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Abstract

In this report, we explore how the RepMus team at IRCAM tackled the problem of
automatic musical improvisation in the last few decades, with a particular focus on
SOMax. Then, by training variational autoencoders on a dataset of chromas, we’ll
see a potential improvement to SOMax clustering model.
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Introduction

1 Goal of the internship

The last decade has seen the rise of artificial intelligence, thanks to the increasing
computing power and to progress made in the machine learning associated fields. AI
techniques have been irrigating the sphere of artificial creativity, with applications
to visual art, poetry or music. In music, a particular domain called automatic im-
provisation consists in creating musical interactions between humans and computers.
Such devices have been developed at IRCAM (Institut de recherche et coordination
acoustique/musique), a French scientific and artistic institution founded in 1970 by
the composer and director Pierre Boulez. In this report, we will be focusing on SO-
Max, which is the third iteration of a long-going project (DYCI2) in the RepMus
team at IRCAM, directed by Gérard Assayag. The main goal of SOMax is to create
virtual agents that interact with other agents (i.e. real musicians or computers) in
an improvisation context. Such an agent therefore needs some sort of latent musical
knowledge, as well as being able to listen and react in real time to its context. The
purpose of such systems is to create new musical experiences, by dialoguing with the
musician, similarly to human-human improvisation.

The purpose of this internship is to improve SOMax’s core model, which is, at the
time, a little bit blurry. In the first part, we’ll explore the state-of-the-art concerning
automatic improvisation ; then in part 2, we’ll give a detailed explanation of SOMax
and of the methods used during the internship, and then we will present the works
and results in part 3.
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2 On improvisation

There is not a single definition for musical improvisation : it depends on the genre,
the period... for instance, there are musical genres that imply a guideline or a basis
material for improvisation, such as polyphonic improvisation over a cantus firmus
in the Renaissance, a figured bass in the baroque era or a chord grids in jazz ; on
the contrary, in free jazz or krautrock for instance, musicians can improvise without
predefined constraints. The idea for an automatic improvisation software would be
to combine those two types of improvisation : the machine should be able to work
under contraints (e.g. follow a jazz grid, or play in the style of a composer) as well as
having a free component in order to make the generation innovative and create happy
accidents. This mode of functioning is certainly close to how most improvisers play.

While giving constraints to a computer is "easy", letting the computer wander freely
in a musical world while paying attention to the constraints is much more difficult to
tackle. This is the goal of SOMax : the computer generates music on its own (with
self-consistency) but it is also paying attention to the player in real-time, while also
having a corpus of reference of which it cannot escape.
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State of the art

In this part we’ll present what has been achieved at IRCAM concerning automatic
improvisation, and then we’ll see how Variational Autoencoders work.

1 OMax

OMax is a software developed at IRCAM by G. Assayag, M. Chemillier and G. Bloch
aiming to generate improvisation based on a given material. The main idea is to
go navigate a musical corpus in a non linear way, jumping from one chord/note to
another that can be much further. One important feature of OMax is that the material
is learned in real-time from the musician playing, thus creating a strong interaction
between the machine and the human. This process is called "stylistic reinjection".
The way OMax goes through the corpus is based on the Markovian properties of
the corpus, and therefore recombines the corpus in a harmonically and melodically
coherent way.

Figure 2.1: Source : [1]
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2 SOMax 2

SOMax works by navigating in a non-linear way in a musical corpus, using a guidance
provided by the playing of the human improviser. It is therefore a genuine human-
machine interaction, where one reacts to the actions of the other in real time. SOMax
works as following :

1. Building and modelling the corpus (offline)

2. Listening to the musician in real time (online)

3. Generation

2.1 Building and modelling the corpus (offline)

The user provides a midi file containing the corpus, which will serve as a training
material.

Slicing This file is divided in slices, each slice corresponding to a midi event (see
figure 2.2). For each slice, we compute "traits" (features). Those traits are related to

Figure 2.2: Slicing (source : [2])

the melodic/harmonic content (chromas, which notes are inside the slice... see [3]).

The slices are notated S
(C)
u where u is the index and the exponent means that the

slice belongs to the corpus C. Formally, a slice is a set containing temporal, melodic
and harmonic information :

S(C)
u = {t(C)u , du, ζu, τu, δu, θ

(1)
u , ..., θ(Q)

u }

where :
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• t
(C)
u is the instant of apparition of the slice (in discretized time, where a unit

corresponds to a beat)

• du is its length (idem)

• ζu is the tempo

• τu is the instant of apparition of the slice (in absolute time, i.e. in ms)

• δu is its length (idem)

• les θ
(q)
u are the different traits

Thus, we built a corpus C as a set of slices :

C = {S(C)
1 , ..., S

(C)
U }

Clustering and classification We set Q as the number of traits. Once the corpus
is built comes its modelling. We consider R "layers" (with R < Q), each containing
a clustering with respect to a unique trait as well as a n-gram model.

