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Abstract. The article discusses the application of Formal Concept Ana-
lysis to the algebraic enumeration, classification and representation of
musical structures. It focuses on the music-theoretical notion of the Tone
System and its equivalent classes obtained either via an action of a given
finite group on the collection of subsets of it or via an identification of
Forte’s corresponding interval vector and Lewin’s interval function. The
use of concept lattices, applied to a simple case such as the division of the
octave into five equal parts and the associated Chroma System, clearly
shows that these approaches are conceptually different. The same result
is obtained for a given subsystem of the traditional Tone System, as we
will show by analysing the case of the pentatonic system. This opens a
window towards generic tone systems that can be used as starting point
for the structural analysis of other finite chroma systems.

Keywords: Formal Concept Analysis, Galois Correspondence, Lattice,
Interval Vector, Interval Function, Interval Structure, Partition.

1 Introduction

Formal Concept Analysis (FCA) was introduced in the beginning of the 1980s
by Rudolf Wille as an attempt at reconstructing Lattice Theory [1,2].1 Although
music is a major inspirational field for applying formal concept analysis [5,6], this
approach did not establish itself as a paradigm in mathematical music theory.
This paper is a first attempt toward a better understanding of ordered structures
in music theory.

1 Similar constructions have also been proposed, independently, by Marc Barbut and
Louis Frey [3]. See [4] for an interesting discussion on the mutual influences between
the Darmstadt school on Formal Concept Analysis and the French tradition on
“Treillis de Galois”.
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This musical structure theory relies on an Extensional Standard Language for
Music Theory [7] that was originally developed by Rudolf Wille in parallel to
FCA and applied in the Mutabor language [8].

The current paper provides a short introduction into both theories and illus-
trates them through the development of a new method for structure analysis of
tone systems based on the notion of a chroma system.

2 Preliminaries

Formal Concept Analysis [9] is based on a formalisation of a philosophical notion
of a concept. A concept is usually defined by a set of examples and/or by a set of
properties we attribute to it. Nevertheless, for each concept there are many more
objects that are examples and many more properties that can be attributed to
it. Furthermore, all examples share the same set of attributes that belong to
the concept (some by definition, some by logical implications, and some others).
On the other hand, each property that is attributed to a concept holds for each
example of the concept. The latter relation is used to define a formal concept.
Let G be a set whose elements we call objects, M a set whose elements we call
attributes and I ⊆ G × M a binary relation. Then, the triplet K(G,M, I) is
called a formal context. It is usually visualised as a cross table (e.g., Fig. 2)
where the objects denote rows and attributes denote columns. Let A ⊆ G be a
set of objects and B ⊆ M be a set of attributes. We use two derivation operators
(both denoted by the same sign) as follows:

A′ := {m ∈ M | ∀g ∈ A : g I m}, and B′ := {g ∈ G | ∀m ∈ B : g I m} (1)

In other words: A′ is the set of all attributes that are shared by all objects
of A, while B′ is the set of all objects that share all attributes of B. These
two operators form a Galois correspondence between the power sets P(G) and
P(M). A formal concept is now defined as a pair (A,B) ∈ P(G) ×P(M) such
that A′ = B and B′ = A hold. These formal concepts form an algebraic lattice
which is denoted by B(G,M, I).

Throughout the article we use the terminology of the so called “Extensional
Standard Language of Music” as proposed by Rudolf Wille and fine tuned by Wil-
fried Neumaier [10,11,12,13] as it has been exemplified for n-tone equal tempered
tone systems in [14]. This theory provides a good insight into the different levels
of the basic constructions of mathematical music theory. Its notions of tone
structures, 2-chords, 2-chordal forms, 2-harmonies and 2-harmonic forms provide
answers to some questions recently raised by Dmitry Tymoczko [15], since the
mentioned 2-forms, in particular, are an example of a structure having both an
intervallic and a set-theoretic component. For philosophical reasons that cannot
be discussed here, and in order to provide a universal and easy to use theory, all
entities are considered as objects rather than certain aspects of them, e.g., pitch
is considered to be a parameter of tones and chromas may have other aspects
than being equivalence classes.
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A triple T = (T, δ, I) is called an (algebraic) tone system if T is a set,
I = (I,+,−, 0) is an Abelian group and δ : T × T → I is a map such that
for all t1, t2, t3 ∈ T the following equations hold:

