmonic functions
qualify the roles and the tonal significances of chords, and the possible equivalences between them
within a sequence (Rehding, 2003; Schoenberg and Stein, 1969). To perform these analyzes, we use
the ACE Analyzer library (see subsubsection 4.3.2) that includes two modules discovering some formal
musical relationships between the target chords and the predicted chords.

Distinguishing between diatonic and non-diatonic targets For the first experiment, we divide
our dataset into diatonic chords and non-diatonic chords. As aforementioned, the key of a track defines
a musical scale, and diatonic chords are the ones build upon this set of notes. ?? shows the accuracy
scores and the number of correct predictions depending on the nature of the targeted chords for the
different models over the different alphabets.

We observe that adding information on downbeat position (MLP-Beat) improves the prediction
scores for both diatonic and non-diatonic chords. The model taking the key into account (MLP-Key)
shows an important improvement for the diatonic chords, nevertheless we observe a decrease of the
classification score for the non-diatonic targets. Finally, the model using both key and downbeat
position (MLP-KB) presents a better score for the diatonic targets but loses accuracy on the non-
diatonic targets. Even if the classification scores of MLP-KB are slightly better for every chord
alphabet compared to MLP-Key, we note that the classification score for the non-diatonic targets
are better if we do not take the key into account. The model that learns information on key and
downbeat, MLP-Aug, obtain better results than MLP-Van on every alphabets for diatonic and non-
diatonic chord targets. Thus, learning the key instead of using it does not decrease the accuracy score
for the non-diatonic chord targets.

These first observations lead to the conclusion that the use of high-level musical information could
be envisaged in different ways depending on the framework in which chord prediction is realised, as well
as on the repertoire and the corpus used. For example, in the context of popular music, the accuracy
of diatonic chords could be privileged. Therefore, this would encourage the use of the information on
key in this situation. Conversely, in a jazz context where modulations, borrowing chords from other
keys, and chromatisms are more frequent, one could prefer to gain in precision on non-diatonic chords
thanks to the information on downbeat position only, even if it means losing some accuracy on diatonic
chords. This conclusion is strengthened if, as studied below, the loss in accuracy is compensated by
an improvement in the error qualification of the classification outputs in terms of harmonic function.

Substitution rules and functional equivalences Here, we evaluate models based on the harmonic
function of each chord by using relationships between the predicted and the targeted chords. We first
study the errors corresponding to usual chord substitutions rules: using a chord in place of another
within a chord progression (usually substituted chords have two pitches in common with the triad that

22

they are replacing); and hierarchical relationships: prediction errors included in the correct triads (e.g.
C:maj instead of C:maj7, C:min7 instead of C:min).

Table 8: Percentage of errors corresponding to inclusions or usual chords substitutions rules.

Model ⊂Maj ⊂min rel.M rel.m T s.2

A0-MLP-Van 4.14 1.64 1.14
A0-MLP-MS 4.14 1.68 1.17
A0-MLP-K 4.49 1.72 1.17
A0-MLP-B 4.33 1.62 1.12
A0-MLP-KB 4.67 1.69 1.12
A0-MLP-Aug 4.18 1.61 1.12

A1-MLP-Van 6.96 0.98 3.52 1.58 1.32
A1-MLP-MS 7.07 1.02 3.44 1.68 1.31
A1-MLP-K 7.04 1.12 3.58 1.62 1.29
A1-MLP-B 7.45 1.07 3.58 1.57 1.25
A1-MLP-KB 7.46 1.17 3.72 1.68 1.29
A1-MLP-Aug 7.22 1.06 3.47 1.68 1.32

A2-MLP-Van 7.69 1.14 3.34 1.61 1.23
A2-MLP-MS 7.72 1.19 3.30 1.71 1.29
A2-MLP-K 7.88 1.25 3.42 1.64 1.30
A2-MLP-B 8.30 1.19 3.42 1.68 1.20
A2-MLP-KB 8.40 1.36 3.53 1.67 1.29
A2-MLP-Aug 7.96 1.17 3.27 1.76 1.29

In Table 8, we present the percentage of errors explained by hierarchical relationships (columns
⊂ Maj and ⊂ min). The three other columns of the right part show the percentages of errors corre-
sponding to widely used substitution rules: rel. m and rel. M, relative minor and major; T subs. 2,
tonic substitution different from rel. m or rel. M (e.g. E:min7 instead or C:maj7). Other substitu-
tions (that are not discussed here) were analyzed: same root but major instead of minor or conversely,
tritone substitution, substitute dominant, and equivalence of dim7 chords modulo inversions. In the
next sections, we call “explainable” the mispredicted chords that can be related to the target chords
through one of these usual substitutions.

We observe that introducing the information on downbeat position generally increases the fraction
of errors attributed to the categories presented in Table 8. This shows a improvement of the functional
qualification of the classification outputs, since all these operations are considered as valid chord
substitutions. Hence, more errors can be explained and are acceptable from a musical perspective.

Distinguishing between diatonic and non-diatonic targets In a finer analysis, we can observe
the different ways in which the subsets of diatonic and non-diatonic targets were affected by the use of
high-level musical information. ?? presents the amount of “explainable” errors (i.e. that correspond
to usual chord substitutions) depending on this criterion on the A0 alphabet.

