
Internship report

Mapping and clustering on audio
descriptors spaces for DYCI2

Supervised by Jérôme Nika and Tristan Carsault

Ilian BEN-AMAR

January 31, 2022

Contents

1 Introduction 3
1.1 Presentation of IRCAM . 3

2 Structure of the project 4
2.1 Python engine structure . 4
2.2 Audio descriptors and signal processing 4
2.3 Clustering techniques . 4
2.4 Mapping . 7

3 Spaces and mapping 7
3.1 Definitions . 7
3.2 Problematic . 7
3.3 Linear mapping . 7
3.4 Adaptive distribution . 8
3.5 Mapping parameters . 9
3.6 Space morphing for clustering . 10

4 Implementation 11
4.1 Main class . 11
4.2 Reversible mapper . 12

5 Conclusion 13

1

Thanks

Many thanks to Jérôme and Tristan for taking the time to introduce me to their
interesting and fascinating project. I would like to thank also Gérard Assayag
that helped me to get in touch with researchers at IRCAM. Thanks to Valentin
Emiya for the advices and being volunteer to review my report.

2

1 Introduction

This internship takes place in the context of the DYCI2 project (Creative Dy-
namics of Improvised Interactions [3]). This project aims notably to define the
interaction between a musical human performance and a computer that im-
provises on it. The computer analyses the performance, takes account of the
musical characteristics with the help of ”audio descriptors” (indicators quanti-
fying characteristics of the musical content). And then it decides which audio
segment in its memory would be the most compatible. So the musician can
explore different parts of the computer’s memory by varying his music. But
sometimes, the audio descriptors of the memory and those of the performance
can be distant and heterogeneous, and some parts of the memory are never used
whereas some others are played very often.

We define clusters on the computer’s audio memory to create equivalence
classes. These equivalence classes allows the audio engine to follow a predefined
scenario on a given musical alphabet. So the purpose of clusterizing the audio
memory is to keep a melodic and harmonic structure in the improvisation. The
choice of a clustering technique and the choice of input. arguments of the
clustering algorithm is explained part 2 and 3. We also introduced a mapping
function that returns the closest equivalence class for each audio input, and that
adapts the input audio space (musician) to the computer’s memory audio space.
The purpose of this mapping function is to keep the improvisation similar to
the musician’s music and with the same variations. These functionalities are
implemented in Python, and designed to be compact and reused for the rest of
the project, the code structure is detailed at part 4.

The alliance of similarity, variation matching, and scenario-based musi-
cal structure, with balancing parameters; aims to define a new musical co-
improvisation human/machine.

1.1 Presentation of IRCAM

IRCAM is a french public institute located in Paris, Beaubourg. It is dedi-
cated to bring together musical creation and scientific research. The research
laboratory STMS (Science and technologies for the music and sound) is hosted
by IRCAM, CNRS and Sorbonne Universty. The lab is located mainly un-
derground, where there are an anechöıc chamber, a modular concert hall, and
many studios. The lab has an international recognition for their cutting-edge
research in that specific domain. Because the place is very limited at IRCAM
and because of the Covid restrictions, this intership took place remotely. IR-
CAM presents many concerts and artistic creations, conferences, trainings, and
events during the year. A new branch of the lab Ircam Amplify created in 2019,
works on commercializing their audio softwares and expertises for companies.
The DYCI2 project follows one of the research axis of the lab : creative dy-
namics, which aims notably to work on Artificial Intelligence for Creativity in
music and augmenting the musician’s performance. It is driven by the musical
representations research team. DYCI2 is born by bringing together 2 projects

3

: Somax and ImproteK, that headed toward the same goal with 2 two different
approaches.

2 Structure of the project

For the DYCI2 project, the team works on a Python library [4] for the audio
generation engine and a Max library that wraps the audio engine for a live and
interactive use. Because our time on this project is limited, we worked only
using the python DYCI2 library.

2.1 Python engine structure

Let’s summarize the complete processing of audio in the engine. To setup the
engine, we need an input audio file which is going to be the computer audio
memory. The engine first computes a segmentation of this audio file, and saves
all of the audio descriptors for each segment. After having chosen one or several
descriptors to follow, the engine is setup and ready for a co-improvisation human
machine. This is where the Max library for real time is useful. When the
musician plays a note, the engine extracts all of the descriptors from the sound
in real time. Using the mapping function and the structures of the equivalence
classes determines the right sample in the memory to go with that sound (1).
The computer then plays on stage the chosen sample. In this section, we will
detail all of the techniques used in that process.