δ(t1, t2) + δ(t2, t3) = δ(t1, t3) and δ(t1, t2) = 0 iff t1 = t2. (2)

The elements of the set T are called tones and each subset of T is called a chord.
The empty chord is considered a pause here. The elements of I are considered
as intervals. The signature of a tone system can be enriched by additional tone
parameters. These are mappings from the set of tones into some set of values. The
most prominent ones are frequency, pitch and loudness. For further examples we
refer to Mazzola [16].

We call T homogeneous or transposable if it is a Generalised Interval System
(GIS) as described by David Lewin [17].

In the following we consider the tone system T = (Z, δ,Z) with δ(s, t) = t− s,
and we fix a positive integer O ∈ Z+, which we consider as an interval called
octave. Let ZO denote the residue ring of integers modulo O and let TO :=
(ZO, δO,ZO) be the algebraic tone system (where δO(x, y) denotes the difference
y − x in ZO). This system has different mathematical and musical properties
than the underlying tone system T. Following the language of musicology, the
elements of TO and are referred to as chromas.2 For the whole system TO the
article [14] had to introduce the new term a chroma system.3 More specifically,
we will refer to TO as O-tone equal tempered chroma system, in short O-tet.
The most commonly used of these are the 12-tet (T12) and the 7-tet (T7).

The canonical group homomorphism φO : Z → ZO (which maps every integer
x to its residue modulo O, denoted by xO) maps every chord X in T to the chord
XO := {xO | x ∈ X} in TO, which will be called the harmony of X .

Two chords or harmonies are equivalent if they are related by a transposition.
The corresponding equivalence classes we refer to as chordal forms or harmonic
forms, respectively. In short: transpositional equivalence classes of chords are
chordal forms, which are mapped by octave identification to harmonic forms.
On the other hand octave-identified chords are harmonies, which are mapped
by transpositional identification to harmonic forms. If the signature of the tone
system contains some pitch parameter, each chroma get a set of pitches assigned,
the pitch classes. The latter ones are studied by Allen Forte [19]. A more complete
and slightly generalised notion of his interval vector has been used in [14] in
order to circumvent the combinatoric explosion that occurs while working with
the order as discussed by Rudolf Wille (see below). One of the resulting lattices
is shown in Fig. 1 on the right-hand side.

Consider two harmonic forms F1 and F2 of the same chroma system. We
call F1 a harmonic subform of F2 iff there exist two harmonies H1 ∈ F1 and
H2 ∈ F2 with H1 ⊆ H2. We denote this fact with F1 ' F2. This hierarchical
2 The original German term introduced by Neumaier was Tonigkeit. The translation

“chroma” is here used according to the terminology proposed in [18].
3 Naming this concept got necessary by the parallel consideration of different chroma

systems, which has been introduced in that article.
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Fig. 1. Concept lattice of the order of harmonic forms (left) and concept lattice of the
interval vectors (right) in the chroma system T7

order has been studied by Rudolf Wille and other authors using FCA [5]. The
corresponding concept lattice B

(
H(T7),H(T7),'

)
for the 7-tet T7 can be seen in

Fig. 1 on the left hand side. Besides the 20 nodes of harmonic forms it contains 22
additional nodes. These arise from the so called Dedekind-MacNeille completion
[20], which transforms an ordered set (i.e., a set M together with a binary relation
≤ that is reflexive, transitive and antisymmetric) into a complete lattice (i.e.,
an ordered set where each subset has a least upper bound and greatest lower
bound). The embedding of ordered sets into complete lattices allows us to make
use of the much richer structure theory of the latter ones.