The first line of the table shows the cumulative percentage of explainable errors for the diatonic
(D.) and the non-diatonic (N-D.) chords. For all the models we observe more explainable errors when
the alphabets are getting more complex. The lines expl. show that using information on key and
downbeat makes the amount of explainable errors increase for the diatonic chords; the information on
downbeat improves the results for the non-diatonic chords; the information on key does not improve
the prediction for the non-diatonic chords. Finally, the lines Tot. in ?? present the sum of the correct
predictions and the explainable errors for each model.

We see here that extending the study to relevant (and not only correct) predictions, the conclusions
of the usual binary evaluations in section 6.4.3 are confirmed: information on key benefits to diatonic
chords to the disadvantage of non-diatonic chords, and information on downbeat benefits to all chords.
Thus, using the information on downbeat always improves the results independently of the nature of
chords, whereas the information on key introduced stronger constraints on the prediction.

Focus on diatonic targets The two next experiments are a focus on harmonic degrees by splitting
the dataset between diatonic targets and non-diatonic targets.

23

Concerning diatonic targets, we observe on left part of Table 10 that the non-diatonic predictions
for diatonic targets (N-D.p.) tend to decrease when using the information on key (MLP-Key and MLP-
KB) or when we learned it (MLP-Aug), which corresponds to more correct harmonic functions when
the target is diatonic. Furthermore, the ratios of errors corresponding to usual degree substitutions
augment most of the time when we are using the information on key (see right part of Table 10).
Conversely, we see that adding the information on downbeat does not change significantly the harmonic
function of the errors comparing to the vanilla MLP model. Thus, using the information on key strongly
constraints the network to predict diatonic chords. We observe the same trends for the more complex
chord alphabets.

Once again, we conclude that using the information on key improves the results only for diatonic
chords, whereas using the information on downbeat always improves the results independently of the
nature of the chords.

Table 10: Left: percentage of Non-Diatonic prediction (N-D.p.) over the classification errors when the
target is diatonic, right: errors (> 2%) corresponding to degrees substitutions (% of the total number
of errors on diatonic targets). In this table, the column I∼IV correspond to totals of the errors that
satisfy: I substituted to IV or IV substituted to I.

Model N-D.p. I∼IV I∼V IV∼V I∼vi IV∼ii I∼iii

A0-MLP-Van 22.53 15.54 18.77 4.58 4.53 2.61 2.93
A0-MLP-MS 22.28 15.33 18.66 4.61 4.54 2.68 2.98
A0-MLP-K 13.09 16.24 22.96 2.63 6.85 2.07 4.15
A0-MLP-B 22.30 15.67 18.19 4.77 4.68 2.79 3.04
A0-MLP-KB 12.75 16.61 22.1 2.87 6.96 2.23 4.36
A0-MLP-Aug 21.31 15.80 19.04 4.54 4.66 2.60 3.01

Focus on non-diatonic targets Finally, the last study on the functional qualification of the clas-
sification outputs is conducted focusing on the evolution of the non-diatonic targets.

We realise this analysis on the major songs only since they are most represented in the dataset. We
extract the non-diatonic chords from each song (reduced to the A0 alphabet) to study the corresponding
predictions resulting from each of the sub-models. The results are shown in Table 11: all these
observations are aggregated thanks to a representation on a relative scale starting from the tonic of
the key (0) and graduated in semitones (in the key of C Major, 0-min = C:min, 1-Maj = C#:Maj,
etc.).

The table shows the total amount of instances of each non-diatonic chord class in the corpus com-
pared to the amount of correct predictions of the models. First of all, we notice that the non-diatonic
chord classes most represented in the dataset correspond to well-known passage chords, secondary
dominants that could be used to add color to otherwise purely-diatonic chord progressions or to em-
phasize the transition towards a local tonality or key. Indeed, the class 2:Maj corresponds to the
secondary dominant V/V (fifth degree of the fifth degree of the key), 9:Maj to V/ii, 4:Maj to V/vi,
and finally 10:Maj corresponds to bVII which is frequently used as a substitution of the fifth degree
V.

This results show that taking the information on downbeat position into account (MLP-Beat)
improves the prediction accuracy score on the most represented classes (2:Maj, 9:Maj, 4:Maj). We can
assume that this can be explained by the function of these transition chords. Indeed, as passing chords,
they are often used at the same positions in turnarounds, cadences, and other classical sequences, which
may explain why the information on downbeat helps identify them.

Finally, the models using the key (MLP-Aug, MLP-Key and MLP-KB) present a lower amount
of correct predicted chords on these same classes. This is in line with the results presented earlier,
i.e. the deterioration in the error qualification concerning non-diatonic chords when this information
is used. However, using the information on downbeat position improves always the results even for
non-diatonic chords.

24

Table 11: For each class of non-diatonic chord (relative scale starting from the tonic of the key): total
amount of instances in the corpus (Tot.) and percentage of correct predictions for each of the models.

