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Onset Detection in Somax

0.1 Introduction

Onset detection, i.e., the task of detecting and segmenting an audio file into
musically meaningful discrete events, is crucial in the Somax system for sev-
eral reasons. First of all, the system uses a form of concatenative synthesis
for its generation, meaning that the corpus that Somax is trained on and
from which the system generates its content requires a meaningful segmen-
tation, For audio-based content, this is typically on the onset level. Other
segmentation levels are possible (for example segmentation by beat or by
bar), but even in these cases, onset detection is typically a pre-requirement.
Secondly, onset detection is also necessary for the real-time listening mod-
ules that Somax use to handle audio input from a musician. The detected
onsets determine both when to trigger new output from the system as well
as when to segment the input stream into events and send its analysis of
continuous descriptors such as pitch and chroma to the discretized model.

This effectively means that there are two cases of onset detection in
Somax, the first one being computed offline (i.e. with access to information
about the entire audio content it is computed on) on a corpus (typically one
or several audio files) specified by the user, and the second one one being
computed in real-time on an input signal from a musician.

The current Somax architecture consists of two components: a Python
back-end that handles scheduling and analysis of the runtime modules on
a discrete event level as well as all offline processing of corpora, and a
MaxMSP front-end that handles all real-time processing of audio signals into
discrete events. It’s also important to be aware of that Somax is intended
to be genre-agnostic, meaning that it is intended to work well with content
of any genre, ranging from classical music to unpitched percussive music
to modern pop/rock music as well as content that typically doesn’t fit in a
musical genre, for example speech. For this reason there are a number of
different onset detectors implemented in both the python backend as well
as the MaxMSP front-end. Among these are bonk [12], a low-latency onset
detection algorithm designed for percussive sounds, yingb [5], a statistical
model based on the Yin pitch detection algorithm [10] to detect onsets from
monophonic audio signals, onseg [15], a spectrum-based onset detector for
polyphonic music and finally a spectral flux-based algorithm for polyphonic
onset detection loosely based on [8]. All four implementations are real-
time compatible, but the last one has a number of additional features to
improve the performance for offline computation. Bonk, yingb and onseg
are implemented in the MaxMSP environment while the spectral flux-based
onset detector is implemented in Python.

Several of these onset detection algorithms have been designed for real-
time artistic use in particular, but lack formal evaluation. There are several
reasons for this (where time and resource constraints surely is one), but
the most prominent issue is the fact that there’s no clear target group for
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either of them – the majority of them are not designed with a particular
instrumentation and/or genre in mind, thereby making formal evaluation
difficult. For the HyVibe guitar, the context is different – there’s a clear
target group both in terms of instrumentation (acoustic guitar) and genre
(pop, rock, jazz, etc.). For this reason, this report will focus on evaluating
the relevant implemented onset detectors with regards to HyVibe’s target
group.

0.1.1 State of the Art

Little has happened in the domain of onset detection during the past couple
of years. The Music Information Retrieval Evaluation eXchange (MIREX)
was continuously monitoring (offline) onset detection up until 2018, where
the same implementation [14] had won for five years in a row [4]1. This im-
plementation makes use of convolutional neural networks and is available in
the madmom [7] library in Python, but is not real-time compatible. A real-time
adaptation of an earlier version of the algorithm was made with recurrent
neural networks in 2012 [6] and is to this date considered the state of the
art in online onset detection. A compilation of real-time onset detection
algorithms was however made by the same author in 2012, showing that
there’s very little difference in performance between the the RNN-based
onset detector and state of the art spectral flux-based onset detectors [8],
and in 2013 an improved version of the spectral flux-based onset detector
consistently outperformed the RNN-based one for certain datasets [9]. The
spectral-flux based classifier used in Somax is loosely based on this imple-
mentation and briefly described in [11]. A full description of the algorithm
is available in section 0.2.

It’s also worth noting that these classifiers have been evaluated on a
dataset consisting of a mix of polyphonic and monophonic music of varying
quality, where a majority (70.5%) of the excerpts are either monophonic or
unpitched [3]. None of the classifiers have been evaluated on a dataset
consisting solely of acoustic guitar excerpts.

0.2 Compared Algorithms

As mentioned in section 0.1, four onset detection algorithms are imple-
mented in Somax: bonk [12], yingb [5], onseg [15] and a spectral flux-
based [11], but the former two are designed specifically for percussion and

1the CNN-based onset detector has occasionally been outperformed in certain categories,
for example in the category "Solo Plucked Strings" in the same year by Roebel et al. who
implemented another CNN-based offline onset detector [13], but the overall performance has
consistently been higher for [14]. See [4] for details.
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monophonic instruments respectively, and will therefore not be evaluated
here as neither category is relevant for the HyVibe guitar.

