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Abstract This article provides a first introduction to some formal and computational
models applied in the analysis and generation of popular music (including rock, jazz,
and chanson). It summarizes the main philosophy underlying the project entitled
“Modèles formels dans et pour la musique pop, le jazz et la chanson”, which constitutes
one of the research axes of the GDR ESARS (Esthétique, Art & Science). Initially
conceived as an extension of the MISA project carried on by the Music Representation
Team at IRCAM, this research axis aims at bringing together researchers from different
horizons, from the traditional MIR community of Music Information Retrieval to the
most sophisticated approaches in mathematical music theory and computational
musicology. It also includes an epistemological and critical evaluation of the relations
between music and mathematics, together with some programmatic reflections on the
possible cognitive and perceptual implications of this research.

Introduction

There is an increasing interest within the computational musicological community for
formal and computational models applied not only in the analysis but also in the gen-
eration of popular music. With this label, one generally includes repertoires—such as
rock, jazz, and chanson—which are not considered as belonging to the art or contem-
porary music.1 The common point among all formal and computational methods
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1This paper summarizes some aspects of this project that have been described in details in
Andreatta (2014a). For a pedagogical and large-public introduction to mathematical models in
popular music, also see Andreatta (2014b). A more technical presentation of the main concepts
described in this paper and addressed to the community of researchers working on computational
musicology is given in Bigo and Andreatta (2015).
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described in this article relies on the relevance of the interplay between geometric and
algebraic approaches in music theory, analysis and composition.2 This postulate applies
equally well to contemporary art music and popular music repertoires, which opens
interesting questions about the possible articulations between these two study domains.3

Moreover, the tools described in this paper also apply to the field of folk or traditional
music, which is—according to a programmatic article by Philip Tagg on theoretical,
methodological and practical aspects of popular music studies (Tagg 1982)—one of the
three possible kinds of music (together with classical or art music and popular music).4

This is possible thanks to the flexible nature of geometric representations, which enable to
grasp equally well the logic behind the songs and “chansons”, from The Beatles to Paolo
Conte, as well as the harmonic construction of rock/pop pieces (from Frank Zappa’s to
the songs by Depeche Mode).5 After briefly describing some theoretical aspects under-
lying the geometric representations used in the field of computational (popular) music
analysis, we will show some new visualisations of musical structures and processes

2According to the Field-medallist Alain Connes, “concerning music, it takes place in time, like
algebra. In mathematics, there is this fundamental duality between, on the one hand, geometry—
which corresponds to the visual arts, an immediate intuition—and on the other hand algebra. This
is not visual, it has a temporality. This fits in time, it is a computation, something that is very close
to the language, and which has its diabolical precision. […] And one only perceives the devel-
opment of algebra through music” (Connes 2004). This duality constitutes a major common point
between music and mathematics, allowing proposing a common basis for the creative processes in
both fields of music and mathematics, as suggested by Alain Connes in his dialogue with Pierre
Boulez on creativity in mathematics and music (Boulez and Connes 2011). See Andreatta (2010)
for a detailed description of the “mathemusical” research that has been carried on in the last ten
years within the MISA project (Modélisation Informatique des Structures Algébriques en musi-
que), with a special emphasis on the interplay between algebra and geometry. See Andreatta et al.
(2013) for a description of a category-oriented framework for describing the creative process in
music and mathematics.
3This question has been explicitly addressed in the conference “Musique savante/musiques
actuelles: articulations” (Contemporary art music/popular music: articulations), hosted by IRCAM
and organised under the auspices of the French Society of Music Analysis, in collaboration and
with the financial support of the IReMus (Institute of Research in Musicology, UMR 8223,
Paris-Sorbonne) and the BPI of the Centre Georges Pompidou and with the participation of the
French component of IASPM (International Association for the Study of Popular Music). The
Proceedings are forthcoming in a special issue of the multimedia online journal Musimédiane
(Andreatta 2016). For a first attempt at analysing the necessity of substituting this typology with a
finer taxonomy based on computational models focusing on musical objects and making use of
different theoretical approaches in order to carry on computer-aided music analysis, see Bergomi
et al. (2015).
4This typology constitutes what Tagg calls an axiomatic triangle of musical genres, each of which
being characterized by criteria such as the usual or unusual mass distribution, the existence of a
circle of professionals or a circle of amateurs who produces and transmits it, the principle modality
of storage and distribution (ranging from oral transmission, in the case of folk music, to the
recorded sound, in the case of popular music), the anonymous versus authorial character of the
underlying compositional process, and so on.
5For a recent analytical application of the formal tools discussed in this paper from the perspective
of a geometric-based automatic classification, see Bergomi et al. (2015).
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making use of a recent model providing some additional tonal information with respect to
the traditional Tonnetz representation.6