Tot. MLP-Van MLP-MS MLP-K MLP-B MLP-KB MLP-Aug

0-min 15k 27.99 28.63 30.21 28.65 31.07 27.56
1-Maj 18k 26.81 27.47 23.67 28.43 24.88 26.61
1-min 2k 12.48 13.57 10.18 13.37 10.33 13.27
2-Maj 90k 36.77 36.28 30.74 38.13 32.16 36.02
3-Maj 21k 35.29 35.13 30.14 35.59 31.43 35.59
3-min 6k 11.02 10.89 9.41 11.11 9.19 11.14
4-Maj 48k 25.97 26.17 22.53 26.36 24.43 24.66
5-min 33k 18.89 20.0 16.16 19.74 16.91 18.95
6-Maj 8k 29.21 29.79 17.93 29.57 25.0 29.59
6-min 6k 20.72 25.02 15.7 23.05 16.59 18.65
7-min 26k 15.79 15.6 12.36 15.46 12.97 15.35
8-Maj 23k 27.51 27.35 27.3 27.69 28.21 27.43
8-min 2k 14.04 13.62 13.52 14.28 13.85 13.48
9-Maj 75k 29.41 29.99 26.41 30.4 27.78 28.74
10-Maj 44k 32.75 32.54 25.14 33.06 25.11 32.3
10-min 7k 19.75 19.96 14.94 20.36 15.71 19.4
11-Maj 19k 21.69 21.15 19.53 21.49 20.46 21.09
11-min 7k 16.35 16.67 12.31 15.83 13.7 15.11

6.5 Conclusion

In this section, we studied the introduction of musical metadata in the learning of multi-step chord
sequence predictive models. To this end, we compared different state of the art models and choose the
most accurate one to run our analysis on different chord alphabets. First, we concluded that using
information on key globally improves the classifications score as well as the error qualification in term
of harmonic functions. Secondly, after distinguishing between diatonic and non-diatonic chords, we
found that using the metadata about key only improves the classification score of diatonic chords. In
parallel, we observed that introducing the information on downbeat improves both the precision of the
diatonic and the non-diatonic predicted chords. A finer analysis of the non-diatonic chords revealed
that the non-diatonic chords that are the most represented in the data correspond to passing chords and
secondary dominants. We showed that the introduction of information on downbeat helps the model
to identify these most relevant non-diatonic chords, which can be explained by their usual positions
within the cadences, and thus within the measures. Finally, we conclude that introducing the downbeat
position in the prediction of chord sequences always improve the results, with the usual evaluations
but also in term of functional qualification of the classification outputs. However, the introduction of
the key should be considered in the light of the corpus used and of the musical repertoire. Indeed,
using the information on key could be privileged in mostly diatonic contexts since it improves the error
qualification of the predicted harmonic function. Conversely, it may not be suitable for repertoires
where modulations and non-diatonic chords are frequents if their precise identification is important.

7 Architecture of the intelligent listening and predictive mod-
ule

This section details the combination of the chord extraction and sequence continuation model, consti-
tuting our intelligent structuring and predictive listening module able to guide creative practices.

The general workflow is depicted on Figure 1. The acoustic signal is first converted into a time-
frequency representation. The ACE system presented in section 5 is then used to extract local chords.
This model is designed to receive 15 consecutive spectrogram frames, which leads to an input data
frame of approximately 0.7 seconds. However, most songs have a tempo located broadly between 60
and 220 bpm. Since we want to work at the beat level, the average time step between two local
chord extractions may be less than 0.7 seconds. Therefore, in our implementation, each audio section

25

between two consecutive beats will be composed of 15 identical frames in order to achieve a tempo-
independent architecture. These 15 frames are calculated by averaging the audio section’s frequency
band contributions.

Secondly, we use the predictive model presented in section 6 to infer a possible continuation of
the previously extracted chord sequence ({chordn−MaxStep, ..., chordn−1}, where MaxStep is the size
of the input sequence for prediction).

The resulting chord sequence is thus a short-term prediction of the evolution of the underlying
harmonic structure. As mentioned earlier, this information allows many creative applications, notably
as a guide in a human-machine co-improvisation context by providing a specification for generative
processes. In the following we present two refinements allowing to enhance the local extraction and
the chord sequence prediction for real-time use. Then, we describe the integration of this intelligent
listening and predictive module with the DYCI2 library.

7.1 Using the temporal prediction to enhance local extraction

The chord sequence predictive system can be used to reinforce both the extraction and prediction of
the next possible chords (red feedback loop in Figure 1). Here, plocal(t) is the probability vector output
by the ACE system for dataframe at time t, and p0pred(t) is the probability of the first predicted chord
of the sequence at time t.

penhanced(t) = σ(plocal(t) + α ∗ p0pred(t)) (13)

where σ(p(t))j is defined as

σ(p(t))j =
ep(t)j∑K
k=1 e

p(t)k
(14)

The resulting vector is a linear combination of the probability vector plocal(t) and the predictive
probability vector of chords at step n, p0pred(t). In Equation 7.1, α is an arbitrary value allowing to
weigh penhanced(t), balancing between local and predictive probability vectors. In our experiments, we
choose a value of α around 0.5 in order to give more strength to the local chord estimation.

7.2 Using the prediction at previous steps to enhance the current predic-
tion

The predictions at time t < 0 can also be used to reinforce the current inference

p0pred(t) =

J∑
j=0

pjpred(t− j)

j + 1
(15)

where J defines the number of previous predictions to take into account.
Using the previous prediction gives less force to the instantaneous change in the musician’s playing.

Thus, the predictions follow more intensively the direction of the chord sequence continuation module.

