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Abstract. We represent chord collections by simplicial complexes. A
temporal organization of the chords corresponds to a path in the com-
plex. A set of n-note chords equivalent up to transposition and inversion
is represented by a complex related by its 1-skeleton to a generalized Ton-
netz. Complexes are computed with MGS, a spatial computing language,
and analyzed and visualized in Hexachord, a computer-aided music anal-
ysis environment. We introduce the notion of compliance, a measure of
the ability of a chord-based simplicial complex to represent a musical
object compactly. Some examples illustrate the use of this notion to
characterize musical pieces and styles.

Keywords: MGS, simplicial complexes, generalized Tonnetze, compli-
ance, Hexachord, chord spaces.

1 Introduction

Musical objects and their properties are often represented by spatial structures
to understand their algebraic nature, and to study compositional strategies. The
spiral array [1], the Tonnetz [2] and orbifolds [3,4] are examples of such spaces.
Among their numerous properties, they are respectively well adapted to deter-
mine key boundaries, to represent neo-Riemannian operations and voice-leading
motions. Most of these spaces (the spiral array includes triangles) propose to
represent pitches or chords by points in graph representations.

In this study, we propose to introduce elements of higher dimension than ver-
tices and edges. We represent n-note chords by simplices of dimension (n−1) and
chord collections by simplicial complexes. The faces of a simplex represent all
sub-chords contained in the chord. The dimension enables more specific neigh-
borhood relationship between chords and induces more expressiveness in the
chord space. Simplicial complexes are computed with MGS [5], a domain specific
programming language dedicated to spatial computing.

Section 2 provides a short introduction to MGS and simplicial complexes.
In section 3 we present a method to represent collections of chords by simpli-
cial complexes. These collections are either temporal chord sequences, or chord
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classes defined by an algebraic property. We show how these last complexes are
related to the generalized Tonnetze. In the last section, we present some methods
for the visualization of musical sequences in these complexes with Hexachord,
a computer-aided music analysis environment. Finally, we introduce the com-
pliance, a measure of the capacity of a complex to represent musical pieces or
musical styles.

2 Technical Background

MGS. MGS is an experimental domain specific language dedicated to spatial
computing, see [5,6]. MGS concepts are based on well established notions in
algebraic topology [7] and relies on the use of rules to compute declaratively
spatial data structures.

In MGS, all data structures are unified under the notion of topological collec-
tion. Simplicial complexes defined below are an example of topological collec-
tions. Transformations of topological collections are defined by rewriting rules [8]
specifying the replacement of sub-collections that can be recursively performed
to build new spaces.

Simplicial Complexes. A simplicial complex is a space built by gluing together
more elementary spaces called simplices. In this work, simplices are glued using
a self-assembly process described below. A simplex (more precisely a p-simplex )
is the abstraction of a space of dimension p. A 0-simplex corresponds to a point,
a 1-simplex corresponds to an edge, a 2-simplex is a triangle, etc. These objects
are often represented geometrically as the convex hull of their vertices as shown
in Figure 1 for p-simplices with p ∈ {0, 1, 2}.

A simplicial d-complex is a simplicial complex where the largest dimension of
any simplex is d. A graph is simplicial 1-complex. Figure 2 shows a simplicial
2-complex.

For any natural integer n, the n-skeleton of the simplicial complex C is defined
by the sub-complex S of C formed by its simplices of dimension n or less.

A (p, q)-path is a sequence of p-simplices such that two consecutive simplices
are glued to a same q-simplex. For example, the usual notion of path in a graph
(a sequence of vertices such that from each of its vertices there is an edge to the
next vertex in the sequence) corresponds to the notion of (0, 1)-path.

The f -vector of the simplicial d-complex C is the sequence (f0, f1, . . . , fd+1)
where fi is the number of (i− 1)-simplices of C (by convention, f0 = 1 unless C
is the empty complex). For example, the f -vector of the complex at the bottom
right of Figure 2 is (1, 7, 11, 5).

