
Towards a Categorical Theory of Creativity
for Music, Discourse, and Cognition

Moreno Andreatta1, Andrée Ehresmann2,
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Abstract. This article presents a first attempt at establishing a
category-theoretical model of creative processes. The model, which is
applied to musical creativity, discourse theory, and cognition, suggests
the relevance of the notion of “colimit” as a unifying construction in the
three domains as well as the central role played by the Yoneda Lemma
in the categorical formalization of creative processes.

1 Historical Introduction to a Formal Theory of
Creativity

Although the notion of creativity seems to be incompatible with formal and
mathematical approaches, there have historically been many attempts to grasp
the creative process using computational models. The history of algorithmic
music composition, from information theory to algebraic models, exemplifies ap-
proaches that describe the computational component of creative process. For
example, the use of entropy and redundancy as parameters to describe stylis-
tic properties of artistic expression was one of the fundamental hypotheses of
information theory; a theory which, according to Shannon and Weaver, is “so
general that one does not need to say what kinds of symbols are being con-
sidered whether written letters or words, or musical notes, or spoken words,
or symphonic music, or pictures. The theory is deep enough so that the rela-
tionships it reveals indiscriminately apply to all these and to other forms of
communication” [29].

The underlying hypothesis, which also guided AI paradigms, was to simu-
late creative behavior by means of computer programs. In Douglas Hofstadter’s
words, “the notions of analogy and fluidity are fundamental to explain how the
human mind solves problems and to create computer programs that show intelli-
gent behavior” [18]. Within different computer-aided models of creative process,
music and musical creativity occupy a distinguished place. According to David
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Cope, creativity is “the initialization of connections between two or more mul-
tifaceted things, ideas, or phenomena hitherto not otherwise considered actively
connected. [...] It does not depend exclusively on human inspiration, but can
originate from other sources, such as machine programs. [It] should not be con-
fused with novelty. [It] does not originate from a vacuum, but rather synthesizes
the work of others, no matter how original the results may seem” [4].

Despite the increasing number of studies on computer-aided models of cre-
ativity, many questions about its formal and conceptual character as well as
its relationships with cognitive processes remain open. Clearly formal models of
creativity do not reduce to algorithmic and computational ones. In Margaret Bo-
den’s influential model (as discussed, for example, in [3]), creativity occurs as a
result of three different types of mental process: combinatorial, exploratory, and
transformational. Although combinatorial creativity refers to unfamiliar combi-
nations of familiar ideas, exploratory and transformational creativity arise within
structured concept spaces. In conclusion, “if researchers can define those [con-
ceptual] spaces and specify ways of navigating and even transforming them it
will be possible not only to map the contents of the mind but also to understand
how it is possible to generate novel, surprising, and valuable ideas” [3].

Interestingly, music offers a variety of concept spaces, particularly once geo-
metrical models and algebraic methods are used to characterize the structural
property of these concept spaces, as initially suggested by Gärdenfors [10] and
recently discussed by Acotto and Andreatta [1]. Among different approaches that
try to combine computational models of creative processes and concept spaces,
one has to mention the notion of “conceptual blending”, introduced in an infor-
mal way by Fauconnier and Turner [8] and further extended via algebraic and
categorical methods by Goguen [11]. As observed by Pereira from a AI-oriented
perspective, “Conceptual Blending is an elaboration of other works related to
creativity, namely Bisociation, Metaphor and Conceptual Combination. As such,
it attracts the attention of computational creativity modelers and, regardless of
how Fauconnier and Turner describe its processes and principles, it is unques-
tionable that there is some kind of blending happening in the creative mind”
[26]. In Goguen’s algebraic semiotic approach to conceptual blending, Peirce’s
tripartite sign model is combined with categorical formalism, so that a structural
component is added to the computational character of creativity. As claimed by
the author, “the category of sign systems with semiotic morphisms has some
additional structure over that of a category: it is an ordered category, because of
the orderings by quality of representation that can be put on its morphisms. This
extra structure gives a richer framework for considering blends; I believe this ap-
proach captures what Fauconnier and Turner have called ‘emergent’ structure,
without needing any other machinery” [11]. This approach has been recently ap-
plied to style modeling (see [12]), providing an alternative to AI-oriented unifying
models of conceptual spaces [9]. Our research is deeply related to this structural
account of concept spaces and creative processes, as we will show by firstly fo-
cusing on music and then trying to make evident possible connections with the
problem of a categorical analysis of the sense of discourse as well as explaining
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the underlying cognitive model. It also provides a first attempt at reactivating a
mathematically-oriented tradition in developmental psychology, as inaugurated
by Halford and Wilson in the Eighties [17] and discussed recently in [27].