7.3 Integration with DYCI2

The two models presented in section 5 and section 6 are implemented with the Pytorch framework,
and can be used independently. Their association in a real-time interactive context is developed in
the graphical programming environment Max. Both modules of the intelligent listening and predictive
module are available online7, along with tutorials.

The integration of this intelligent listening and predictive module to the DYCI2 library it realized
under the Max environnement. First, the input of a musician is processed by the Max library pipo
library8, a Max library for audio feature extraction and real-time segmentation, in order to obtain CQT
frames. Then, the intelligent listening and predictive module will predict a possible chord sequence

7https://github.com/carsault/chord extraction prediction lib
8https://github.com/ircam-ismm/pipo

26

continuation based on its extraction. In real-time application, the beat information is given manually or
with the help of a metronome. The information on downbeat position can also be given simultaneously
to the musicians (creating a temporal constraint for them) and to the chord sequence continuation
module. The Figure 3 illustrates the integration of our system with DYCI2. Hence, each predicted
chord sequence constitutes a ”short-term scenario” for the DYCI2 agent, which generates a musical
sequence in real-time corresponding to this specification. At each new chord sequence received from
the listening module (one per beat), the agent refines the anticipations generated in the previous step,
maintaining both consistency with the future scenario, and the outputs played so far.

8 Conclusion

In this work, we combined the tasks of chord extraction and chord sequence prediction in order to
infer short-term chord sequences from real-time discovery of chords in an co-improvisation context.
Our approach for both tasks was goal-oriented and we addressed questions about the representation of
the input data, musically-informed learning procedures as well as evaluations of chord-based models.
We have shown that training the chord extraction models using distances reflecting the relationships
between chords (e.g. within a Tonnetz-space or with pitch class profiles) improves the results both in
terms of classification scores and in terms of harmonic functions. We also showed that introducing
the downbeat position in the prediction of chord sequences always improves the results, with usual
evaluations but also with a functional qualification of the classification outputs. However, the intro-
duction of the key for chord sequence prediction should be considered depending of the corpus used
and the musical repertoire. Indeed, using the information of key could be privileged in mostly diatonic
contexts since it improves the error qualification of the predicted harmonic function. Conversely, it
may not be suitable for repertoires where modulations and non-diatonic chords are frequents if their
precise identification is important.

These studies on chord extraction and chord sequence prediction tasks showed that it is mandatory
to rethink some of the MIR tasks when used in a creative context. Firstly, the use of the classifica-
tion models widely used in Computer Vision could not be perfectly adapted to high-level labels such
as chord, key, genre or any other subjective labels. Indeed, high-level musical labels have intrinsic
and hierarchical relationships that should be taken into account in the developments of MIR models.
Furthermore, in some creative applications, it could be interesting to gain a better high-level under-
standing at the cost of a lower classification accuracy. Thus, a solution could be to move from strict
labels to functional annotations by taking into account the nature of musical elements. Secondly, the
integration of additional musical information in Deep Learning models can improve the results. How-
ever, the functional qualification of the classification outputs should be realized by taking into account
the application case at hand. Indeed, a model can obtain better performances in term of accuracy or
perplexity, but output biased results. Once again, performing a functional analyzes or any high-level
tests allow a better understanding of the results and a more adapted design of MIR models.

9 Discussion

In a more general context, our work led to the design of a theoretical framework which makes possible
to generalize our approach to other musical alphabets if followed. On the one hand, one could analyze
the data in order to define annotations that take into account the nature of the elements. Thus, the
annotations should have hierarchical and intrinsic relationships. Otherwise, it could be constituted
by equivalence classes that represent specific functions. On the other hand, the analyses have to be
performed with tailored evaluation methods.

References

Alexandraki, C. and Bader, R. (2016). Anticipatory networked communications for live musi-
cal interactions of acoustic instruments. Journal of New Music Research, 45(1):68–85. https:

//doi.org/10.1080/09298215.2015.1131990.

27

https://doi.org/10.1080/09298215.2015.1131990
https://doi.org/10.1080/09298215.2015.1131990

Anger-Weller, J. (1990). Clés pour l’harmonie: a l’usage de l’analyse, l’improvisation, la composition:
2ème édition revue et augmentée. HL music.

Assayag, G. and Bloch, G. (2007). Navigating the oracle: A heuristic approach. In Proceed-
ings of the International Computer Music Conference (ICMC), pages 405–412. https://hal.

archives-ouvertes.fr/hal-01161388.

Assayag, G., Bloch, G., Chemillier, M., Cont, A., and Dubnov, S. (2006). Omax brothers: a dynamic
yopology of agents for improvization learning. In Proceedings of the 1st ACM workshop on Audio
and music computing multimedia (ACM), pages 125–132. https://doi.org/10.1145/1178723.

1178742.

Bonnasse-Gahot, L. (2014). An update on the somax project. Ircam-STMS, Internal report ANR
project Sample Orchestrator. Available online: http://repmus.ircam.fr/_media/dyci2/somax_

project_lbg_2014.pdf (accessed on 22 October 2021).

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2013). Audio chord recognition with recur-
rent neural networks. In Proceedings of the International Society for Music Information Retrieval
(ISMIR), pages 335–340. Citeseer. https://doi.org/10.5281/zenodo.1418319.