Let’s consider the layer r ∈ [1, R]. It is built with respect to the trait θ(q) (we should
write the layer rq...). The clustering is written

Θ(r)(θ(q)|C)

which means that on this layer r, each slice will be clustered with respect to its q-th
trait. Once this clustering is done (using a pretrained clustering algorithm : SOM,
or VAE+kNN), we can classify each of those slices. We note

l(r)u = Θ(r)(θ(q)u |C) ∈ Z

the label of slice u for trait q (r and q are closely related).

Modelling Finally, we build a model M(r) as an application mapping a vector of
labels lll to a set containing all slices corresponding to lll.

2.2 Listening to the musician in real time (online)

Once this corpus is built, we aim to navigate through it in a non-linear way : the
incoming audio flow has to be modelled in order to make it interact with the model
of the corpus. This step is called the influence process.
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The fundamental characteristic of what follows is the short-term memory of our
model. Indeed, at instant t, the influences generated until passed time (up to t− δt)
will have an impact on the output.

Slicing We begin (again) by slicing the input, almost identically as for the corpus.
We create a flow of slices K :

K = {S(K)
1 , ..., S

(K)
V }

where
S(K)
v = {t(K)

v , dv, ζv, τv, δv, θ
(1)
v , ..., θ(Q)

v }

Warning : where t
(C)
u corresponds to an instant in the corpus, t(K)

v corresponds on the
contrary to an instant in the current generation.

Clustering and classification As for the, R layers are created, each of them
having a clustering according to a certain trait. The slices of K are therefore classified
in the same way as those of C. Each slice of influence S

(K)
v thus has, for each layer r,

a label l(r)v = Θ(r)(θ
(q)
v |K).

We now want to match those slices of nfluences to slices of the corpus.

Matching the corpus, "peaks" Let’s consider a slice of influence S
(K)
v at time

t
(K)
v , on a layer r. Let k ∈ Z∗ We have

lll(r)v :=
[
l
(r)
v−k ... l

(r)
v

]
We pass this vector into the model M(r) of the corpus, to obtain a set of slices of the
corpus, noted Σ

(r)
v :

Σ(r)
v = M(r)(lll(r)v ) = {S(C)

u1
, ..., S(C)

uj
}

From Σ
(r)
v , we build a "peaks" matrix :

PPP (r)
v =

[
t
(C)
u1 ... t

(C)
uj

yu1 ... yuj

]

where y is a score given to the peak. We also write pppum =

[
tum

yum

]
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Figure 2.3: Short-term memory (source : [2])

Then comes the crucial step : the creation of the short-term memory. We add the
peak PPP

(r)
v−1 to the peak PPP

(r)
v , while lowering their weight. More precisely, we offset the

time of appearance of the peaks in the past, and exponentially decrease their score
(see [2] and Figure 3.5).

2.3 Generation

A trigger signal asks the model to generate. For each trigger, the system fetches the
peaks of each layer, which see their score multipilicated by a used-defined factor α(r).

The final output is selected in the corpus as being the closest (time-wise) slice of the
peak having the highest score (in the final peaks matrix).

3 Variational Auto-Encoders (VAEs)

An autoencoder is a machine learning model consisting in an encoder e which com-
presses the data x in a lower-dimensional space, and a decoder d that "reconstructs"
the data such that x̂ = d(e(x)) ≈ x.

A more sophisticated approach is to combine AEs with Variational Bayesian methods,
thus resulting in VAEs[4]. In this framework, we assume that the set of data X =

{xi}Ni=1 is generated using a random latent variable z:

1. zi (latent data) is generated by a prior pθ∗(z)

2. xi is generated by a posterior pθ∗(x|z)

We assume that the parametrized probability density functions are differentiable.
Therefore we can retrieve the distribution of the data pθ∗(x) by approximating the
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Figure 2.4: Architecture of an autoencoder (schematic from the Tikz standalone
github)

following (intractable) integral :

pθ∗(x) =

∫
pθ∗(z)pθ∗(x|z)dz

The principle of variational inference is to appriximate pθ∗(x|z) (which is intractable)
by a simpler distribution qϕ(z|x) where ϕ is an auxiliary parameter. The goal is to
learn θ and ϕ such that the discrepancy between p and q is minimal. qϕ(z|x) is the
(probabilistic) encoder and pθ(x|z) is the (probabilistic )decoder.

We aim to minimize the Kullback-Leibler divergence between the posterior pθ(z|x)
and its estimation qϕ(z|x).