This article is organized as follows. In section 2 to section 4 we introduce some
constructions from category theory by focusing, in particular, on the Yoneda
Lemma and its role in the constitution of a generic model for creative processes.
This model is applied to music in section 5, by taking as a case study the creative
process in Beethoven’s six variations in the third movement of op. 109. In section
6 we develop further the previous notion of categorical modeling based upon a
categorical shape theory of discourse. Applying the concept of a logical manifold,
we suggest in section 7 how to grasp the notion of sense and ambiguity. In
section 8 we show how the same categorical structures (and in particular the
colimit construction) provide a hierarchical and evolutive model for cognitive
systems. This model is finally restricted, in section 9, to the special case of
neuro-cognitive systems by suggesting, in this way, a new approach to human
creativity via retrospection, prospection and complexification processes.

The unity in the paper is grounded on the proposal of a single categori-
cal approach for creativity, with Yoneda’s Lemma, shape, limits and colimits.1
Therefore this enables transductions between music, discourse, and cognition,
our distinct areas of interest.

2 A Generic Model for Creative Processes

In [23], a generic model of human creativity is developed which can be summa-
rized by the following seven-step sequence: (1) Exhibiting the open question, (2)
Identifying the semiotic context, (3) Finding the question’s critical sign or con-
cept in the semiotic context, (4) Identifying the concept’s walls, (5) Opening the
walls, (6) Displaying extended wall perspectives, (7) Evaluating the extended
walls.

In this model, creativity implies the solution of the open question stated in the
initial step, and which must be tested in the last step. The contextual condition
guarantees that creativity is not a formal procedure as suggested by David Cope
in the aforementioned book [4], but generates new signs with respect to a given
meaningful universe of signs. The critical action here is the identification of
the critical sign’s “walls”, its boundaries which define the famous ‘box’, which
creativity would open and extend.

This model has been successfully discussed in [23] with respect to many ex-
amples, such as Einstein’s annus mirabilis 1905 when he created the theory of
special relativity, or Spencer Silver’s discovery of 3M’s ingenuous Post-It in 1968.
Relating more specifically to musical creativity in composition, we shall discuss

1 Colimits have been introduced by Kan in [19] under the name of “inductive limits”,
to distinguish them from the dual notion of “projective limits” as introduced by the
author in the same article. Projective limits are normally referred to as “limits”. In
our article we will make use of both terminologies.
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here the creative architecture of Ludwig van Beethoven’s six variations in the
third movement of op. 109 in the light of our model. This not only provides an
excellent example of artistic creativity, but more specifically realizes a special
case of our generic model: the creative process associated with Yoneda’s famous
lemma in category theory. It is remarkable that the Yoneda-based model relates
to colimits in category theory, a construction which is also crucial in the shape
theoretical approach to sense and ambiguity in sections 6 and 7, as well as in
the neuro-cognitive model described in sections 8 and 9.

3 Categories, Functors, and the Yoneda Lemma

To understand the role of the Yoneda Lemma within a category-theory model
of creativity, we first need to provide a short introduction to categories and
functors. We will do it in a rather informal way, stressing the perspective of
directed graph theory.2

A category C is a directed graph, possibly infinite, with possibly multiple
arrows, whose vertices are called the objects of the category, while its arrows
are called morphisms. An arrow is denoted by f : X → Y , where X is its tail,
called domain in category theory, and where Y is its head, called codomain. The
set of morphisms from X to Y is denoted by C(X, Y ), or sometimes by X@Y
if the underlying category is clear. Arrows admit an associative composition
operation that is defined in the following cases: If f : X → Y and g : Y → Z are
morphisms, then there is a morphism g ◦ f : X → Z called the composition of f
with g. There is also a special morphism IdX : X → X for every object X , its
identity, which is neutral, i.e. we have IdY ◦f = f ◦IdX = f for every morphism
f : X → Y .

The classical examples are these: (1) The category Sets of sets. Its objects are
the sets, the morphisms are the Fregean maps between sets, the composition be-
ing the classical composition of set maps. (2) The category Digraph of directed
graphs Γ . The objects are the directed graphs, while a morphism f : Γ → ∆ is a
pair of maps f = (fVert, fArr) with fVert : VertΓ → Vert∆ a map from the vertex
set VertΓ of Γ to the vertex set Vert∆ of ∆ and fArr : ArrΓ → Arr∆ a map from
the arrow set ArrΓ of Γ to the arrow set Arr∆ of ∆ which are compatible with
tails and heads of arrows. Composition of digraph morphisms goes component-
wise for vertex and arrow maps. (3) The category Top of topological spaces. Its
objects are the topological spaces, and the morphisms are the continuous maps
between topological spaces.

The three previous examples also provide interesting category-theoretic frame-
works in mathematical music theory. In fact, if set-theoretical approaches in
music analysis can be easily described in terms of objects in the category Sets
of sets, transformational music theory is elegantly formalized via the category
Digraph of directed graphs. The third case, i.e. the category Top of topological

2 Saunders MacLane’s book [21] is the classical reference on category theory.
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spaces, is by contrast the correct framework to approach musical gestures from
a mathematical perspective.3

The Yoneda Lemma makes use of the so-called opposite category Cop of a
category C: Its objects are the same, but its arrows are the arrows of C, however
noted in reversed direction, while the composition of arrows is written in opposite
order.