Geometric Representations of Musical Structures
and Processes

Although sometimes very far from a stylistic point of view, there are pieces
belonging to the rock, pop and “chansons” repertoire which somehow share the
same “musical logics” concerning the harmonic organization. More precisely, if one
restricts the analysis to consonant chords (major and minor), it is possible to find
interesting common points between stylistically-different pieces in the way in which
the chord progressions are constructed. In order to make these similarities evident,
the (computational) music analyst can use several geometric representations of
harmonic spaces, including the circular representation, the different types of
Tonnetze, the orbifolds, the spiral array and many others.7

In this paper we will focus on the Tonnetz, a geometric representation of the
pitch space originally proposed by Euler (1774) in the second half of the XVIIIe

century as an alternative to the well-established circular representation previously
introduced by Marin Mersenne in his Harmonie universelle (Mersenne 1636).8

The Tonnetz is a symbolic organization of pitches in the Euclidean space defined
by infinite axes associated with particular musical intervals. Although these
graph-theoretical representations have been rediscovered later by music theorists,
musicologists, and composers (including Arthur von Oettingen, Hugo Riemann and
Henri Pousseur), the interest of the computational musicology community for this
type of structure is very recent. The model is currently used to represent chord

6Two main models, the “Polarized Tonnetz” and the “Spinnen Tonnetz”, originally conceived by
Hugo Seress and Gilles Baroin, represent a very interesting way of integrating some tonality-based
constructions within transformational music analysis. For a critical presentation of these two
models and their comparison with other tools belonging to the transformational musical analysis
tradition, see Seress and Baroin (2016).
7See Bigo (2013) and Bigo and Andreatta (2015) for a historical description of the main geometric
representations in computational music analysis. Algebraic topology has provided a very elegant
theoretical framework for describing all these representations, as shown by Bergomi (2015) in his
recent doctoral thesis.
8The reader interested to learn more about the three main contributions of Leonhard Euler (as a
mathematician, physicist and music theorist) can refer to Hascher and Papadopoulos (2015).
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progressions within the so-called neo-Riemannian transformational approach,9

whose application includes post-romantic tonal music (Cohn 2012) but also rock,
jazz and pop music repertoires (Capuzzo 2004; Hascher 2007; Briginshaw 2012;
Bigo and Andreatta 2015). From a generative perspective, this model has also been
used in contemporary music (for example by the French composer Jean-Marc
Chouvel), as well as in popular music contexts, leading to a geometrically
constrained-based series of Hamiltonian Songs (Andreatta 2014b; Bigo and
Andreatta 2014).10

Mathematically-speaking, the circular representation and the Tonnetz are
equivalent ways of formalizing in an algebraic way the structural properties of the
equal-tempered system (i.e. the division of the octave into twelve equal intervals, as
in the piano). The main computational property is the possibility of generating the
system by using combinations of major third (i.e. four semitones) and minor third
(i.e. three semitones) intervals, as depicted in Fig. 1.