0.2.1 Onseg (PiPo)

The algorithm used for real-time onset detection in the MaxMSP front-end
of Somax is not formally described in any paper, but it was introduced in [15]
and the source code is available at [2]. The algorithm can be described as
follows:

Given a real-time monophonic signal x[n] ∈ R∞
[−1,1], we compute the spec-

trogram |X(m, k)|2 ∈ R for each framem = ⌊n/L⌋with k ∈ N frequency bins
(base-2) and a hop length L ∈ N. By applying ITU-R 468 weighting on the

spectrogram, we get the equal-loudness spectrogram
!!!X(loud)

m (m, k)
!!!
2

. The

energy ξ[m] ∈ R for frame m is simply defined as the sum of the loudness
spectrogram, i.e.

ξ[m] =

N−1"

k=0

!!!X(loud)(m, k)
!!!
2

, (1)

and the onset strength function ODF[m] is defined as the difference between
the energy of the current frame and of the median of the F previous frames,
i.e.

ODF[m] = ξ[m]−med (ξ[n− 1], . . . , ξ[n− F ]) , (2)

where F ∈ Z+ is a user-controlled parameter ("filter length"). The frame m

is an onset if #
ODF[m] ≥ T

m−mprev ≥ M

(3)

(4)

for some user-defined threshold T ∈ R+ ("threshold") and minimal inter-
onset interval M ∈ N ("minimum interval") where mprev denotes the index
of the previously selected onset frame.

Note that the Onseg algorithm is not only designed to detect onsets but
to segment a signal, i.e. detecting both onsets (start of a segment) and
offsets (end of a segment). For this reason, it consists of a number of ad-
ditional steps after detecting the onset, but these are not relevant for the
online functionality of the Somax library as it only uses onsets.

0.2.2 Spectral Flux (Librosa)

Another onset detector is implemented in the Python back-end. This is pri-
marily an offline onset detector loosely based on the best-performing spec-
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tral flux onset detector in [6], but is implemented to be real-time compatible.
This onset detector was introduced in [11] and the source code is available
at [1]. At the moment, this classifier is only used in Somax when construct-
ing the corpus but could easily be implemented in the MaxMSP front-end or
directly in the HyVibe guitar.

Given a real-time monophonic signal x[n] ∈ R∞
[−1,1], we compute the Log

Mel-spectrogram
!!X(mel)(m, k)

!!2 ∈ R for each frame m = ⌊n/L⌋ with k ∈
N frequency bins (base-2) and a hop length L ∈ N. We then define our
onset strength function at frame m as the mean of the positive values of the
difference between the current frame and the previous, i.e.

ODF[m] =
1

N

N−1"

k=0

$
H

%!!!X(mel)(m, k)
!!!
2

−
!!!X(mel)(m− 1, k)

!!!
2
&'

. (5)

For offline onset detection, i.e. given a finite signal x[n] segmented into
D ∈ N frames, the onset detection function is normalized, i.e.

ODF[m] =
1

max
m∈D

ODF[m]
ODF[m] ∀m ∈ 0, . . . D − 1 (6)

but this step is omitted for real-time onset detection. Finally, a frame m is
an onset if

(
)*

)+

ODF[m] = max ({ODF[m− w1], . . . ,ODF[m+ w2 − 1]})
ODF[m] ≥ mean ({ODF[m− w3], . . . ,ODF[m+ w4 − 1]}) + T

m−mprev ≥ M

(7)

(8)

(9)

for user-defined parameters w1, w2, w3, w4 ∈ N controlling the window length,
a minimum amplitude threshold T ∈ R+ and a minimum onset interval
M ∈ N. In the real-time case, w2 = w4 = 0, resulting in the following
system:

(
)*

)+

ODF[m] = max ({ODF[m− w1], . . . ,ODF[m]})
ODF[m] ≥ mean ({ODF[m− w3], . . . ,ODF[m]}) + T

m−mprev ≥ M.