F (Y )
h(Y )−−−−→ G(Y )

F (f)

"
"G(f)

F (X)
h(X)−−−−→ G(X)

The composition of such functor morphisms is the evident composition of all
morphisms of sets. Morphisms between functors are called natural transfor-
mations; their set, for functors F and G, is denoted by Nat(F, G). Yoneda’s
idea was to define a functor YonC : C → C@ by assigning to each object
A of C a presheaf @A : Cop → Sets defined by @A(X) = X@A and for
each morphism f : A → B in C a natural transformation @f : @A → @B
given by @f(X) : X@A → X@B : g $→ f ◦ g. Yoneda’s lemma says that
Nat(@A, F ) ∼→ F (A) =: A@F , for every object A of C and every functor F in
C@. This means in particular for F = @B that A and B are isomorphic4 if and
only if their functors @A and @B are so. We may therefore replace the category
C by its Yoneda-image in C@.

4 Creative Subcategories, a Yoneda-Based Colimit Model
of Creativity, and Examples

Although as we have seen in the previous section Yoneda’s lemma enables the
replacement of a given category C by its Yoneda-image in C@, the functor @A
must be evaluated on the entire category C to yield the necessary information for
its identity. The creative moment comes in here: could we not find a subcategory
A ⊂ C such that the functor Yon|A : C → A@ : A $→ @A|Aop is still fully
faithful? We call such a subcategory creative, and it is a major task in category
theory to find creative categories which are as small as possible. One may even
hope to find what we call an objectively creative subcategory for a given object
A in C, namely a creative subcategory A such that for this given object A in
C there is a creative diagram DA in A whose colimit C is isomorphic to A.
Intuitively, a colimit of a diagram of spaces is obtained by gluing them along
common subspaces; it is a generalized union operator. Taking a colimit is a
natural condition since the functor @A defines a big diagram whose arrows are
the triples (f : X → Y, x ∈ X@A, y ∈ Y @A) with y ◦ f = x. The colimit
object C of such a diagram would ideally replace the functor @A by a unique
isomorphism from C to A.
3 We will come back to these three main examples of categories in section 4.
4 This means that there is an isomorphism f : A

∼→ B, i.e. a morphism such that there
is an inverse g : B → A, meaning that g ◦ f = IdA and f ◦ g = IdB.



24 M. Andreatta et al.

In the context of the Yoneda Lemma with its creative subcategories, the de-
scribed generic model of creativity looks as follows: (1) Exhibiting the open
question: understand the object A; (2) Identifying the semiotic context: this is
the category C where A has been identified; (3) Finding the question’s critical
sign or concept in the semiotic context: this is A; (4) Identifying the concept’s
walls: this is the uncontrolled behavior of @A; (5) Opening the walls: finding an
objectively creative subcategory A; (6) Displaying extended wall perspectives:
calculate the colimit C of a creative diagram; and (7) Evaluating the extended
walls: try to understand A via the isomorphism C

∼→ A. Let us look at some
illustrative examples:

Example 1. For the category Sets,we may take the creative subcategory A
with the singleton 1 = {∅} as unique object. This subcategory is even objectively
creative since the colimit of the discrete diagram defined by the elements of 1@A
is isomorphic to A.

Example 2. For the category Digraph, we may take the full creative sub-
category A defined by the two objects Vert, Arr with Vert = ({V }, ∅) and
Arr = (T, H, A : T → H). The category A is also objectively creative.

Example 3. The third example, the category Top of topological spaces, is less
simple. We do not know of any strictly smaller creative subcategory in this
case. A number of workarounds for this unsolved problem is dealt with in alge-
braic topology [30]. One approximates the total understanding of a topological
space T by the selection of subcategories Simple that are composed of “simple”
topological spaces and continuous maps which one knows very well. It is then
hoped that the Yoneda restriction Yon |Simple : Top→ Simple@ may reveal
important information about topological spaces. Typically, algebraic topology
takes the category Simple = Simplex of n-dimensional standard simplexes ∆n

with their face operators as morphisms, or the category Simple′ = Cube of n-
dimensional unit cubes In with their face operators (I = [0, 1] is the real closed
unit interval). In order to understand Yoneda restrictions to Simple categories,
it is useful to refer to homology theory (which also plays a crucial role for the
solution of Weil’s and Fermat’s conjectures). We will see a crucial example of
homological reasoning in section 6.2 of this paper. Homology plays a crucial role
in the mathematical theory of musical hypergestures [24].

5 Interpreting the Six Variations in Beethoven’s op. 109
as a Yoneda-Based Creative Process

Beethoven’s six variations V1, V2, . . . V6 of the main theme X , entitled
“Gesangvoll, mit innigster Empfindung”5, define the third movement of his piano
sonata op. 109. They offer an interesting interpretation in the sense of the above
Yoneda-oriented colimit model of creativity. This interpretation is discussed in
5 “Lyrical, with deepest sentiment.”
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detail in [23, ch. 26]; here, we want to summarize those results. This analysis is
based on the detailed music-theoretical analysis by Jürgen Uhde [31].