As the previous figure suggests, we are interested in the computational aspects of
the geometric representations, and in particular in the fact that they can be imple-
mented in programming languages for computer-aided music analysis and com-
position. For example, to compute the compactness of harmonic trajectories in
different automatic-generated Tonnetze, the computational musicologist has a new
geometric way of handling the problem of style classification, which is one of the
most interesting research areas in Music Information Retrieval. We will not enter
here into this aspect of our research, which has been largely addressed in several
recent contributions (Bigo et al. 2013; Bigo and Andreatta 2015; Bergomi 2015;
Bergomi et al. 2015), but we will focus on visualisation techniques as applied, in
particular, to popular music repertoires. Figure 2 shows the Tonnetz as generated by
three musical operators (P, R and L), corresponding to the three possible ways of
transforming a major chord into the corresponding minor chord having two notes in
common with the initial chord. These operators are respectively called the “parallel”
(indicated by P and transforming, for example, the C major chord into the C minor
chord, and vice versa), the “relative” (indicated by R and transforming, for

9Neo-Riemannian music analysis is a formal methodology developed after the writings by the
German music theorist Hugo Riemann (1849–1919). Following David Lewin’s transformational
turn in music theory and analysis (Lewin 1987/2007; 1993/2007), which integrates
neo-Riemannian techniques within a much more general approach, one may speak about
neo-Riemannian transformational music analysis as a structural methodology combining the two
independent approaches. See Gollin and Rehding (2014) for a comprehensive textbook on
Neo-Riemannian analysis.
10Hamiltonian Songs are so-called after the Irish physicist, astronomer, and mathematician Sir
William Rowan Hamilton (1805–1865). In graph theory, a Hamiltonian cycle is a path passing
through all possible nodes of a graph and ending precisely where it started. It is well known that
there are exactly 124 Hamiltonian cycles in the Tonnetz (Albini and Antonini 2009) which can be
classified by using their inner symmetries (i.e. the possibility of decomposing a given cycle into
sub-sequences that repeat identically in order to generate the entire cycle). The complete list of
Hamiltonian cycles with some examples of Hamiltonian Songs is available at: http://repmus.ircam.
fr/moreno/music.
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example, the C major chord into the A minor chord, and vice versa) and the
“leading-tone” (indicated by L and transforming, for example, a C major chord into
a E minor chord, and vice versa).

Circular Representations and Tonnetze for Popular Music

In order to show how the circular representation and the Tonnetz constitute two
complementary approaches in the analysis of harmonic progressions, let us stress a
little bit more the relevance of the notion of symmetry in music. An interesting
starting point is provided by two stylistically different pieces having the same

Fig. 1 Two mathematically
equivalent representations of
the family of pitch-classes
within the equal-tempered
system: the circular
representation, whose origin
goes back to Mersenne (on
the left) and the “Speculum
Musicum” by Euler, which is
the ancestor of the Tonnetz
(on the right). The circular
representations and the
Tonnetz are obtained
respectively by using the
OpenMusic visual
programming language (see
Agon 2004) and the
Hexachord software (see Bigo
2013)

Fig. 2 The Tonnetz as a
hexagonal tiling of the plane
where each major
(respectively minor) chord is
transformed into three minor
(respectively major) chords
via the three P, R L operators
preserving two of the three
notes of the initial chord
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“spatial” logics with respect to the harmonic organisation: Easy Meat by Frank
Zappa and Madeleine by Paolo Conte.

Let start with Zappa’s piece Easy Meat and one of the most recurrent harmonic
progression in the piece.11 This progression, shown in Fig. 3, contains sixteen
chords and can be decomposed as a repetition (via the transposition operation) of a
given cell of four chords. Each cell contains the same series of neo-Riemannian
operators, as Fig. 4 shows.