David Lewin [17] defines the interval function (IFUNC ) to be another gen-
eralisation of Forte’s interval vector. It maps a pair of chords or harmonies to
the multiset of intervals between the individual tones or chromas between them.
This function is invariant under the same transposition applied to both of its
arguments. Thus, it is well-defined if both arguments denote the same harmonic
form. This gives us a similar order principle as Forte’s interval vector. Though
our analysis is restricted to the harmonic properties of both approaches (in con-
trast to [21]), their difference has an impact on the concept lattices. An example
is provided in the next section.

The fourth idea that will be discussed in this paper has been published by
Reckziegel [22] and many others. The Mexican composer Julio Estrada [23] uses
this scheme for his d1 theory. These authors partition the set of harmonic forms
according to a description of them that is based on partitions of the octave.
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Fig. 2. Contexts of the chroma system T5. Left: Set theoretic order, Right: Many-
valued context describing chroma interval multisets of harmonic forms.

3 Border Case 1: Equally-Spaced Chroma Systems

In order to compare the different approaches we should agree upon a certain
comparable set of chroma systems. It turns out that the 5-chroma-systems are
sufficiently small, but large enough to show the main effects.

Let us start with the chroma system T5. At first we should set up the necessary
formal contexts. The classical order of harmonic forms must be described as well
as the partition order by the order relation as it is shown in the left context of
Fig. 2. The right context in this figure classifies harmonic forms according to the
multiplicities of chroma intervals that are spanned between the chromas of the
corresponding harmonic forms, i.e., we consider interval multisets.

The methods of Formal Concept Analysis are defined for binary relations.
Nevertheless, it has been proved that any many-valued context can be repres-
ented by a one-valued context. The transformation from a many-valued into a
single-valued context is called scaling [9, Chapter 1.3]. A set of attributes is re-
placed by the attribute set of a certain context, called scale. A scale is a context
that describes how the incidence relation should be adapted. Its object set is the
set of all possible value combinations of the attributes that shall be replaced.
In the scaled context, the incidence relation is formed by the rows of the scale.
Each value combination is replaced by the crosses of the corresponding row of
the scale. Here, we use the two scales that are shown in Fig. 3: one simple scale
that translates the multiset view into a simple set view (left) and one so-called
ordinal scale that is the context of a linear order (right).

Forte’s interval vectors count 2-harmonic forms. Each chroma system contains
one 1-harmonic form and one 0-harmonic form (pause). Thus we scale the prime
column with the left scale from Fig. 3 while the other columns are ordinally

Fig. 3. Scales used for scaling the
chroma interval multiset context

column name

0
1 ×

2 ×

3 ×

4 ×

5 ×

1x 2x 3x 4x 5x

0
1 ×

2 × ×

3 × × ×

4 × × × ×

5 × × × × ×
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Fig. 4. Scaled contexts of the right hand context of Fig. 2. On the left: Ordinally scaled
according to the interval vector [19]. On the right: Partly clarified and ordinally scaled
according to the interval function [17].

scaled. The result is shown in the first context of Fig. 4. The second one in this
figure describes Lewin’s interval function applied to each of the harmonic forms.
Since the count of an interval is always the same as the count of the comple-
mentary interval only one of the two is considered here. That does not change
the structure that is generated in the concept lattice as redundant attributes
can be clarified [9].

Fig. 5 shows the concept lattices of the order of harmonic forms (left) and
the concept lattice of the interval vectors (middle) and the concept lattice of
the interval function in this system (right). The partition lattice is the same as
the order lattice in this special case. In contrast to Fig. 1, these concept lattices
are very similar. If we consider the rightmost two of Fig. 5, we can see that
counting the prime interval changes the structure of the lattice, although at first
glance, it does not introduce new information. Obviously in all lattices, the k-
harmonic forms structure the lattice somehow into layers, and so this information
is implicitly available in all of them.

On the other hand, the separate chroma count introduces for each number k
a top node, beneath which a copy of the supremum-reducible part of the layer
above is introduced. Supremum-irreducible nodes are united with their lower
neighbours. The reason is simple: every concept that can be described as union
of certain concepts of the current layers is the concept that is described by the
intersection of the attribute sets of these concepts. One of the common attributes
of a layer is the count of chromas in each harmonic form whose object concept
falls in that layer. Thus, for each set of concepts of that layer, the intersection of
the attribute sets of the contained concepts shares the count attribute, even if
the chroma set of the resulting harmonic form is actually smaller. Thus it must
be a different concept.