The crucial point stems from Uhde’s beautiful picture of a configuration of
variable perspectives. Each perspective stresses a particular aspect of X . When
the first five variations are over, he asks whether there is still an efficient posi-
tion for the sixth, and adds: “Wasn’t the theme illuminated from all sides from
near and from far, and following sound and structure? The preceding variations
‘danced’ around the theme, and each was devoted to another thematic property.”

We therefore interpret his comment in terms of Yoneda-inspired category the-
ory as describing a set of six morphisms f1, f2, ..., f6, each variational perspective
being one morphismfi : Vi → X. This is a set of six elements of the functor
@X , evaluated on arguments V1, V2, . . . V6. Let us be clear: There is no explicit
mathematical category involved in this description, and it is a challenge for
mathematical music theory to come up with a category where this setup be-
comes mathematically rigorous. But supposing that this category can be found,
Uhde’s discourse is astonishingly categorical. Saying that the first five perspec-
tives encompass “all that can be said,” means (for Uhde) that with the first five
variations, Beethoven has composed an objectively creative category. The main
theme X can completely be understood from the system of these five varia-
tional perspectives, including a melodic, a rhythmical, a contrapuntal, and two
permutational variations.

It is now obvious what could be the role of the sixth variation. It could be
that colimit object guaranteed for objectively creative categories. This means
that it should be a gluing of a diagram deduced from the characteristic objects
V1, V2, . . . V5 (see Figure 1).

Intuitively, knowing that a colimit is a gluing of the diagram’s objects along
with common subspaces, one would expect V6 to be a patchwork of smaller units.
It is fascinating to read Uhde’s interpretation of the sixth variation. He views
it as if it were itself a body of six micro-variations, and he describes this body
as a “streamland with bridges,” the bridges connecting the six micro-variations.
This is very similar to the construction of a colimit, which is also essentially a
landscape connecting its components by bridge functions. Looking at the sixth
variation, it in fact contains six variational restatements of the theme, beginning
with a short version of the original theme. We have six micro-variations in V6,
representing X and V1 . . . V5. The dramatic convergence of the finale synthesizing
all previous perspectives is described by Uhde as an “explosion of energy”.

6 Categorical Modeling, Emergence of New Shapes

In the previous sections we have seen a first example of category-oriented analysis
of a musical process. More generally, categorical modeling consists in descriptions
and computations with signposts made of arrows and compositions of arrows or-
ganized in categories, functors (i.e. homomorphisms of categories), and natural
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Fig. 1. The sixth and last variation is a colimit of variations one to five of the theme
in the third movement of Beethoven’s op. 109

transformations, via composition laws and universal properties such as inductive
limits or glueings.

6.1 Signposts, Autographs, Categories, Colimits or Glueings

Firstly, according to a very general assertion of Charles Saunders Peirce we
consider that semiosis is the living system of signs, and that each sign is a
ternary datum where a representamen R is interpreted by an interpretant I as
a representation of an object O. For us this is illustrated by an arrow R

I−→ O.
This could be read: “From the point of view I, R is an indicator of O. So we
could also think of I as being a difference (a supplementary information) which
when added to R produces O.”

Secondly, for Peirce [25] any arrow A : D → C is a sign from a sign D as
a source or domain toward another sign C as a target or codomain; then each
“object” D or C is supposed to be again a sign, i.e. an arrow, from a source to
a target, and so on. Each arrow is a difference between two other arrows. We
consider that from the beginning, there are no real objects, only signs between
other signs. Each sign takes its value only from its place in a net of signs, as
shown in Figure 2.

A basic setting for a model of semiosis is an autograph, a set of signs S and
a map [d, c] : S → S2. Any modeling starts with such an autograph of signs,
where the value of each sign simply is its position in the system, i.e. the system
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of its relations to the other signs. The way in which this is made mathematically
precise is the Yoneda Lemma, as follows.

We start with a category,

Fig. 2. Autograph as a net of signs between signs

i.e. an autograph in which
at first some arrows are se-
lected as “objects”, and where,
for consecutive arrows between
such objects, we suppose an
associative and unitary com-
position law. Given a cate-
gory C, Yoneda’s Lemma says
that the knowledge of C ∈
C0 is equivalent to the knowl-
edge of @C. For objects F in C@ and A in C we have F (C) = C@F , and we
denote by

∫
C F the category of elements of F which is the category with objects

the pairs (C, p) where C ∈ C0 and p ∈ C@F , a morphism from (C, p) to (C′, p′)
being a u : C → C′ in C such that p′.u = p. Then F is a glueing (inductive limit)
as

F = lim−→
[C;p∈C@F ]∈(

∫
C F )0

@C.

6.2 Shape with Respect to Models, Cohomology, Differentials

Now in the place of the YonC = @? : C → C@ we start with a functor J :
M −→ X where M is thought as the category of known simple models M , and
X as the category of unknown complex objects X . Analogous to the category
of elements

∫
C F , we consider the J-shape of X , which is the category

∫
M X

— more classically denoted by J/X — with objects the pairs (M, p) where
M ∈ M0 and p : J(M) → X , a morphism from (M, p) to (M ′, p′) being a
morphism u : M → M ′ in M such that p′.J(u) = p. Let qX : J/X → M be the
forgetful functor qX(M, p) = M , and, if it exists, XJ the inductive limit of J.qX ,
and a comparison map kX,J :

XJ = lim−→(J.qX) = lim−→
[M ;p:J(M)→X]

J(M), kX,J : XJ −→ X.