2.2 Audio descriptors and signal processing

The DYCI2 library provides a lot of different audio descriptors. To begin with,
each onset correspond to the attack, the start of a musical note. The onsets
defines the time code where each audio segment starts. Here we use the onset
detection function from librosa [5], a standard audio processing python module.
Once the memory is well segmented thanks to onsets (fig. 2), the tools from
librosa enable to extract the other audio descriptors from every single segment.
The energy is a number obtained with the Root Means Square (RMS) of the
segment, then converted on a log10 scale. The pitch is also a value obtained
using a peak detection method on the frequency spectrum of the audio segment.
The chroma of a segment is a vector of length 12, each coordinate of the vector
detects the presence of a specific note on the chromatic musical scale. For a first
approach, we made the choice to restrict ourselves to the use of 1-dimensional
and ordered descriptors : energy, pitch, duration (see fig. 3).

2.3 Clustering techniques

The purpose of creating clusters is linked to other works in the DYCI2 project.
DYCI2 is partially based on the ImproteK project, and this article [2] sum-
marises how they guide human/computer improvisation. One of the guidelines

4

Figure 1: Illustration of the global operation of the program in the context of
the project. The ”energy” descriptor is chosen for this example.

Figure 2: Onset detection function applied to an audio example (”Voyager -
Daft Punk”)

5

Audio

descriptors

Segmentation of the audio file

using onsets detection

Input audio file - Pitch

- Energy

- Duration

Scatter plot of energy/pitch

features for each segment

Energy

P
it

c
h

Duration :

- Chroma

- Onsets

Figure 3: Audio descriptors extraction for DYCI2

of ImproteK was to predict a sequence following long term scenarios using a
given musical alphabet. Here, the goal is to cluster our output space in equiv-
alence classes, so in each equivalence class the engine will have the freedom to
choose the right sample that will follow the scenario. This a hybrid decision
process, that allow to get similar audio content by choosing the most similar
equivalence class, but also let the freedom to follow a pre-written musical sce-
nario. Let be k the number of clusters desired. If k is big, clusters will be
smaller and more numerous, so samples in each clusters will be more similar
with each other but the engine will have less choice to follow its scenario. And
if k is small, there will be bigger and less clusters. In each cluster the samples
will be less similar, but the ImproteK process will be able to better follow the
musical structure. We are going to choose a partitional clustering technique
because the clusters will be most of the time spherical or at least convex, and
must be non-overlapping. Moreover it is important to have as much as possible
well-balanced clusters in size and population. We could either use the K-Means
algorithm or the Gaussian mixture model. K-Means uses k centröıds with ran-
dom positions at start, and they will converge to a certain position trying to
minimize the Sum of the Squared Error (SSE). Each point belong to the closest
centröıd’s cluster, and the SSE is computer by adding up all of the squared
distances between a point and its closest centröıd. We will use the clustering
algorithms from the Python scikit-learn library [6]. Gaussian mixture model
converges with the minimization of the SSE by adjusting the parameters of k
Gaussian distributions. It allows to have more ”oval-shaped” clusters for 2 and
more dimensions.

Créer des classes d’équivalences description de la mémoire sur un alphabet
-¿ créer un modèle de séquence sur les classes, repérer des similarités internes
sur les sous-séquences

6

2.4 Mapping

How to deal with functions between discrete and continuous spaces.

3 Spaces and mapping

3.1 Definitions

Let E be the input space, F the output space, d : E×F 7→ R a distance between
descriptors from E and F , E and F are built using the chosen descriptor. For
each input from the descriptor in E, the mapping function will determine a
descriptor output in F corresponding to a sample in the memory. F is a discrete
space with n values corresponding to the n samples in the memory whereas E
is considered as a continuous space because the mapping function must support
all possible input descriptor values from the musician playing.

3.2 Problematic

The musician can’t explore all of the input space because they are limited by
their instrument range. Because the pitch range, the energy range is different for
each instrument, sometimes the instrument descriptor range and the memory
descriptor range are heterogeneous. That’s why we introduce a specific mapping
function that will adapt the input space to the output space and resolve these
problems. The purpose of the mapping function is determined by a creative
indication. A simple and intuitive example would be : ”we want an output
similar to the input”. It results in having a simple mapping function that takes
the closest sample in the memory following the chosen descriptor given an input
x ∈ E : the mapping function.{

c : E 7→ F
c : x 7→ argmin

y∈F

(
d(x, y)

)
Because F is a discrete space, c is a stepped function and we must define it well.
It’s still a simple mapping function, but it has several problems in some cases.
In that case, the ”closest” mapping function causes some problems because only
a small part of the memory is played. For instance figure 4 a), the musician’s
energy range is high, but almost all of the samples in the memory are lower
energy. It results that only a few samples in the memory are played, or even
only one sample is always played. The same problem is true with distribution
disparity 4 b).