The figure shows the progression represented in an unfolding Tonnetz repre-
sentation conceived by Gilles Baroin, corresponding to the two-dimensional pro-
jection of his Hypersphere of Chords (Baroin 2011). In this case the trajectory of a
cell is rigorously translated in space, metaphorically providing a kind of composer’s
“signature” for the piece.

It is interesting to compare this type of chord progression with a different har-
monic progression used by the Italian “chansonnier” Paolo Conte in his piece
entitled Madeleine. In this song, the harmonic progression of the verse, repeated
several times all along the piece, is also constructed in a similar way. There are four
blocks, the first three of which are obtained by transposing an initial cell by an
ascending third. They therefore correspond to a same trajectory in the Tonnetz,
whereas the symmetry breaking due to the fourth block, structurally different from
the three previous ones, enables the chord progression to come back to the initial
chord. This progression is given in Fig. 5.

Fig. 3 Harmonic progression in Zappa’s piece Easy Meat, seen as a series of transpositions (of a
minor descending third T-3) of a same cell (the first one, in red). The four cells generate therefore
the same trajectory in the Tonnetz (where apparently different shapes correspond in fact to the
same trajectory because of the toroidal structure of the Tonnetz) (color figure online)

11The interest of using Neo-Riemannian techniques to analyse this passage has been originally
pointed out by Capuzzo (2004).
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Fig. 4 Zappa’s “signature” for the piece Easy Meat, represented in Gilles Baroin’s visualisation
of the Tonnetz

Fig. 5 Harmonic progression used by Paolo Conte in his song Madeleine represented as a series
of spatial translations of an initial cell containing four chords. The fourth cell, containing five
chords, functions as a new trajectory “forcing” the progression to come back to the initial tonality
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Despite this superficial analogy between the two pieces, the compositional
process in Madeleine has a remarkable property which makes the chord progression
“qualitatively” very different from that used by Zappa. In fact, up to a single chord,
which is missing, it constitutes a covering of the chromatic space by major chords
and their transpositions. This covering property is much more evident in the fol-
lowing Tonnetz representation provided by Gilles Baroin (Fig. 6).

In other words, the harmonic progression of the piece corresponds to a trajectory
which passes through (almost) all twelve major chords (with repetitions). This
property admits a natural mathematical generalization by considering the traditional
Tonnetz as a graph whose vertices consist of all major and minor chords and by
studying trajectories passing only once through all major and minor chords and
eventually coming back to the starting point. In this case, such paths are called
“Hamiltonian cycles” and have been enumerated and classified (Albini and
Antonini 2009) according to their inner symmetries. There are in fact Hamiltonian
cycles which are “redundant” (meaning that they are generated by the repetition of a
given pattern) and other cycles which are “maximal” (meaning that they are not
obtained as a concatenation of a same pattern of P, L and/or R transformations).
Such maximal Hamiltonian cycles have been used by one of the authors in the
instrumental parts of the song Aprile, inspired by a text from the Italian decadent
poet Gabriele D’Annunzio (1863–1938). More precisely, three structurally different
Hamiltonian cycles have been used, with the goal of systematically frustrating the

Fig. 6 The “almost perfect” covering of the harmonic chromatic space by major chords and their
transpositions in Paolo Conte’s Madeleine
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expectation of the listener, whose perception cannot find the logic in the three
selected progressions of chords (Fig. 7).12

The previous example shows the interest of using Hamiltonian properties of
chord progressions in a popular music context. Despite their intriguing character,
Hamiltonian cycles are challenging objects for music perception and cognition. One
may question their capability of providing harmonic material that the musical mind
can process, without getting lost in the underlying maximal variety principle.13

Since evidences of the perceptual relevance of these geometric and combinatorial
structures are still lacking, it seems reasonable to try to add some inner symmetries
in the Hamiltonian cycles used in song writing. Redundancy in the inner structure
of the Hamiltonian harmonic progressions has been used by one of the authors
(Moreno Andreatta) in the song entitled La sera non è più la tua canzone and based
on a poem by Mario Luzi (1914–2005). Hamiltonian cycles are not only used in the
instrumental parts, but—more challenging—in the verse, which obliges to create a
melody capable of supporting a continuously changing harmony. Due to its inner