These shadow copies also store another kind of information. Though the chro-
mas of a harmony can be chosen arbitrarily, the interval vectors cannot. The
structure of the chroma system imposes additional restrictions on them. Some
of them are visualised when we introduce the count attributes. If the lower level
without its object concepts is not a copy of the upper one there are implications
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Fig. 5. Concept lattice of the order of harmonic forms (left) and concept lattice of
the interval vectors (middle) and concept lattice of the interval function in the chroma
system T5. The left one is isomorphic to the lattice generated by the partition order.

of the following form: Interval vector x implies interval vector y where y − x is
a vector with only positive entries.

At some level k, an attribute concept of a count attribute exists which is
beneath some concepts that have certain interval sets as subsets of their attribute
sets (e.g., 3×unison in the right lattice of Fig. 5). In short: The attribute concept
k × unison is not part of a separated chain as the earlier ones are. That tells us
that every k-harmonic form contains at least one of the interval multisets above
it (e.g., every 3-harmonic form contains at least one second or one third).

Despite of all these differences, the interval vector lattice can be embedded as
an infimum-semilattice into the interval function lattice while object concepts
can be mapped to object concepts and attribute concepts to attribute concepts.
Similarly, there is a supremum-semilattice homomorphism from the lattice of the
interval function to the one of interval vectors. Thus, the induced orders of the
harmonic forms are structurally equivalent while both functions are conceptually
different.

4 Non-equally-Spaced Chroma Systems

Though equally-spaced chroma systems and their obvious subsystems seem to be
the most important ones, a complete theory of music must also be able to discuss
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Fig. 6. Concept lattices of the pentatonic chroma subsystem of the equally-spaced 12
chroma system. Left: order, Right: interval vector lattice.

exotic tone systems that cannot be based on a sufficiently simple homogeneous
tone system. Handling the general case is out of scope of this article, but before
we head over to the other edge of finite chroma systems, we will provide a simple
example of a more common non-homogeneous chroma system.

Fig. 6 shows two concept lattices of the pentatonic subsystem of the 12-tone
chroma system T12. As its construction is well-known to the community, we
skip the construction of the underlying tone system. Instead of the harmonic
forms, all harmonies are used. They are notated using the number of scale steps
of the black keys in a 12-tone chroma system. Because the different harmonic
forms do not share an object concept in the order lattice, representatives of the
corresponding harmonic form are shown in each label. In this system, we have
not only 2 but 4 different intervals, as can be seen at the nodes of the different
2-harmonic forms.

On the left hand side, we see the order of the harmonic forms. The right
hand side shows the interval vector lattice. The interval function lattice of this
system is visible in Fig. 7. To emphasise its structure the chroma count attribute
concepts have been ordered separately. In this case, the level of 3-harmonic forms
resembles the level of 2-harmonic forms very well with one exception: Every 3-
harmonic form which contains a minor third (3) also contains a fourth (5).
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Fig. 7. Interval function
concept lattice of the
pentatonic chroma subsys-
tem of the equally-spaced 12
chroma system

5 Border Case 2: Totally Asymmetric Chroma Systems

Although the usual approach to harmonic forms starts with equally-spaced
chroma systems, we have a wide range of non-equally-spaced chroma systems
available. If we want to get a better understanding of the structure of harmonic
forms of certain chroma systems, we should risk a view to the other end of the
playground: chroma systems with the maximum diversity of chroma intervals.
On the one hand, this is further step towards the discussion of arbitrary tone
systems. On the other hand, it opens a door to discuss links and differences
between tone systems and chroma systems as discussed in Sect. 6.