3.3 Linear mapping

The following creative indication can partially solve the range problem : ”we
want an output that follows the variations of the input”. One of the best map-
ping functions for that would be to make a linear transformation on the input

7

Figure 4: Illustration of the 2 different problems with mapping functions.
Left axis represents the input space range and distribution, and right axis

represents the output space (samples in the audio memory)

space such that the minimum of the input space corresponds to the minimum
of the output space, and same applies to the maximum. But to express this
mapping function, it is necessary to first know the maximum and the minimum
of the input space. We propose to introduce a prior input training before
the live input performance from the musician. This prior training looks like
a rehearsal for the musician, and it will have to be representative of the live
performance. With this method, it allows to get min(E) and max(E) and to
write the following functions :

g :

{
E −→ [0, 1]

x 7−→ x−min(E)
max(E)−min(E)

h :

{
F −→ [0, 1]

y 7−→ y−min(F)
max(F)−min(F)

Each function ”normalizes” its corresponding space. With these 2 functions
implemented, the linear mapping function using these two functions is :

E −→ F
x 7−→ (h−1 ◦ f)(x)

3.4 Adaptive distribution

There is another problem with this mapping method, sometimes even if the
range of the input corresponds to the range of the the output space, the dis-
tribution of samples in these spaces is still heterogeneous and the memory is

8

Figure 5: Plots of the ϕ mapping function.
X axis is the input space, Y axis is the output space.
Audio examples used : [7] using the energy descriptor

still not fully exploited. This is why we introduce a distribution function d,
that adapts the mapping function to the sample distribution. Applied to the 2
spaces, it gives dE : E −→ [0, 1] and dF : F −→ [0, 1] functions. To define it, we
need the index function that returns the index of the descriptor x after having
sorted E.

dE :

{
E −→ [0, 1]

x 7−→ index(x)
|E|−1

The smaller sample will map to 0, the median sample will map to a value close
to 0.5, and the bigger one will map to 1. The resulting mapping function from
E to F is :

E −→ F
x 7−→ (d−1

F ◦ dE)(x)

3.5 Mapping parameters

However, there are also drawbacks to completely adapt the input and output
spaces with linear or adaptive distribution. The musical content played from
the memory can be too distant from the musician’s performance. Because of

9

Figure 6: 5 clusters on the image by ϕ of a trombone playing [7] audio space,
parameter β = 1

the creative purpose of the project, this is important to give parameters to let
the freedom to adjust the mapping based on arbitrary or aesthetic choices. Here
is a proposition for a complete mapping function with parameters β, γ ∈ [0, 1]:

ϕ :

{
E −→ F

x 7−→ (1− β)c(x) + β
[
γ(h−1 ◦ f)(x) + (1− γ)(d−1

F ◦ dE)(x)
]

The β parameter corresponds to the matching parameter, and the γ param-
eter controls the distribution matching (see fig 5).

Remark : If β = 0, ϕ = c and the other parameter γ will have no effect.

3.6 Space morphing for clustering

To obtain a better sample repartition bewteen clusters on the ouptut space, we
can use the mapping function ϕ. We take the image of the output space by
the mapping function, and clusterize the morphed output space. Let’s focus on
the influence of the γ parameter that regulates the descriptor distribution. The
figure 6 shows how the clusters change shape with a different mapping ϕ on the
descriptor space. When γ = 0, all the cluster are approximately the same size
because ϕ = d−1

F ◦ dE . The morphed space ϕ⟨F ⟩ has a constant distribution,

10

Figure 7: The structure of the python module

and thanks to partitional clustering the clusters are evenly spaced to minimize
the SSE. But when γ = 0, ϕ = h−1 ◦ f is an affine function. The distribution
of the image space ϕ⟨F ⟩ is the same as F , and the clusters stay the same as
well. It is important to keep in mind that the image space ϕ⟨F ⟩ is used only to
compute the clusters. These computed clusters are then labeled to the original
output space F . These morphings and mappings are only possible thanks to
the introduction of the prior training that will define the input space E.

4 Implementation

4.1 Main class

The python module is made of only 1 class : MemoryMapper (fig. 7). All
of the operations will be available by executing methods of a MemoryMapper
object. A MemoryMapper object has to initialize with 1 argument : infiles.
Our MemoryMapper takes one or several audio infiles, so the argument infiles

11

Figure 8: Exemple of use of the MemoryMapper class

can be 1 string path to an audio file or a list of string path to audio files. The
initialization function computes all of the descriptors from the audio and stores
them in their corresponding descriptor attribute of the MemoryMapper object
: onsets, durations, energy, pitch, chroma and ends.
MappingFunction is an attribute class of MemoryMapper.
The linear mapper() method take 1 argument, the number on the chosen
descriptor for the mapping. It returns a MappingFunction object setup with
the chosen descriptor exactly like the linear function described at 3.3. The
distrib mapper() works exactly the same, but like the distribution function
described at 3.4. Also the choose descriptor() method takes the number
of the chosen descriptor and returns the corresponding descriptor space in the
memory. The cluster() method returns the labels list for the chosen descriptor,
but it can only be used on the attributes descriptors. analyze memory() is a
method that displays informations and stats about the chosen descriptor, used
for debugging. An exemple of use of these methods can be seen fig. 8.