Cannam, C., Benetos, E., Mauch, M., Davies, M. E. P., Dixon, S., Landone, C., Noland, K., and
Stowell, D. (2015). Mirex 2015 submission: Vamp plugins from the centre for digital music. In
Proceedings of the Music Information Retrieval Evaluation eXchange (MIREX). Available online:
https://www.music-ir.org/mirex/abstracts/2018/CC1.pdf (accessed on 22 October 2021).

Carsault, T., McLeod, A., Esling, P., Nika, J., Nakamura, E., and Yoshii, K. (2019). Multi-step chord
sequence prediction based on aggregated multi-scale encoder-decoder networks. In Proceedings of
the Machine Learning for Signal Processing (MLSP). IEEE. https://hal.archives-ouvertes.

fr/hal-02364054/.

Carsault, T., Nika, J., and Esling, P. (2018). Using musical relationships between chord labels in
automatic chord extraction tasks. In Proceedings of the International Society for Music Information
Retrieval (ISMIR). https://hal.archives-ouvertes.fr/hal-01875784/.

Chen, T.-P. and Su, L. (2019). Harmony transformer: Incorporating chord segmentation into harmony
recognition. neural networks, 12:15. Available online: https://archives.ismir.net/ismir2019/

paper/000030.pdf (accessed on 22 October 2021).

Cheng, H., Tan, P.-N., Gao, J., and Scripps, J. (2006). Multistep-ahead time series prediction. In
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 765–
774. Springer. http://dx.doi.org/10.1007/11731139_89.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine trans-
lation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
arXiv:1406.1078. http://dx.doi.org/10.3115/v1/D14-1179.

Cho, T. (2014). Improved techniques for automatic chord recognition from music audio signals. PhD
thesis, New York University. Available online: https://eric.ed.gov/?id=ED566349 (accessed on
22 October 2021).

Cho, T., Weiss, R. J., and Bello, J. P. (2010). Exploring common variations in state of the art chord
recognition systems. In Proceedings of the Sound and Music Computing Conference (SMC), pages
1–8. https://doi.org/10.5281/zenodo.849763.

Choi, K., Fazekas, G., Cho, K., and Sandler, M. (2017). A tutorial on deep learning for music
information retrieval. arXiv preprint arXiv:1709.04396.

Choi, K., Fazekas, G., and Sandler, M. (2016). Text-based LSTM networks for automatic music
composition. In Proceedings of the Conference on Computer Simulation of Musical Creativity,
arXiv:1604.05358.

28

https://hal.archives-ouvertes.fr/hal-01161388
https://hal.archives-ouvertes.fr/hal-01161388
https://doi.org/10.1145/1178723.1178742
https://doi.org/10.1145/1178723.1178742
http://repmus.ircam.fr/_media/dyci2/somax_project_lbg_2014.pdf
http://repmus.ircam.fr/_media/dyci2/somax_project_lbg_2014.pdf
https://doi.org/10.5281/zenodo.1418319
https://www.music-ir.org/mirex/abstracts/2018/CC1.pdf
https://hal.archives-ouvertes.fr/hal-02364054/
https://hal.archives-ouvertes.fr/hal-02364054/
https://hal.archives-ouvertes.fr/hal-01875784/
https://archives.ismir.net/ismir2019/paper/000030.pdf
https://archives.ismir.net/ismir2019/paper/000030.pdf
http://dx.doi.org/10.1007/11731139_89
http://dx.doi.org/10.3115/v1/D14-1179
https://eric.ed.gov/?id=ED566349
https://doi.org/10.5281/zenodo.849763

Cohn, R. (2011). Tonal pitch space and the (neo-) riemannian tonnetz. In The Oxford handbook of neo-
Riemannian music theories. http://dx.doi.org/10.1093/oxfordhb/9780195321333.013.0011.

Crestel, L. and Esling, P. (2017). Live orchestral piano, a system for real-time orchestral music
generation. In Proceedings of the Sound and Music Computing Conference (SMC), page 434. https:
//hal.archives-ouvertes.fr/hal-01577463.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H. (2018). Musegan: Multi-track sequential
generative adversarial networks for symbolic music generation and accompaniment. In Proceedings
of the Association for the Advancement of Artificial Intelligence (AAAI), arXiv:1709.06298.

Donzé, A., Valle, R., Akkaya, I., Libkind, S., Seshia, S. A., and Wessel, D. (2014). Machine improvi-
sation with formal specifications. In Proceedings of the International Computer Music Conference
(ICMC). https://doi.org/10.5281/zenodo.850840.

Eck, D. and Schmidhuber, J. (2002). Finding temporal structure in music: Blues improvisation with
LSTM recurrent networks. In Proceedings of the workshop on neural networks for signal processing,
pages 747–756. IEEE. https://doi.org/10.1109/NNSP.2002.1030094.

Eigenfeldt, A. and Pasquier, P. (2010). Realtime generation of harmonic progressions using controlled
markov selection. In Proceedings of the ICCC-X-Computational Creativity Conference, pages 16–25.
Available online: http://www.sfu.ca/~eigenfel/ControlledMarkovSelection.pdf (accessed on
22 October 2021).

Esling, P. and Devis, N. (2020). Creativity in the era of artificial intelligence. Keynote paper of the
Journées d’Informatique Musicale (JIM), arXiv preprint arXiv:2008.05959.