(10)

(11)

(12)

0.3 Evaluation

0.3.1 Dataset

For evaluation, we’re using the GuitarSet dataset [17], a manually anno-
tated dataset consisting of 183 minutes of acoustic guitar excerpts in five
genres: rock, jazz, funk, bossa nova and singer-songwriter. The excerpts
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are divided into two types of arrangements: "solo", where the musicians
were asked to perform a solo over a given chord progression, resulting in
a mostly (but not strictly) monophonic content, and "comp", where the mu-
sicians were asked to provide an accompaniment for the same chord pro-
gression, resulting in (mostly) polyphonic content. There are 30 different
excepts in each arrangement recorded by six different musicians or in total
180 excerpts per arrangement. The content was recorded with hexaphonic
microphones, but in this report, a monophonic mixdown of the six tracks
was used (the folder audio_mono-pickup_mix provided in the dataset), as
this was considered to be the closest to the audio quality of the HyVibe gui-
tar’s monophonic input. The excerpts were recorded with a sampling rate
of fs = 44100 Hz and the content is not normalized, therefore providing the
entire spectrum of dynamics in a way that is similar to a real-time situa-
tion. To increase the size of the dataset and provide a more complex case, a
third category "combined" was created, where the corresponding "solo" and
"comp" tracks for each musician were mixed into a single track. By doing
so, the final dataset consists of 540 excerpts over the three arrangements.

0.3.2 Methodology

There are a number of problems associated with evaluating onset detection
on polyphonic content. First of all, the exact position of the onset can in
many cases be difficult to determine when annotating the dataset (for the
full description of the the annotation procedure of the dataset, see [17]).
For this reason, we will consider two onsets to be aligned if the estimated
onset is within ±25 ms of the ground truth (i.e., the manually annotated
onset), as per the standard for real-time onset detection defined in [8].

The second problem is related to the guitar in particular as well as the
practical use-case in Somax, namely the fact that when several strings are
struck close to simultaneously (e.g. when a chord is played), we only want
to detect a single onset in order to avoid several almost simultaneous gen-
eration phases in Somax. For this reason, a minimal onset interval τ ∈ R+

was defined so that any onset in the annotation occurring within τ ms of
a previous onset was discarded. In this report, a value of τ = 100 ms was
selected through manually listening to the content with the onsets sonified,
evaluating the quality of the result with different values for τ . In general,
an interval smaller than 100 ms would for the given dataset in many cases
result in multiple onsets detected for a single chord, while an interval larger
than 100 ms would frequently lead to missed onsets in fast-paced excerpts.
The user-controlled parameterM in equations 4 and 9 was adjusted accord-
ingly so that

M =

,
τ

1000
· fs
L

-
(13)
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where fs denotes the sampling rate and L the hop length as described in
section 0.2.

The onset detection algorithms were evaluated with regards to preci-
sion, recall and F-measure according to the MIREX standard [3], i.e., where
precision is defined as the proportion of detected onsets being real onsets,

precision =
TP

TP+ FP
, (14)

recall is defined as the fraction of actual onsets detected

recall =
TP

TP+ FN
(15)

and F-measure is defined as the harmonic mean of the precision and recall,
i.e.

F-measure = 2 · precision · recall
precision+ recall

, (16)

where TP, FP and FN denote number of true positives, false positives and
false negatives respectively. The MIREX standard also defines a category
"Doubled Onset Rate" (several detections for one ground-truth onset), but
as the precision for this category (±25 ms, i.e. a window of 50 ms) is below
the given τ , this was not used in the evaluation.

The evaluation procedure was done in two steps where the first step
was to find the optimal parameters for each onset detector using a grid
search and the second step to evaluate the entire dataset with the optimal
parameters

0.3.3 Grid Search

For each onset detection algorithm, the grid search was performed over the
given user-controlled parameters in several steps, where in each step, the
onsets were estimated and compared with the ground truth in regards to F-
measure according to the procedure described in section 0.3.2. The initial
values for each parameter were selected in a window around the default
values (as defined in the source code) for each parameter. Given k evaluated
parameters and a window of n different values for each parameter, we get a
time complexity of O

.
nk

/
per search per evaluated excerpt.2 Two excerpts

2Note that a grid search is in this case applicable despite the exponential complexity due
to the fact that there are a fairly low number of relevant user-controlled parameters: three
for Onseg and four for the spectral flux-based onset detector. When fully parallelized on a
MacBook Pro 2019 2.3GHz 8-core Intel Core i9, a single search for the spectral flux-based
onset detector over all 30 excerpts and an average of n = 6 is computed in 37 minutes. The
corresponding values for a similarly-performing classifier with seven parameters would be 5.5
days and 200 days for nine parameters.
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were randomly selected from each arrangement (solo, comp, combined) for
each genre (rock, jazz, funk, bossa nova, singer-songwriter), in total 30
excerpts. The result of each search was evaluated with respect to the F-
measure, where the set of parameters resulting in the highest F-measure
were selected as the next center for the following search. The following
search would either

1. Continue the search with the same grid resolution centered around
the selected parameters if one of the parameters was the end point
of the search (for example, if some parameter θ ∈ Z[0,10] yields the
highest F-measure at θ = 10, a new grid search would be performed
around θ ∈ Z[5,15]).