Fig. 7 The three maximal Hamiltonian cycles used in the instrumental part of the song Aprile by
Moreno Andreatta, inspired by a Gabriele D’Annunzio poem (1863–1938)

12The Hamiltonian trajectories of the song have been visualised by Gilles Baroin by mixing his
Hypersphere of Chords representation and the traditional Tonnetz. It is available online at the
address: (www.mathemusic.net).
13Note that “hamiltonicity” does not only concern popular music strategies, but it plays an
important role in contemporary art music. The history of Twentieth-Century music shows that
Hamiltonian properties have been implicitly used by composers such as Pierre Boulez or Milton
Babbitt, who developed combinatorial strategies as natural extensions of the twelve-tone com-
positional system. Both composers and music theorists claimed the necessity of having a “maximal
variety principles” in composition, in order to precisely question the notion of expectation in the
musical listening process.
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symmetry, the cycle of length 24 is obtained by repeating four times the pattern
LRLPLP of six transformations, as shown in Fig. 8.

The Fig. 9 shows the visualisation of the redundant Hamiltonian cycle utilized in
the song La sera non è più la tua canzone in a new Tonnetz representation called
the Spinnen-Tonnetz.

Although one of the main features of the Spinnen-Tonnetz is to provide a tonal
centre to a harmonic progression, hamiltonicity makes the recognition of a tonality
impossible in the case of the previous song. This fact opens interesting questions
about the capability, for the musical mind to grasp these mathematical represen-
tations and to follow the logics of continuous modulations. One of the objectives of
the “Math’n Pop” project, which is carried on within the GDR ESARS, is precisely
to go deeper into the connections between cognitive neurosciences and
algebraic/geometric formalisations of musical structures and processes. As shown
by Zatorre and Krumhansl (2002), the mental key maps are related to the way in
which a major (resp. minor) chord is surrounded by minor (resp. major) chords
having two notes in common. Although the authors do not make any reference to
the neo-Riemannian transformations, the geometric space they suggest to use is
precisely the traditional Tonnetz.14

Fig. 8 The redundant
Hamiltonian cycle used in the
song La sera non è più la tua
canzone (music by Moreno
Andreatta, based on a poem
by Mario Luzi)

14We analysed the relations between mental and mathematical representations of music in Acotto
and Andreatta (2012).
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Conclusions and Perspectives for Future Research

Starting from the analytical examples presented in this paper, together with the
compositional applications that we have briefly sketched, it is clear that the popular
music repertoire (including pop music, jazz, rock and chanson) can largely benefit
from the use of formal and computational models. Although we have focused our
attention on symbolic approaches and, in particular, on algebraic and geometric
models, one interesting research area is precisely the interaction between symbolic
approaches and different techniques based on signal processing within the field of
Music Information Retrieval (MIR). A first attempt at filling the gap between these
two main components of MIR has been carried on by using dissonance functions
and advanced tools in algebraic topology in order to deform the original Tonnetz
into an anisotropic structure (Bergomi and Andreatta 2015; Bergomi 2015;
Bergomi et al. 2015). An example of deformation of the vertices of the Tonnetz

Fig. 9 The visualisation of the trajectory corresponding to the redundant Hamiltonian cycle used
in the song La sera non è più la tua canzone in the Spinnen-Tonnetz. The circle shows the initial
chord of the Hamiltonian progression (which—because of the cyclic character of the path—is the
same as the final chord, indicated with a dotted circle)
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leading to an anisotropic geometric space is shown in Fig. 10. This new structure
might be an excellent case study in order to fill the gap between the computational
musicological community and the neuroscientists working on the cognitive aspects
of the geometric formalisations of musical structures and processes.15
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