4.2 Reversible mapper

A MappingFunction object is a callable object. The purpose of this object
is to create a reversible mapping function f : A −→ B from 2 discrete spaces
A and B. It initializes with 1 argument mapping space, a tuple (A,B) that
contains the 2 spaces, for instance the input descriptor space and normalized
input descriptor space. When a MappingFunction object is called with an input
value x, it searches the closest value to x in A:

a = min
a′∈A

|x− a′|

12

Then it takes ia the index of a in A and return B[ia] the value of B of index ia.
With the optional argument inverse=True, this is exactly the same operation
but by swapping A and B. It would have been be interesting with more time
to try interpolation between discrete values for a better accuracy in mapping.
This gain in accuracy could be significant and useful if there is very few samples
in the space.

5 Conclusion

The goal of this work was to produce a creative tool to enhance the co-improvisation
human/machine. We developed solutions to enable the musician to fully explore
and play with the memory. First, we introduced a prior rehearsal that enables
the computer to analyse and better anticipate the content of the performance.
It enables to build a representation of the musician’s input and the computer’s
audio memory. Then, we expressed a mapping function that adapts to the
range and distribution of the input and output spaces. Also, we propose a way
to clusterize the output space, with adjustable clusters thanks to the mapping
function. The other agents of the DYCI2 project will process the output cluster
to follow a musical structure. Several parameters are available to adjust all of
these features. k the number of clusters, β the range matching parameter and
γ the distribution matching parameter.

We can’t talk about the direct impact of the parameters on the performance
in this report because the code hasn’t been yet integrated to the project. Clus-
tering may not be the only way to go, maybe the k-closest neighbours of the
output descriptor could be considered as an equivalence class. It would be also
interesting to look at ways to automatically find good parameters values during
the prior training.

References

[1] Carsault T., ATIAM Master thesis : Automatic Chord extraction and
musical structure prediction through semi-supervised learning, Application
to human-computer improvisation - IRCAM - February-August 2017, Paris

[2] Nika J., Chemillier M., Assayag G., Guider l’improvisation musi-
cale homme-machine : une synthèse sur le système ImproteK. Journées
d’Informatiques Musicales (JIM) 2016, GMEA - Labri, Mar 2016, Albi,
France - hal-01380163

[3] Nika J., Déguernel K., Chemla–Romeu-Santos A., Vincent E.,
Assayag G., International Computer Music Conference, DYCI2 agents:
merging the ”free”, ”reactive”, and ”scenario-based” music generation
paradigms. 2017, Shangai, China - hal-01583089

[4] The github repo of the DYCI2 Python and Max libraries : https://

github.com/DYCI2/Dyci2Lib

13

https://github.com/DYCI2/Dyci2Lib
https://github.com/DYCI2/Dyci2Lib

[5] McFee, B.; Lostanlen, V.; McVicar, M.; Metsai, A.; Balke, S.; Thomé,
C.; Raffel, C.; Malek, A.; Lee, D.; Zalkow, F.; et al. LibROSA/LibROSA:
0.8.1rc2

[6] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel,
V. and Thirion, B. and Grisel, O. and Blondel, M. and Pretten-
hofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and
Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M.
and Duchesnay, E., Journal of Machine Learning Research, Scikit-learn:
Machine Learning in Python, volume 12, 2011, pages 2825-2830

[7] Example audio extracts used for input and output spaces :

• Trombone solo : https://www.youtube.com/watch?v=NKwGMI_6E8U

• Igor Stravinsky - Le Sacre du Printemps (introduction) : https://

www.youtube.com/watch?v=hJH7XxTpWCI

• Daft Punk - Voyager : https://www.youtube.com/watch?v=

INbgG9M0WYE

14

https://www.youtube.com/watch?v=NKwGMI_6E8U
https://www.youtube.com/watch?v=hJH7XxTpWCI
https://www.youtube.com/watch?v=hJH7XxTpWCI
https://www.youtube.com/watch?v=INbgG9M0WYE
https://www.youtube.com/watch?v=INbgG9M0WYE

	Introduction
	Presentation of IRCAM

	Structure of the project
	Python engine structure
	Audio descriptors and signal processing
	Clustering techniques
	Mapping

	Spaces and mapping
	Definitions
	Problematic
	Linear mapping
	Adaptive distribution
	Mapping parameters
	Space morphing for clustering

	Implementation
	Main class
	Reversible mapper

	Conclusion