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z)[log qϕ(z|x)− log pθ(z|x)]

Using Bayes’s formula :

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z)[log qϕ(z|x)− log pθ(x|z)− log pθ(z)) + log pθ(x)]
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(pθ(x) is independent from z)
Rearranging both sides gives us :

log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z)[log pθ(x|z)−DKL(qϕ(z|x)||pθ(z))]

Therefore, assuming pθ(x) is a constant (with respect to ϕ, minimizing the KL-
divergence is equivalent to maximizing L(θ, ϕ, x) defined by

L(θ, ϕ, x) = Eqϕ(z)[log pθ(x|z)︸ ︷︷ ︸
reconstruction

−DKL(qϕ(z|x)||pθ(z))]︸ ︷︷ ︸
regularization

We usually have an hyperparameter called β which alters the Kullback-Leibler part
of the loss, in the following way :

L(θ, ϕ, x) = Eqϕ(z)[log pθ(x|z)− βDKL(qϕ(z|x)||pθ(z))]

The point of this is to give more important to the reconstruction during the early
training epochs, and then progressively increase β to give the KL-loss importance.

In order to optimize L, we have to specify the form of the distribution q. As in most
cases, we will define qϕ(z|x) = N (z|µ(x;ϕ),Σ(x;ϕ)) where Σ and µ are deterministic
functions parametrized by ϕ. We also choose the prior to be p(z) = N (0, I). The
KL-divergence between two Gaussian distributions is known as a closed form :

DKL[N (µ(x), σ(x))||N (0, I)] =
1

2
(tr(Σ(x)) + (µ(x))T (µ(x))− k − log detΣ(x))

where k is the dimensionality of the distributions.

In practice, qϕ(z|x) (encoder) and pθ(x|z) (decoder) are implemented using neural
networks, and µ and Σ are the outputs of the encoder. The latent vector z is then
sampled using N (µ(x), σ(x)).

Our goal is to perform stochastic gradient descent on L. However, this sampling step
prevents us from doing backpropagation, hence the introduction of the reparametriza-
tion trick. It consists in replacing the sampling of z ∼ N (µ(x), σ(x)) by the sampling
of ϵ ∼ N (0, I), and then computing z = µ(x) + Σ

1
2 (x)× ϵ

Variational autoencoders have proven their strength in data generation as well as in
clustering. We will be focusing on clustering in the following sections.
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Figure 2.5: Architecture of a VAE

10



Improving the clustering model of SO-
Max

Code available on https://github.com/benjamin-feldman/VAE-omax.

In this section we will see how SOMax clustering layer can be improved by replacing
the use of self-organizing maps (SOM) by a VAE.

1 Data and preprocessing

The data used for the experiments is the corpus of the J.S. Bach chorales, available
in Music21.

Figure 3.1: An example of a choral Lob und Preis sei Gott, BWV 10, in its pianoroll
representation

Each piece is processed as follows:

1. Divide the piece at each beat in slices
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2. Reduce each slice modulo 12 to have a 12-tone vector

3. Compute harmonics to create a fake chroma vector

The augmented harmonic content is computed by adding harmonics following the
natural harmonic series. We end up with data points looking like fig. 3.2.

Figure 3.2: A preprocessed data point

2 Training

Then a VAE with 2D convolutional layers is trained on those data (the 12-tone vectors
as seen as (12,1) matrixes, for implementation purposes), on Google Colab’s GPUs.
We used [5] as a starting point. All implementation is done using Python and Keras.
The training is done using a β-VAE with a cold start, meaning that if we train for
N epochs, then β will be set to 0 during the first N

10
epochs and will then increase

linearly up to a value between 0 and 1 (in our experiment, the value 0.2 was found
to be a good compromise). The training is done for 300 epochs, and lasts for about
45min. Going to further epochs "completes" the latent space, eliminating the "holes",
but it does not change the overall structure of the latent space (as seen on following
figures).

On fig. 2 we can see some latent spaces (all reduced in 2-D via principal component
analysis) for different dimensions d.

3 Evaluation

At this point we should have a structured latent space of chromas. In order to
evaluate the latent space, we create a synthetic labeled dataset of chromas. Each
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Figure 3.3: KL and reconstruction loss of the VAE. The KL starts diminishing around
the 30th epoch, which is when β starts increasing.

chroma is built from a chord (restricted to major or minor triads) and then enriched
harmonically.

We thus have a test dataset Y = {(si, li)}i where si is the slice and li the chord label
(e.g. D:min).

We then project this dataset in the latent space (by feeding it into the encoder) and
compute the centroid for each chord class. This is what we obtain (after 2-D PCA),
with each chord class having a different color :

How to assess the quality of this space ? Let’s assume we have a distance d defined
on chords (more on this later), such that d(c, c′) ∈ [0, 1]. We denote VK(c) the K

nearest neighbors of c.