If kX,J is not an isomorphism, then we consider that, with respect to J , X is an
absolute novelty; otherwise we say that X is a J-manifold. Given a J-manifold X
and a functor H∗ : X −→ V (e.g. cohomology), if the comparison or differential

dX = d(H∗,J)X : lim−→
[M ;p:J(M)−→X]

H∗J(M) → H∗
(

lim−→
[M ;p:J(M)→X]

J(M)
)

is not an isomorphism, then we say that the J-manifold X has an H∗-emergent
property. The expression of emergence in this way is proposed in [14] as directly
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inspirated by [7]. The method of inspection and extension of a concept’s walls,
previously described in section 4, could be rephrased and extended in terms of
analysis and perturbations of shapes : the initial moment of creativity (opening
the walls) consists of choosing an inclusion functor JA : A → C, and then the
analysis of A in C with respect to JA is — second step of creativity —the in-
troduction of a diagram DA : ∆A ⊂

∫
A A

qA→ A (this introduces a perturbation
of the JA- shapes towards (JA.DA)- shapes) and the final step consists in dis-
playing extended wall perspectives accordind to DA, i.e. in examining if A is a
(JA.DA)-manifold.

In the next examples we illustrate what is interesting when C → A is not an
isomorphism, which is the situation of emergent property and absolute novelty.

Example 4. Let X = Top be the category of continuous maps between topo-
logical spaces (as already discussed in Example 3 of section 4), X = S2 the 2-
dimensional sphere, and M the full-subcategory of Top generated by the open
disk D2 = {(x, y) ∈ R2; x2 + y2 < 1}. Then S2 is a manifold, and it has the
emergent property that π2(S2) (= 1. Of course S3 is an absolute novelty.

Example 5. Let A be a ring and X be the category Fac[A[X ]] whose objects
are elements in the ring of polynomials A[X ], with arrows Q : B → A given by
elements in A[X ] such that BQ = A. Let M be the full-subcategory generated
by powers of polynomials of degree ≤ 1. Then if A = R, the polynomial X2 + 1
is an absolute novelty, whereas if A = C every polynomial is a manifold (this is
the fundamental theorem of algebra).

7 Sense and Ambiguities in Logical Manifolds

In order to evaluate the sense and ambiguity of discourses we first have to char-
acterize the notion of a logical manifold in terms of Lawvere Theory [20].

Definition: Let N = {0, 1, ..., N − 1} be a natural number. We define the
theory of N -valuated propositional logic as the Lawvere theory which is the full-
subcategory of Sets with objects all the finite powers of N ; we denote this by
PN (in memory of Post’s algebras [28] ).

So the theory of a Boolean algebra is P2: this follows from the fact that any
map {0, 1}m → {0, 1} can be obtained by composition of projections and the
usual logical maps & : {0, 1}2 → {0, 1} and ¬ : {0, 1} → {0, 1}.
Definition: Given a I2-manifold Θ in the situation I2 : P2 −→ T where T is the
category of Lawvere’s theories, and P2 the full subcategory of T generated by
the object P2, a model (or an algebra) of Θ is named a classical logical manifold
(of type Θ).

The following result shows that the two previous concepts are deeply related.

Theorem. For every integer N the theory PN is an I2-manifold.
The case N = 4 is more precisely an example of Borromean logic [15].
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For the purpose of discourse analysis, we consider that a discourse is made of
propositions (logical islets) bound by non-logical connectors (such as “but”, “of
course”, “what else?”, etc.), and therefore consists of a kind of logical manifold.
Each of its propositions may be logically evaluated, but the discourse will get only
“sense;” the sense expresses to what extent the various logical meanings of the
propositional components are compatible in the discourse. The decisive point
here is precisely the structural ambiguity and the game of equivocations, the
paradoxical way according to which the sense is logically impossible: this will be
revealed, by the structure of the logical manifold, as an emergent cohomological
property.

For example, let us consider the following
P2

!!!!
!!
!!
!!

""

rκ

"""
""

""
""

"
## 1

1 P4
$$$$

%% %%########

&& &&$
$$

$$
$$

$ P2
$$

sλ
$$

''##
##
##
##

(($$$$$$$$

P2

))

tµ

))%%%%%%%%

**&&&&&&&&
## 1

Fig. 3. P4 as a I2-manifold, with
the shape of a Borromean glueing
of 3 copies of P2

naive answer to the question: “Do you like this
music?”: “It is great, but I don’t like it.” This
answer is not a proposition, it is a discourse,
with the shape: “G but ¬L.” If, by mistake, we
interprete “but” as an “and”, we get “G∧¬L”,
which is an antilogy, because of G ⇒ L. So we
reach the paradoxical character of the answer.
To solve this paradox we just have to realize
that perhaps G is said from a point of view
V1 and ¬L from a point of view V2: it is pre-
cisely the work of the interpreter to construct
and make precise these points of view by con-
structing a logical speculation [13], and such a