Euler, L. (1739). Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide ex-
positae. Ex typographia Academiae scientiarum.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning for visual un-
derstanding: A review. Neurocomputing, 187:27–48. https://doi.org/10.1016/j.neucom.2015.

09.116.

Hadjeres, G., Pachet, F., and Nielsen, F. (2017). Deepbach: a steerable model for bach chorales
generation. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1362–1371. JMLR. org. https://dl.acm.org/doi/10.5555/3305381.3305522.

Harte, C. (2010). Towards automatic extraction of harmony information from music signals. PhD
thesis. Available online: https://qmro.qmul.ac.uk/xmlui/handle/123456789/534 (accessed on
22 October 2021).

Harte, C. and Sandler, M. (2005). Automatic chord identifcation using a quantised chromagram. In
Proceedings of the Audio Engineering Society Convention. Available online: https://www.aes.org/
e-lib/browse.cfm?elib=13128 (accessed on 22 October 2021).

Harte, C., Sandler, M. B., Abdallah, S. A., and Gómez, E. (2005). Symbolic representation of musical
chords: A proposed syntax for text annotations. In Proceedings of the International Society for Music
Information Retrieval (ISMIR), volume 5, pages 66–71. Available online: https://ismir2005.

ismir.net/proceedings/1080.pdf (accessed on 22 October 2021).

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J., Oore, S., and Eck, D.
(2017). Onsets and frames: Dual-objective piano transcription. In Proceedings of the International
Society for Music Information Retrieval (ISMIR), arXiv:1710.11153. https://doi.org/10.5281/

zenodo.1492341.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. (2013). Scalable modified Kneser-Ney
language model estimation. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics, volume 2. https://aclanthology.org/P13-2121.

29

http://dx.doi.org/10.1093/oxfordhb/9780195321333.013.0011
https://hal.archives-ouvertes.fr/hal-01577463
https://hal.archives-ouvertes.fr/hal-01577463
https://doi.org/10.5281/zenodo.850840
https://doi.org/10.1109/NNSP.2002.1030094
http://www.sfu.ca/~eigenfel/ControlledMarkovSelection.pdf
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1016/j.neucom.2015.09.116
https://dl.acm.org/doi/10.5555/3305381.3305522
https://qmro.qmul.ac.uk/xmlui/handle/123456789/534
https://www.aes.org/e-lib/browse.cfm?elib=13128
https://www.aes.org/e-lib/browse.cfm?elib=13128
https://ismir2005.ismir.net/proceedings/1080.pdf
https://ismir2005.ismir.net/proceedings/1080.pdf
https://doi.org/10.5281/zenodo.1492341
https://doi.org/10.5281/zenodo.1492341
https://aclanthology.org/P13-2121

Hedges, T. and Wiggins, G. A. (2016). The prediction of merged attributes with multiple viewpoint
systems. Journal of New Music Research, 45(4):314–332. https://doi.org/10.1080/09298215.

2016.1205632.

Herremans, D., Weisser, S., Sörensen, K., and Conklin, D. (2015). Generating structured music
for bagana using quality metrics based on markov models. Expert Systems with Applications,
42(21):7424–7435. https://doi.org/10.1016/j.eswa.2015.05.043.

Humphrey, E. J. and Bello, J. P. (2012). In Rethinking automatic chord recognition with convolutional
neural networks, volume 2, pages 357–362. IEEE. https://doi.org/10.1109/ICMLA.2012.220.

Humphrey, E. J. and Bello, J. P. (2015). Four timely insights on automatic chord estimation. In
Proceedings of the International Society for Music Information Retrieval (ISMIR), volume 10, pages
673–679. https://doi.org/10.5281/zenodo.1417549.

Humphrey, E. J., Cho, T., and Bello, J. P. (2012). Learning a robust tonnetz-space transform for au-
tomatic chord recognition. In Proceedings of the Acoustics, Speech and Signal Processing (ICASSP),
pages 453–456. IEEE. https://doi.org/10.1109/ICASSP.2012.6287914.

Jiang, J., Li, W., and Wu, Y. (2017). Mirex 2017 submission: Chord recognition using random
forest model. MIREX evaluation results. Available online: hhttps://www.music-ir.org/mirex/

abstracts/2017/JLW1.pdf (accessed on 22 October 2021).

Klapuri, A. and Davy, M. (2007). Signal processing methods for music transcription. Springer Science
& Business Media. http://dx.doi.org/10.1007/0-387-32845-9.

Korzeniowski, F. and Widmer, G. (2016a). Feature learning for chord recognition: the deep chroma
extractor. In Proceedings of the International Society for Music Information Retrieval (ISMIR),
arXiv:1612.05065.

Korzeniowski, F. and Widmer, G. (2016b). A fully convolutional deep auditory model for musical
chord recognition. In Proceedings of the Machine Learning for Signal Processing (MLSP), pages
1–6. IEEE. https://doi.org/10.1109/MLSP.2016.7738895.

Korzeniowski, F. and Widmer, G. (2018). Improved chord recognition by combining duration and
harmonic language models. In Proceedings of the International Society for Music Information
Retrieval (ISMIR), arXiv:1808.05335. Available online: http://ismir2018.ircam.fr/doc/pdfs/

300_Paper.pdf (accessed on 22 October 2021).