2. Refine the resolution of the search (if applicable, e.g. for real-valued
parameters), if none of the estimated parameters from the previous
search were end-points of the current window. In this case, for a given
parameter θ ∈ R with an initial window of n ∈ N different values and a
resolution ρ ∈ R between consecutive values for n, and a value θ̂ that
optimizes the F-measure, the new window for the search was defined
as R[θ−ρ,θ+ρ] with a new resolution of ρ/n.

3. If the increase in F-measure of the optimal parameter set computed
through step two is greater than ε = 0.1 compared to the previous
search, repeat step two, otherwise terminate the search.

For the Onseg algorithm described in section 0.2.1, the grid search was per-
formed over the parameters L (hop length) F (filter length), and T (thresh-
old). For the spectral flux-based algorithm described in section 0.2.2, the
grid search was performed over the parameters L (hop length), w1 (max
window length), w2 (mean window length) and T (threshold).

0.3.4 Evaluation on Full Dataset

Once the ideal parameters were estimated through the grid search over the
30 selected excerpts, the performance of each onset detection algorithm
was evaluated over the entire dataset of 540 excerpts, using the procedure
described in section 0.3.2, and are presented in the following section.

0.4 Results

0.4.1 Overall results

When evaluated over the entire dataset, the Onseg algorithm achieved a
precision of 67.75%, recall of 59.82% and F-measure of 62.75% using the
optimal parameters L = 128, F = 26 (corresponding to 75 ms) and T = 2.2.
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The grid search was computed in five steps and achieved an optimal F-
measure of 65.30% for the 30 excerpts. The spectral flux-based algorithm
achieved a precision of 69.38%, a recall of 60.02% and an F-measure of
63.54% using the optimal parameters L = 128, T = 0.45 w1 = 70 (corre-
sponding to 203 ms), w3 = 215 (corresponding to 624 ms). In this category,
the spectral flux-based algorithm slightly outperformed the Onseg algorithm
in all three measures.

Onset Detector Precision Recall F-Measure

Onseg 0.6775 0.5982 0.6275

Spectral Flux 0.6938 0.6002 0.6354

Figure 1: Overall results for the Onseg and spectral flux-based onset detectors

0.4.2 Results per Arrangement

The results per arrangement for the Onseg algorithm and the spectral flux-
based algorithm can be seen in figures 2 and 3 respectively. We see that the
Onseg algorithm outperforms the spectral flux-based algorithm in both the
"solo" and "combined" categories with F-measures of 61.42% and 68.71%
respectively, while the spectral flux-based algorithm greatly outperforms
the Onseg algorithm in the "comp" category with an F-measure of 67.86%.

Arrangement Precision Recall F-Measure

Solo 0.6191 0.6158 0.6142

Comp 0.6232 0.5652 0.5811

Combined 0.7901 0.6136 0.6871

Figure 2: Results for the Onseg algorithm by arrangement

Arrangement Precision Recall F-Measure

Solo 0.5825 0.5558 0.5645

Comp 0.7143 0.6642 0.6786

Combined 0.7845 0.5807 0.6632

Figure 3: Results for the spectral flux algorithm by arrangement
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0.4.3 Results per Genre

The results per genre for the Onseg algorithm and the spectral flux algo-
rithm can be seen in figures 4 and 5 respectively. The Onseg algorithm
achieves better results in the jazz and singer-songwriter categories, while
the spectral flux algorithm achieves better results in the rock, bossa Nova
and funk categories. The differences in performance between the two are
however not as emphasized as the difference between the two in terms of
arrangement, apart from in the Funk category, where the difference in pre-
cision is huge (0.105).