construction is a sense of the answer “G but ¬L”. Eventually in this case, a
sense is an evaluation in an algebra that is a glueing of two boolean algebras,
one for V1 and one for V2. In fact “G but ¬L” could be evaluated in several
non-trivial ways in the classical logical manifold F4 (the field of cardinality 4),
which is a model of P4. In this example, informally, one could see the logical
conflict as a wall, and the colimit glueing of two boolean algebras, as an opening
of the walls and extending the original box. So creativity (and invention of new
objects) could be understood as the open development of new discourses, alge-
braic tools, or geometrical shapes — and so from a general point of view as the
development of new J-shapes, for variable J , under a control of modifications of
senses or meanings, solutions, geometrical invariants — i.e. from a general point
of view under the control of cohomological information given by the differentials
d(H∗,J)X .

8 Memory Evolutive Systems: A Model for Cognitive
Systems

In the next sections, we shall study creativity in a cognitive system that is able
to learn from its experiences and to develop an integrative, robust though flexi-
ble memory. This topic is studied in the frame of the theory of Memory Evolutive
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Systems (MES) [7], a bio-inspired mathematical model, based on category theory,
for self-organized, multi-scale, and multi-agent dynamic cognitive systems.

8.1 Hierarchical Evolutive Systems (HES)

In an Evolutive System (ES),

Fig. 4. Two ramifications of M, with simple and com-
plex links

the configuration of the sys-
tem at a given time t of the
timescale T is represented by
a category Kt: its objects are
the states Mt of the
components existing at t. A
morphism from Mt to M’t
corresponds to a channel
through which Mt can send
information to M’t; it is la-
beled by a propagation de-
lay and a strength (both
positive real numbers), and

by an index of activity 0 (if passive) or 1 (meaning that information is sent) at
t. The change of state from t to a later time t′ is modeled by a transition functor
from a sub-category of Kt to Kt′ . The transition functors satisfy the transitivity
condition: if Mt has a new state Mt′ at t′, then Mt has a state Mt′′ at t′′ if and
only if Mt′ has a state at t′′, and this state is Mt′′ . A component M of the ES is
a maximal family (Mt)t∈TM of objects of the Kt satisfying:

(i) TM is an interval of T which has a first element t0 (‘birth’ of M);
(ii) all the successive states of Mt0 (i.e. its images by transitions) are in M.

A link s from M to M’ is similarly defined as a maximal family (st)t∈Ts of
morphisms st of Kt related by transitions, with Ts included in both, TM and
TM’. To any interval I of T we associate the category KI whose objects are the
components M for which I is included in TM and the morphisms are the links
between them.

The system is organized so that the components of a level are obtained by
combination of (patterns of) lower levels. A musical example of such an “atom-
istic hierarchy” is provided by the metric organization which has been described
by Zbikowski in [32]. Our presentation is formally described as follows.

A pattern (or diagram) in Kt is a homomorphism of a directed graph to Kt:
we denote by Pi the image by P of a vertex i of the graph. The category Kt is
hierarchical if the class |Kt | of its objects is partitioned into a finite number of
parts called levels, numbered 0 < 1 < ... < m, verifying the following property:
each object Mt into level n+1 admits at least one decomposition in a pattern
P of lower levels, meaning that M is the colimit of P and each Pi pertains to a
level < n+1 (meaning that P takes its values in the full subcategory of Kt whose
objects are elements of one of the levels 0,1, ..., n). Intuitively, we think that the
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objects in a level n+1 are ‘more complex’ than the objects contained in the levels
! n. The Evolutive System is called a Hierarchical Evolutive System (HES) if
all its configuration categories are hierarchical and the transitions preserve the
levels. Then Mt has a ramification obtained by taking a decomposition P of Mt

of lower levels, then a decomposition of lower levels of each Pi and so on down
to level 0 (Figure 4).

The complexity order of a component M is defined as the smallest length
of one of its ramifications in one of the categories Kt. We suppose that the
system satisfies a kind of ‘flexible redundancy’, called the Multiplicity Principle
(MP) which extends the degeneracy property of the neural code emphasized by
Edelman [5]: there are multiform components M which are the colimit of at least
two patterns of lower levels which are not well-connected by a cluster of links
between their components (see [7] for a technical presentation of these concepts
in terms of morphisms of Ind-objects); the number of such patterns is called
the entropy of M. A multiform component is adaptative: at a given time it can
operate through any of its decompositions and switch between them depending
on the context, though keeping its complex identity over time. In particular the
existence of multiform components allows for the emergence of complex links
(Figure 4) which give some flexibility to the system.