Self-assembly Process. A simplicial complex can be built from a set of sim-
plices by applying an accretive growing process [9]. The growth process is based
on the identification of the simplices boundaries. Nevertheless, this topological
operation is not elementary and holds in all dimensions. Figure 1 illustrates the
process. First, nodes A and B are merged. Then, the resulting edges {A,B} are
merged.
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3 Chord Collections Represented as Simplicial Complexes

3.1 Chord Sequences

We use a method presented in [10] to represent chords as simplices. An n-note
chord is represented by a (n − 1)-simplex. In the simplicial representation of
chord, a 0-simplex represents a single pitch class. This method requires some
abstraction on the chord since some information, as its octave or its duration,
are not represented. So from a chord we obtain a set of n pitch classes and then
an (n − 1)-simplex. The simplicial representation of a chord collection is built
by:

1. representing each chord of the collection by a simplex as described above.
2. applying the self-assembly process to the resulting collection of simplices.
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Fig. 1. On the left, three simplices. In the center, a 2-simplex and its boundary, rep-
resenting the chord {D,A,Bb} and all two-note chords and notes included on it. On
the right, the identification of boundaries illustrating the self-assembly process.

A result of this method is that a given pitch class set cannot be represented more
than once in the simplicial complex. If the chords are ordered in the collection,
this order will not be represented. For example, if the collection is a sequence of
chords played successively, each chord will be represented but not their position
in the sequence. We thus represent a temporal chord sequence by a static object,
in the same way a photographer would catch a moving object by letting open
the shutter of his camera. Different temporal chord sequences can be represented
by topologically identical structure. This abstraction enables classifications of
musical sequence based on topological criteria.

Chopin Prelude no. 4, Op. 28. Figure 2 shows the simplicial complex result-
ing from the assembly of the fifteen first chords of Chopin’s Prelude Op.28, no.
4. The complex exhibits neighborhoods between chords but does not give any
information about how these chords are ordered in the Prelude. A remarkable
fact of this ordering is that only one note is different between two consecutive
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Fig. 2. Fifteen first chords of Chopin’s Prelude Op. 28, no. 4. On the left its simplicial
representation. On the right, a path represents the order of chords in a region of the
complex.

chords. This property holds on for fourteen chords starting from the second
one. Being composed of three-note chords, such a progression corresponds to
a (2, 1)-path in the associated simplicial complex: such a path is composed of
2-simplices (the chords) connected by 1-simplices (the two common notes). This
path is partially presented by black arrows for the five first chords in Figure 2.
We have enumerated all the possible (2, 1)-paths with length fourteen. It is in-
teresting to note that there exist exactly 120 possible paths. Finally, among all
these possibilities, the original order used in the Prelude is the one with the
smallest distance between chords in terms of pitch motion. Indeed, the interval
characterizing the moving note in two consecutive chords is a semitone for all
transitions. This example illustrates the topological translation of a well-known
compositional strategy called parsimonious voice leading.

3.2 Chord Classes

We now represent with the same process a set of chords, not organized in time,
but defined by a specific property from a theoretical point of view. In the first
examples, the self assembly process has been applied to chords associated with
degrees of a scale thus offering a representation of a tonality [10]. The simplicial
complex made from the triads of the diatonic scale is Mazzola’s Möbius strip [11].
When assembling tetrahedra representing the seventh chords, the resulting com-
plex is a toroid (the volume bounded by a torus).