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995. https://dl.acm.org/doi/10.5555/
303568.303704.

Lee, K. and Slaney, M. (2006). Automatic chord recognition from audio using a hmm with supervised
learning. In Proceedings of the International Society for Music Information Retrieval (ISMIR), pages
133–137. https://doi.org/10.1145/1178723.1178726.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, arXiv:1508.04025. http://dx.doi.org/10.18653/v1/D15-1166.

McFee, B. and Bello, J. P. (2017). Structured training for large-vocabulary chord recognition. In
Proceedings of the International Society for Music Information Retrieval (ISMIR). https://doi.

org/10.5281/zenodo.1414880.

McVicar, M., Santos-Rodŕıguez, R., Ni, Y., and De Bie, T. (2014). Automatic chord estimation from
audio: A review of the state of the art. IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), 22(2):556–575. https://doi.org/10.1109/TASLP.2013.2294580.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Recurrent neural
network based language model. In Proceedings of the Interspeech, volume 2, page 3. Available
online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1063.6807 (accessed on
22 October 2021).

30

https://doi.org/10.1080/09298215.2016.1205632
https://doi.org/10.1080/09298215.2016.1205632
https://doi.org/10.1016/j.eswa.2015.05.043
https://doi.org/10.1109/ICMLA.2012.220
https://doi.org/10.5281/zenodo.1417549
https://doi.org/10.1109/ICASSP.2012.6287914
hhttps://www.music-ir.org/mirex/abstracts/2017/JLW1.pdf
hhttps://www.music-ir.org/mirex/abstracts/2017/JLW1.pdf
http://dx.doi.org/10.1007/0-387-32845-9
https://doi.org/10.1109/MLSP.2016.7738895
http://ismir2018.ircam.fr/doc/pdfs/300_Paper.pdf
http://ismir2018.ircam.fr/doc/pdfs/300_Paper.pdf
https://dl.acm.org/doi/10.5555/303568.303704
https://dl.acm.org/doi/10.5555/303568.303704
https://doi.org/10.1145/1178723.1178726
http://dx.doi.org/10.18653/v1/D15-1166
https://doi.org/10.5281/zenodo.1414880
https://doi.org/10.5281/zenodo.1414880
https://doi.org/10.1109/TASLP.2013.2294580
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1063.6807

Moreira, J., Roy, P., and Pachet, F. (2013). Virtualband: Interacting with stylistically consistent
agents. In Proceedings of the International Society for Music Information Retrieval (ISMIR), pages
341–346. https://doi.org/10.5281/zenodo.1414798.

Nika, J. (2016). Guiding human-computer music improvisation: introducing authoring and control with
temporal scenarios. PhD thesis, Paris 6. https://hal.inria.fr/tel-01361835.

Nika, J., Déguernel, K., Chemla, A., Vincent, E., and Assayag, G. (2017). Dyci2 agents: merging
the” free”,” reactive”, and” scenario-based” music generation paradigms. In Proceedings of the
International Computer Music Conference (ICMC). http://hdl.handle.net/2027/spo.bbp2372.
2017.037.

Oudre, L., Grenier, Y., and Févotte, C. (2009). Template-based chord recognition: Influence of the
chord types. In Proceedings of the International Society for Music Information Retrieval (ISMIR),
pages 153–158. https://doi.org/10.5281/zenodo.1414884.

Pachet, F., Roy, P., Moreira, J., and d’Inverno, M. (2013). Reflexive loopers for solo musical improvi-
sation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
2205–2208. https://doi.org/10.1145/2470654.2481303.

Papadopoulos, H. and Peeters, G. (2010). Joint estimation of chords and downbeats from an audio
signal. IEEE Transactions on Audio, Speech, and Language Processing, 19(1):138–152. https:

//doi.org/10.1109/TASL.2010.2045236.

Pauwels, J. and Martens, J.-P. (2014). Combining musicological knowledge about chords and keys in a
simultaneous chord and local key estimation system. Journal of New Music Research, 43(3):318–330.
https://doi.org/10.1080/09298215.2014.917684.

Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., Ellis, D. P. W., and Raffel,
C. C. (2014). mir eval: A transparent implementation of common mir metrics. In Proceedings of
the International Society for Music Information Retrieval (ISMIR). https://doi.org/10.5281/

zenodo.1416528.

Rehding, A. (2003). Hugo Riemann and the birth of modern musical thought, volume 11. Cambridge
University Press. https://doi.org/10.1017/CBO9780511481369.

Rohrmeier, M. and Graepel, T. (2012). Comparing feature-based models of harmony. In Proceedings
of the 9th International Symposium on Computer Music Modelling and Retrieval, pages 357–370.
Citeseer. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.
8653 (accessed on 22 October 2021).

Schoenberg, A. and Stein, L. (1969). Structural functions of harmony. Number 478. WW Norton
& Company. Available online: https://is.muni.cz/el/1421/podzim2007/VH_53/Schoenberg_

Structural_Functions.pdf (accessed on 22 October 2021).

Scholz, R., Vincent, E., and Bimbot, F. (2009). Robust modeling of musical chord sequences using
probabilistic n-grams. In Proceedings of the Acoustics, Speech and Signal Processing (ICASSP),
pages 53–56. IEEE. https://doi.org/10.1109/ICASSP.2009.4959518.

Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I. (2016). Music transcription modelling
and composition using deep learning. In Proceedings of the 1st Conference on Computer Simulation
of Musical Creativity, arXiv:1604.08723.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, arXiv:1409.3215, pages 3104–3112.

Tatar, K. and Pasquier, P. (2017). Masom: A musical agent architecture based on self organizing
maps, affective computing, and variable markov models. In Proceedings of the 5th International
Workshop on Musical Metacreation (MUME 2017). Atlanta, Georgia, USA. https://doi.org/10.
5281/zenodo.4285244.

31

https://doi.org/10.5281/zenodo.1414798
https://hal.inria.fr/tel-01361835
http://hdl.handle.net/2027/spo.bbp2372.2017.037
http://hdl.handle.net/2027/spo.bbp2372.2017.037
https://doi.org/10.5281/zenodo.1414884
https://doi.org/10.1145/2470654.2481303
https://doi.org/10.1109/TASL.2010.2045236
https://doi.org/10.1109/TASL.2010.2045236
https://doi.org/10.1080/09298215.2014.917684
https://doi.org/10.5281/zenodo.1416528
https://doi.org/10.5281/zenodo.1416528
https://doi.org/10.1017/CBO9780511481369
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.8653
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.8653
https://is.muni.cz/el/1421/podzim2007/VH_53/Schoenberg_Structural_Functions.pdf
https://is.muni.cz/el/1421/podzim2007/VH_53/Schoenberg_Structural_Functions.pdf
https://doi.org/10.1109/ICASSP.2009.4959518
https://doi.org/10.5281/zenodo.4285244
https://doi.org/10.5281/zenodo.4285244

Tsushima, H., Nakamura, E., Itoyama, K., and Yoshii, K. (2018). Generative statistical models
with self-emergent grammar of chord sequences. Journal of New Music Research, 47(3):226–248.
https://doi.org/10.1080/09298215.2018.1447584.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. In Proceedings of the Advances in Neural Information
Processing Systems, pages 5998–6008. https://dl.acm.org/doi/10.5555/3295222.3295349.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280. https://doi.org/10.1162/neco.1989.1.2.

270.

Wu, Y., Feng, X., and Li, W. (2017). Mirex 2017 submission: Automatic audio chord recognition
with miditrained deep feature and blstm-crf sequence decoding model. MIREX evaluation results.
Available online: https://www.music-ir.org/mirex/abstracts/2017/WL1.pdf (accessed on 22
October 2021).

Yoshii, K. and Goto, M. (2011). A vocabulary-free infinity-gram model for nonparametric Bayesian
chord progression analysis. In Proceedings of the International Society for Music Information Re-
trieval (ISMIR). https://doi.org/10.5281/zenodo.1417389.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in deep learning based
natural language processing. Institute of Electrical and Electronics Engineers (IEEE), 13(3):55–75.
https://doi.org/10.1109/MCI.2018.2840738.

Zhou, X. and Lerch, A. (2015). Chord detection using deep learning. In Proceedings of the International
Society for Music Information Retrieval (ISMIR), volume 53. https://doi.org/10.5072/zenodo.
243542.

32

https://doi.org/10.1080/09298215.2018.1447584
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://www.music-ir.org/mirex/abstracts/2017/WL1.pdf
https://doi.org/10.5281/zenodo.1417389
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.5072/zenodo.243542
https://doi.org/10.5072/zenodo.243542

	Introduction
	Objectives: extracting and predicting chord progressions from a real-time audio stream
	Designing a predictive module that infer chord sequences based on real-time chord extraction
	An intelligent listening module performing continuation of chord progressions

	Musical motivation: inform human-machine music co-improvisation
	Guiding step-by-step
	“Guiding” with formal temporal structures
	Guiding strategies

	Methodology: introducing functional qualification of the classification outputs of MIR chord-based models by taking into account the harmonic function of the chords
	Nature and functions of musical chords
	Differentiate strict and high-level transcriptions in MIR
	Chords alphabets and functional qualification of the classification outputs
	Definition of chord alphabets
	Proposed evaluation: functional qualification of the classification outputs (by taking into account the harmonic function of the chords)

	Automatic chord extraction tasks
	State of the art
	Proposals
	Dataset
	Models
	Definition of chord distances
	Tonnetz distance
	Euclidean distance on pitch class vectors
	Introducing the relations between chords

	Results
	Proposed methodology
	Usual evaluation: binary qualification of the classification outputs (right chord predicted versus wrong chord predicted)
	Proposed evaluation: functional qualification of the classification outputs (by taking into account the harmonic function of the chords)

	Conclusion

	Chord sequence continuation tasks
	State of the art
	Proposals
	Dataset
	Key and downbeat as inputs
	Learning the information on key and downbeat position

	Models and training
	Naive Baselines.
	N-grams.
	MLP-Vanilla
	LSTM
	MLP-MS.
	Training procedure

	Results
	Proposed methodology
	General predictive accuracy
	Behind the score: understanding the errors

	Conclusion

	Architecture of the intelligent listening and predictive module
	Using the temporal prediction to enhance local extraction
	Using the prediction at previous steps to enhance the current prediction
	Integration with DYCI2

	Conclusion
	Discussion