8.2 The Complexification Process

In a HES the transition from t to t′ results from changes of the following
types: ‘adding’ some external elements, ‘suppressing’ or ‘decomposing’ some
components; adding a colimit or a limit to some given patterns. This is mod-
eled by the complexification process: a procedure Pr on Kt consists of the data
(E, A, U, U’, V, V’), where E is a sub-graph of Kt, A is a graph not included in
Kt, U is a set of colimit-cones in Kt, U’ a set of limit-cones and V (resp. V’) a set
of patterns without a colimit (resp. a limit) in Kt. The complexification of Kt for
a procedure Pr is a universal solution of the problem of constructing a category
K’ and a functor F from the full sub-category of Kt with objects not in E to K’,
such that: A is a sub-graph of K’, the images by F of the cones in U and U’ are
colimit-cones and limit-cones in K’ respectively and the image by F of a pattern
P in V admits a colimit cP in K’, and the image of a pattern P’ in V’ admits
a limit in K’.6 The complexification leads to the notion of emergence, which
is central to any complex system, and which is characterized by the following
result:

Emergence Theorem. MP is necessary for the existence of components of com-
plexity order > 1. It is preserved by complexification and it allows for the emergence
of components of increasing orders through iterated complexifications.

The Complexification describes not only new objects but also morphisms be-
tween them. It also provides a categorical formalization of the conceptual
6 Formally a sketch is associated to the procedure, and the complexification with

respect to Pr is the prototype associated to this sketch, which has been explicitly
constructed in [2].
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blending construction as described by Fauconnier and Turner [8] and system-
atized by Goguen [11].

8.3 The Local and Global Dynamics

A Memory Evolutive System (MES) is a HES which is self-organized by a net of
functional sub-systems, the co-regulators. These modulate the global dynamics
through their competitive interactions, and help develop a flexible central Mem-
ory. Formally, a MES consists of these data: a HES K, a sub-HES of K called
the Memory, and a family of sub-ES with discrete timescales called co-regulators.
The Memory is robust, though flexible and adaptative: its components can ac-
quire new decompositions over time and later be recalled through any of them.
In the Memory we distinguish a sub-ES, the procedural memory Proc; to a com-
ponent S of Proc is associated a pattern EffS (the ‘effectors’ commanded by S)
admitting S as its (projective) limit. Here is a rough outline of the two-part
dynamics. We refer to [7] for details.

(i) The ‘function’ of a co-regulator CR is accounted for by the data of the set
of its admissible procedures, which are components of Proc with links to
some components of CR, memorizing the actions it can perform. Each CR
has its own discrete timescale and acts accordingly in steps, a step extending
between two consecutive instants. During the step from t to t′, a temporal
model of the system as perceived from the point of view of CR is formed;
it is a category Lt called the landscape of CR at t defined as follows, where
I=]t,t′[ is the open interval between t and t′ It is the full sub-category of the
comma category KI | CRI having as objects the links arriving at a compo-
nent of CR and which are active during the step. An admissible procedure
S of CR is selected on it, using the Memory, thus commanding the effectors
of S. It starts a dynamical process carried on during the step, directed by
differential equations specifying the links’ propagation delays and strenghts.
The result should lead to a complexification of Lt (an attractor for the dy-
namic corresponding to the formation of a colimit). The result is evaluated
at t′; if the objectives are not attained, we speak of a fracture for CR.

(ii) As CR acts through its landscape which is only a partial view on the sys-
tem, the commands to effectors sent by the different co-regulators at a given
time may be conflicting. Thus their ‘local’ dynamics must be coordinated by
their interplay, made flexible by the possibility to switch between ramifica-
tions of complex commands. It may cause fractures to some co-regulators,
in particular if their temporal constraints (synchronicity laws) cannot be
respected.

9 Modeling Creative Processes in MENS

9.1 Model MENS for a Neuro-Cognitive System

The ‘hybrid’ model MENS is a MES whose level 0, called Neur, models the
‘physical’ neuronal system while higher levels model the mental and cognitive
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system. Neur is an ES whose configuration category at t is the category of
paths of the directed graph of neurons at t. A vertex of this graph models the
state Nt of a neuron N existing at t and labeled by its activity (firing rate)
around t; an arrow f from Nt to N′

t models a synapse from N to N’ labeled
by its propagation delay and its strength at t. According to Hebb’s cognitive
model, it is known that a mental object activates a more or less complex and
distributed assembly of neurons operating synchronously; such an assembly is
not necessarily unique because of the degeneracy of the neural code [5]. This
property is used to construct MENS from Neur by iterated complexification
processes: higher level components, called cat(egory)-neurons, are ‘conceptual’
objects which represent a mental object M as the common colimit cP = cP’
of the synchronous assemblies of (cat-)neurons P, P’ which can activate them.
Because of the propagation delays, the activation of the colimit cP comes after
that of P.

MENS admits a semantic memory SEM which is a sub-ES of the Memory
developing over time. Its components, called concepts (in the sense of [5]) are
obtained by categorization of cat-neurons of the Memory with respect to some
attributes, followed by iterated complexifications (cf. [6]); the cat-neurons ‘in-
stances’ of such a concept have different degrees of typicality. The ‘cognitive’
concepts used by Zbikowski [32] to define musical concepts (such as the concept
of a motive), can be interpreted as concepts in SEM; his conceptual models and
theories would also figure as concepts contained in higher levels of SEM.