Genre Precision Recall F-Measure

Jazz 0.6466 0.6017 0.6153

Rock 0.7315 0.6057 0.6549

Bossa Nova 0.6729 0.6124 0.6344

Singer-Songwriter 0.7475 0.6055 0.6609

Funk 0.5888 0.5657 0.5718

Figure 4: Results for the Onseg algorithm by genre

Genre Precision Recall F-Measure

Jazz 0.6648 0.5855 0.6127

Rock 0.7377 0.6101 0.6604

Bossa Nova 0.6899 0.6275 0.6499

Singer-Songwriter 0.7157 0.5999 0.6432

Funk 0.6938 0.5782 0.6111

Figure 5: Results for the spectral flux algorithm by genre

0.5 Discussion & Future Work

In the state of the art of onset detection algorithm evaluation, we’re nowa-
days used to seeing F-measures close to 90% for offline algorithms [4] and
above 80% for online algorithms [9] on certain datasets. In that context,
the overall F-measures of 62.75% (Onseg) and 63.54% (spectral flux) might
seem discouraging at first. It’s however important to be aware of that these
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are evaluated on much simpler datasets, for example the MIREX05 dataset
where less than a third of the excerpts are polyphonic [3]. For the particu-
lar case of real-time onset detection in polyphonic acoustic guitar excerpts,
there is no baseline before this report.

While the spectral flux-based onset detector is performing slightly better
than the Onseg algorithm, the difference between the two algorithms is not
big enough to prefer one over the other in the general case. In the current
Somax architecture, Onseg is used in the front-end environment (as it is
the one available in MaxMSP) and the spectral flux algorithm is used in the
back-end (as it is the one available in Python). One benefit of both of these
algorithms is their relative simplicity, both in terms of how complex they are
to implement, computational complexity as well as memory requirements.

For further research that eventually would lead up to the implementa-
tion of an onset detector in the HyVibe guitar, the spectral flux-based onset
detector would most likely serve as a better basis, as it is more aligned with
the state of the art and could therefore benefit from the numerous prepro-
cessing methods for real-time onset detectors suggested in [8], for example
by using Adaptive Whitening (first introduced in [16]), for normalizing the
onset strength function. Worth noting is that if the normalization step de-
scribed in equation 6 is applied, the result of the initial search for the spec-
tral flux-based onset detector achieves an F-measure of 0.7581 in the overall
case (an improvement of .1047) and 0.8387 in the solo arrangement (an im-
provement of .2742!). Applying this step directly is obviously not possible in
real-time case, but adaptive whitening could ideally somewhat approximate
such normalization.

By having a baseline established, evaluating new onset detection algo-
rithms as well as estimating the optimal parameters for the particular use
cases of the HyVibe guitar will also be greatly simplified using the same
code basis. While this report only evaluated onset detection algorithms
already implemented in Somax, the same code basis could be used to eval-
uate both adaptations of the existing algorithms, other spectral flux-based
approaches or even the neural network-based onset detection algorithms of
the state of the art, should they be considered viable in terms of memory-
and computation-complexity for the HyVibe guitar.
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Appendix A

Hexaphonic Onset
Detection

The main premise for the evaluation procedure described in section 0.3 and
the following results in section 0.4 was that only a single pickup is used
to record the input from the guitar, as is currently the case for the HyVibe
guitar. In this case, we have a monophonic signal that may consist of ei-
ther monophonic or polyphonic content, and the problem of onset detection
becomes quite complex as we’ve seen in the report.

Another strategy would be to use a hexaphonic pickup to record each
string of the guitar individually. In this case, we have six monophonic signals
where each signal only has monophonic content, which would significantly
reduce the complexity of the problem. Of course, this comes at the cost of
a sixfold increase in computational cost, as the same algorithm has to be
computed for each of the six strings, but if this cost can be afforded, the
performance is likely to increase dramatically.

Evaluating these onset detection algorithms for the case of the hexa-
phonic pickup would require its own report. The GuitarSet [17] dataset that
was used in this report could still be used in this case, as it consists of both
monophonic and hexaphonic recordings, but the code and evaluation pro-
cedure would require significant revision, and is therefore out of scope for
this report. What’s presented in this appendix is merely a pre-study that can
serve as a basis for the hexaphonic case. Here, we will instead evaluate how
the two algorithms perform when evaluated over monophonic content. The
same procedure as was described in section 0.3 will here be repeated with
just the 180 excerpts in the "solo" category, using the same monophonic
mixdown files as were described in section 0.3.1.1 The purpose of this is to

1Note that this content is not strictly monophonic, it is rather of solistic character and certain
excerpts may therefore contain some polyphony, but it’s sufficiently close to true monophony
to serve as a basis for this pre-study.
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determine (a) whether the parameters for the grid search would be signifi-
cantly different for monophonic content and thereby (b) if the two evaluated
algorithms would perform better in this case.