Here, we leave the scope of well-known tone systems. Our first task is to find
a tone system that generates a chroma system with the desired properties. We
can construct finite totally-asymmetric chroma systems in the following way:

For any natural number n ∈ N, let the mapping pn : Z → Z and the mapping
βn : Z×Z → Z be defined by

pn(t) := (2n − 1)

⌊
t

n

⌋
+ 2t−n# t

n $ − 1 and βn(t1, t2) := p(t2)− p(t1) . (3)

Then we get βn(n−1, n) = 2n−1−(2(n−1)−1) = 2n−1. Obviously, for all integers
t1, t2, t3 ∈ Z, the conditions βn(t1, t1) = 0 and βn(t1, t2) + βn(t2, t3) = βn(t1, t3)
hold. Thus, Bn := (Z,βn,Z) is a tone system. Let’s call it the binary number
tone system.
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Fig. 8. Interval vector lattice of the harmonic forms of the chroma system of B5 (left)
and interval function lattice of the same system (right)

Obviously βn(t, t + n · k) = k(2n − 1) for any tone t ∈ Z. Thus, the interval
2n − 1 can serve as an octave in Bn. Then the chromas and chroma intervals
have the form

[t] = t+ nZ = {t+ kn | k ∈ Z} and (4)
[βn(t1, t2)] = βn

[
[t1], [t2]

]
= βn(t1, t2) + (2n − 1)Z . (5)

A straightforward calculation shows that for each integer 0 ≤ k < n, the formula
[βn(k, k+1)] = 2k +(2n− 1)Z. Thus, summing up neighbouring intervals shows
that [βn(t1, t2)] = [βn(t3, t4)] iff [t1] = [t3] and [t2] = [t4]. This means that no
harmony can be transposed into a different one if it contains more than one
chroma. As the set of harmonies is the power set of the chroma set, the set of
harmonic forms is a Boolean lattice whose atoms are collapsed into one node.

As all multiplicities of non-zero chroma intervals are never larger than 1,
each harmonic form can be uniquely described by the chroma intervals it spans.
Thus, the interval content lattice is anti-isomorphic (isomorphic according to the
dual order) to the order of the harmonic forms of Bn. For the same reason, the
partition lattice is isomorphic to the interval vector lattice. Both can be seen in
Fig. 8.

6 Conclusion and Further Research Topics

For an arbitrary chroma system, each chroma can be transposed into any other
chroma, as every tone of the first chroma can be transposed to every tone of the
second chroma by an interval. As we have seen, the mapping that assigns har-
monies of the tone system Bn to harmonic forms of the same system is injective
on the subset of the harmonies that do not consist of exactly one chroma. Thus,
for any tone system T with n different chromas, there exists a mapping from
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the set of the chromas of Bn to the chromas of T that maps the set of harmonic
forms of Bn to the set of harmonic forms of T.

As the cardinalities of chromas of Bn and any tone system T with n chromas
coincide, we can use a conceptually different way to construct harmonic forms:
First the harmonies of T are mapped to those of Bn and then the harmonic forms
of the latter system are mapped back to T. This approach allows for splitting
the last mentioned mapping into parts (e.g., identifying intervals step by step),
provided that for each mapping ϕ, the following conditions are met:

1. The mapping ϕ acts on tones, mapping chromas to chromas.
2. The implied action of ϕ on chords and harmonic forms commutes with the

octave identification and transposition such that for a subset A of the tones
of the domain, the harmonic form of the range of ϕ that is generated by the
chordal form of A coincides with the harmonic form that is formed by the
image of ϕ of the harmony of A.

3. There is a corresponding mapping ψ between the interval groups of the tone
systems, such that for any two tones t1, t2 of the domain tone system, the
equation

[
ψ
(
δ(t1, t2)

)]
=

[
δ
(
ϕ(t1),ϕ(t2)

]
holds.

We suggest calling such mappings harmonic homomorphisms. These harmonic
homomorphisms are linked to the underlying tone systems. This very well
matches musical reality where tones and pitches are easily performed while chro-
mas and pitch classes are hard to generate. It is an open question to describe
the generic harmonic homomorphisms, i.e., homomorphisms that cannot be split
into two parts such that neither of them is a harmonic isomorphism. The changes
of the concept lattice types that have been discussed in this paper under such
generic harmonic homomorphisms are expected to give new insights into the
structure of lattices which are generated by arbitrary chroma systems.
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