9.2 The Archetypal Core and the Global Landscapes

The graph of neurons contains a central sub-graph, called the structural core
which has many strongly connected hubs ([16]). The archetypal core AC is a sub-
system of the Memory formed by higher order cat-neurons integrating significant
memories, with many ramifications down to the structural core; for instance, the
memory of a music associated to an event with emotional contents. Their strong
and fast links form archetypal loops self-maintaining their activation. AC em-
bodies the complex identity of the system (‘Self’), and acts as a flexible internal
model. Activation of part of AC diffuses through self-maintained archetypal
loops. It propagates to a decomposition P of some A, then, via a switch, to
another decomposition Q of A and through a ramification down to the neural
level.

All this activation allows for more communication between different parts of
MENS, and in particular increases the information received by higher level
co-regulators directly linked to AC. Thus AC acts as a driving force for con-
structing a global landscape GL uniting and extending spatially and tempo-
rally the landscapes of these co-regulators; GL can be compared to the “Global
Workspace” of different authors. Successive global spaces overlap, emphasizing
the unity of the Self; they give a setting where higher level information can
be ‘consciously’ processed, while keeping traces of the operations of lower level
co-regulators.
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Fig. 5. General scheme of the RPC construction

9.3 The RPC Model of Creativity

Creative processes start after a striking, surprising or intriguing event S which
increases the attention, translated by the activation of part of AC and leading
to the formation of a long term global landscape GL. They take place through a
sequence of intermingled retrospection and prospection processes in overlapping
GLs as follows:

(i) Retrospection: GL receives information from components A of AC related to
S. Since A is activated at t, it must have at least one ramification which has
been activated before t and through which GL receives information about
the past activation of lower levels. Thus it enables an analysis of the situation
at different levels with a recall of the near past for “making sense” of S (by
‘abduction’). This would correspond to the identification of the “critical
concept” and of its “walls” (cf. sections 2, 4) as well as to the “exploratory
creativity” of Boden [3].

(ii) A prospection process then develops within GL. The activation of A being
maintained via archetypal loops, it also maintains that of its ramifications
which transmit information to GL and anticipates the future, whence the
possibility of prospection by search of adequate procedures and elaboration
of “scenarios”. A procedure Pr is selected on (a sub-system) of GL (playing
the role of a “mental space”) for adding or suppressing elements or combining
patterns. The corresponding complexification for Pr is a ‘virtual landscape’
V in which Pr can be evaluated. Examples of prospection processes include
“extension of walls” (sections 2, 4), “combinatory creativity” of Boden [3],
“conceptual blending” of Fauconnier & Turner [8] (the blend is obtained by
push-out).
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More ‘innovative’ scenarios, corresponding to the “transformational creativity”
of Boden [3], are obtained by iterated complexifications of virtual landscapes:
a new procedure Pr’ is selected on V and the complexification for Pr’ is a new
‘virtual landscape’ V’ which is not directly deducible from GL because of the
following theorem:

Iterated Complexification Theorem. A double complexification of a category
satisfying MP is generally not reducible to a unique complexification.

The Retrospection, Prospection, Complexification (RPC) model of creativity
consists therefore of an iteration of intermingled processes: formation of a global
landscape, retrospection, prospection, complexification of virtual landscapes,
evaluation. This RPC model can be developed in any MES satisfying MP and
with a central Archetypal Core consisting of strongly linked higher order com-
ponents, with many interactions between their ramifications. It points to the
following measures of creativity: complexity order and ‘entropy’ of the compo-
nents, connectivity, and centrality orders of the archetypal core.

10 Conclusion

This paper makes evident that categorical colimits are a unifying construction
for understanding creativity in music, categorical shape theory of discourse, and
cognitive processes. A first hint at this unification may be understood through
Yoneda’s Lemma, which enables the construction of general presheaves as canon-
ical colimits of representable presheaves, at the crucial moment when instead of
canonical general colimits we decide to consider special colimits: this is the root
of our analysis of creativity. For musical creativity Yoneda’s Lemma applies when
representable presheaves are restricted to small, fully faithful “creative” subcat-
egories, generated in Beethoven’s op. 109 by the the five variations of the main
theme. In the categorical shape theory of discourse, the Yoneda construction of
general presheaves as colimits of representable presheaves is generalized to pow-
erful shapes and manifolds, which are shape colimits, and the production of sense
relies on constructions of special colimits. In the context of Lawvere’s theory, log-
ical manifolds provide a creative synthesis of multiple logical perspectives and
help create new sense. Finally, for cognitive neuroscience, hierarchical systems of
neuronal networks (diagrams) generate in a creative way higher levels of mental
objects, namely category-neurons, as colimits of lower level networks.These three
perspectives unite the arts, discursive logic, and neuroscience on the common
ground of a central device, the colimit idea, in category theory. The question
of experimental verification or falsification of such a theoretical unification is
important, but the very generality of our result poses fundamental problems
which transcend standard empirical methods and ask for more in-depth inves-
tigations into the nature and limits of an experimental approach in music and,
more generally, in the humanities.
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