∀c ∈ Chords, Sc =

∑
c′∈VK(c)d(c,c′)

K

Sc is the "score" of c. The lower it is, the better the chord is placed in the space. The
total score of the space is simply computed as S =

∑
c Sc

24
. This will give us a tool to

evaluate the performance of our model.

What distance do we use ? This was inspired by [6]. Let c1 and c2 be two
chromas with chord labels l1 and l2. The first idea would be to use the euclidean
distance between the two chromas. This approach is not well-suited since the distance
between a tonic chord and its dominant would be higher than the distance between
the tonic and its minor relative, which is not acceptable in the case of tonal music
(where the dominant should be the "closest"). Therefore we use the following distance
:

d(c1, c2) =

{
min(1, ||c1 − c2||) if c1 is dominant to c2 or vice versa
||c1 − c2|| else

13



d=2, epoch = 0 d=3, epoch = 0

d=2, epoch = 20 d=3, epoch = 20

d=2, epoch = 100 d=3, epoch = 100

d=2, epoch = 299 d=3, epoch = 299

Figure 3.4: How latent spaces evolve with the training epoch
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Figure 3.5: 3-D latent space reduced to 2-D via PCA ; each cluster has been reduced
to one point (its centroid), and then a Voronoi tesselation has been computed

In order to have d between 0 and 1 as aforementioned, we simply need to normalize
it by max

c,c′∈Chords d(c, c
′).

3.1 Comparison to the Tonnetz space

Considering such a distance, an ideal organization of the latent space would be a neo-
riemannian Tonnetz space. Neo-riemannian considers that a transition from a chord
to another should minimize the melodic movement (this rule was already known and
applied for centuries). It defines three elementary operations to change from a chord
to another :

• Operation R (relative), between a chord and its relative (e.g. Cmaj → Amin,
or Cmin → Ebmaj)

• Operation L (Leittonwechsel), between a chord and its counter-relative (e.g.
Cmaj → Emin or Cmin to Amaj)

• Operation P (parellel) between a chord to the other mode of the same chord
(e.g. Cmaj → Cmin or Cmin → Cmaj)

These operations generate what we call the Tonnetz space :

Computing our score on the Tonnetz space gives us a score of 0.28 (with K = 5), see
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Figure 3.6: The Tonnetz space (source: Wikipedia)

fig. 3.8.

Figure 3.7: Evaluation of a 2D Tonnetz. S = 0.28

3.2 Comparison to the original SOM model

The current SOMax implementation uses a Self-Organizing Map (SOM) that was
computed a while ago, in the form of 3600 chroma (12-D) vectors, as well as 3600
corresponding classes (121 classes in total). We first reduce the 3600 chroma vectors
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to 121 (one by class, by averaging all the chromas of each class into one "centroid").
Then, we generate 24 chromas corresponding to the 24 minor and major chords. For
each of those chromas, we find the closest chroma in the reduced SOM. Then, we
obtain a correspondance between a chord label and a SOM chroma class, that enable
us to visualize the SOM latent space (as always, reduced to 2 dimensions via PCA) :

Figure 3.8: Evaluation of the SOM. S = 0.52

We first see from the score that the SOM is not performing as good as the VAE.
Moreover, the apparent structure of the latent space is less convincing ; the fact that
there is not space

3.3 Final results

The best results were obtained with a VAE set with d = 3, i.e. a 3-dimensional latent
space.
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d VAE SOM Tonnetz
2 0.43

0.52 0.28

3 0.42
4 0.44
6 0.45
8 0.44
10 0.46

Table 3.1: Scores of VAE with different latent-space dimensions, compared to the
SOM score and Tonnetz score, using the aforementioned distance on chords

d VAE SOM Tonnetz
2 0.49

0.63 0.28

3 0.47
4 0.49
6 0.51
8 0.50
10 0.50

Table 3.2: Scores of VAE with different latent-space dimensions, compared to the
SOM score and Tonnetz score, using the Euclidean distance between the chord vectors
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Conclusion

During this internship I understood the gist of the research on automatic improvi-
sation that was done at IRCAM in the last years, by spending the first month or
so reviewing literature. My technical background in machine learning was helpful,
although I had to deeply understand VAEs (which I had hardly touched), which was
very instructive. After a review of SOMax 2, I proposed a new approach for the latent
space of SOMax, using Variational Autoencoders. By defining a metric that evaluates
the structure of the latent space on harmonic criterias, one can can conclude that this
approach is superior. The next step would be to fully implement this model into the
SOMax Core, but that was out of the reach of this internship. Doing so would enable
us to fully test this new latent space, by listening to what SOMax generates using it
as its clustering model, which is what SOMax is all about, in the end ; the metric used
in this report is very simple and does not reflect, for instance, the distance between
each cluster of the latent space, which is crucial (see fig. 2 to see how clusters are far
more separated in the d = 2 space).
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