Similarly to the procedure in section 0.3.1, here 30 excerpts (six from
each genre) out of the 180 solo excerpts were randomly selected for the grid
search, which was performed in the same manner as described in section
0.3.3 for each algorithm. The parameters from the grid search were then
used to compute the performance of each algorithm over the entire set of
the 180 solo excerpts.

A.1 Results

When evaluated over the set of the 180 excerpts in the "solo" category, the
Onseg algorithm achieved a precision of 86.37%, recall of 68.71% and F-
measure of 75.91% with the optimal parameters L = 128, F = 5, T = 11.2.
The grid search was computed in three steps with an optimal F-measure of
76.92% for the 30 test excerpts. The spectral flux-based algorithm achieved
a precision of 89.09%, a recall of 71.30% and an F-measure of 78.72%,
thereby outperforming the Onseg algorithm in every category, with the op-
timal parameters L = 128, T = 0.67, w1 = 0 (corresponding to 0 ms)
and w3 = 1 (corresponding to 2.90 ms). The grid search was computed
in six steps with an optimal F-measure of 78.96% for the 30 test excerpts.
Per genre, the differences were small—none of the measurements deviated
more than ±3 percentage points (±4 for precision in Onseg)—and will for
this reason not be presented individually.

Onset Detector Precision Recall F-Measure

Onseg 0.8637 0.6871 0.7591

Spectral Flux 0.8909 0.7130 0.7872

Figure A.1: Overall results for the Onseg and spectral flux-based onset detectors
over the set of the 180 excerpts in the "solo" category.

There are two important takeaways here. First of all, there’s a dramatic
increase in performance in comparison to table 1, with an increase in F-
measure of 0.1316 for Onseg and 0.1518 for the spectral flux-based onset
detector. The increase in precision is even larger with 0.1862 for Onseg
and 0.1971 for the spectral flux-based. For recall, the increase is not as
dramatic but significantly better with 0.0889 for the former and 0.1128 for
the latter.

Secondly, the ideal parameters computed by the grid search were al-
most the opposite in every category compared to the parameters presented
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in section 0.4. For the set of solo excerpts evaluated here, we have short
windows (F , w1, w3) and high thresholds (T ), while in the general evalua-
tion in section 0.4 we have long windows and low thresholds. From a theo-
retical perspective it’s reasonable that sparse (monophonic) signals can be
evaluated over a shorter window, but it could technically be a result of the
quantization of the grid search.

The grid search can essentially be seen as the solution to an optimiza-
tion problem of a parametric function f(v) ∈ R where v denotes our vector
of parameters that may be either discrete or real-valued. Due to the com-
putational cost of computing f(v) over our dataset, we cannot evaluate all
possible values of the hyperplane v, we will have to use some quantization
of v, but as f(v) lacks analytical solutions, we have no understanding of
its gradient and there’s therefore no guarantee that our grid search will
converge into the global maximum.

Thus, in order to ensure that the difference in optimal parameters for
the solo case and for the general case was significant, a final experiment
was conducted where the spectral flux-based onset detector was evaluated
over all 540 excerpts of the entire database using the parameters of the
"solo" excerpt grid search (i.e., L = 128, T = 0.67, w1 = 0 and w3 = 1).
This experiment achieved a precision of 87.77%, a recall of 45.68% and
an F-measure of 56.17% (in the "all" category from section 0.4, i.e. over
all 540 excerpts). In other words, these parameters would dramatically
increase the precision of the algorithm at the cost of a significantly lower
recall, thereby resulting in an overall lower F-measure. This indicates that
the convergence towards these two different sets of parameters was indeed
relevant for the two different cases.

A.2 Conclusion

No definite conclusions can be inferred for the hexaphonic case based on
this study, but the results indicate that both onset detection algorithms eval-
uated in this report perform significantly better in the monophonic case.
The parameters of the grid search converged towards short windows and
high thresholds in the monophonic case, in comparison to the polyphonic
case where they converged towards long windows and low thresholds. The
short window/high threshold parameters used here would however result in
a significantly higher precision in the polyphonic case, but at the cost of a
much lower recall and thereby yielding an overall result lower F-measure.
The precision and recall are already accounted for through the F-measure,
but for future studies, the differential between the two might also be worth
accounting for in the optimization criteria, so that each step of the search
would yield the set of parameters that optimize both the recall and precision
along the given axis, rather than optimizing the mean of the two.
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