An other way to categorize chords is to define equivalence classes. In this con-
text, algebraicmethods constitute useful and elegant tools for the classification [14].
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Equivalence classes of chords can indeed be formalized as orbits under some
group action. Transposition classes are determined by the action of the cyclic
group ZN on itself. Moreover, a set of chords equivalent up to transposition and
inversion is specified as an orbit under the action of the dihedral group DN on
the subsets of ZN . Other classifications can be established from the action of the
group of affine transformations AffN [12,11] and the symmetric group SN [13].
In the following, we particularly investigate simplicial complexes resulting from
assembly of chords belonging to the same orbit under the action of D12 on
Z12 because it involves two musically relevant properties. Firstly, the orbits are
equivalent to the 224 Forte classes [14]. Second is that their representations can
be related to generalized Tonnetze. Nevertheless, the generic aspect of our ap-
proach makes possible the simplicial representation of equivalence classes under
the action of any other group (the so-called paradigmatic classification).

DN Action on ZN . In the case of the action of the dihedral group, orbits
can be identified by an intervallic structure shared by all the chords of the orbit
(and only these chords) [14]. This representation should not be confused with the
interval vector. The intervallic structure represents a pitch class set by a series
of consecutive intervals that always add up to N . These intervals are given by a
list up to circular permutation and retrograde, which means up to transposition
and inversion.

Let X be an interval structure. We write C(X) for the simplicial complex
resulting from the assembly of simplices representing chords sharing the interval
structure X.

Contrary to Forte names, the intervallic structure notation gives enough infor-
mation to define all chords of the set class without having to refer to a list. Note
that the congruence N of the system do not need to be specified in the notation
since it can be computed by summing elements of the intervallic structure. For
instance C(4, 3, 3, 2) and C(3, 4, 5), the simplicial complexes built by assembling
minor and major chords, belong to the chromatic system Z12. C(2, 2, 3), belongs
to a heptatonic system Z7.

Chromatic Scale. Catanzaro investigates in [15] properties of simplicial com-
plexes made from 2-simplices associated with transpositionnally and inversion-
nally related three-note chords in Z12. The 12 complexes represent the 12 dif-
ferent orbits of three-note chords under the action of D12 on Z12. The 12 orbits
correspond to the 12 Forte classes of size 3. Among the resulting complexes, the
most frequent topology appears to be the torus. Thanks to the chord simplicial
representation and self-assembly process described in section 2, we extend this
approach to investigate simplicial complexes representing all the other 212 (there
are 224 orbits of subsets of Z12 under the action of D12) orbits of n-note chords
under this group action, with 0 ! n ! 12. Chords are represented as simplices
as described in section 3. Chords grouped together in the same orbit have the
same cardinality. For this reason, they are represented by simplices of the same
dimension. Highest dimensional simplices inside simplicial complexes represent-
ing orbits of size n are (n−1)-simplices, which represent the n-note chords of the



Chord-Based Simplicial Complexes 43

orbit. For example, the orbit including major and minor chords is represented by
a complex resulting from the assembly of the 24 2-simplices associated with all
minor and major chords. Complexes of n-note chords are (n− 1)-complexes. For
n = 4, they are built by gluing 3-simplices which are tetrahedrons. Most orbits
have 24 distinct forms (the order of D12). The self-assembly process will then in-
volve 24 different simplices. For example, the complex representing the set class
including seventh and half-diminished seventh chords, is composed of 24 tetrahe-
dra. Represented in three dimensions, these tetrahedra cross each other, making
it hard to visualize the corresponding complex. Orbits that have fewer than 24
distinct forms are said to be symmetrical. This happens when some transposi-
tion or inversion corresponds to the identity transformation. These complexes
present different topologies which can be effectively built and studied using the
MGS programming language.

Heptatonic Scale. We consider here the action of D7 on Z7. Simplicial complexes
built from chords belonging to a heptatonic scale are interesting since they offer
spatial representations of some tonalities. Mazzola’s Möbius strip is an exam-
ple of representation of one particular heptatonic scale, the diatonic scale. It is
obtained by assembling chords whose intervallic structure in Z7 is [2, 2, 3]. The
assembly of 3-note chords of interval structure [1, 2, 4] produces a 2-dimensional
simplicial complex in which all 0-simplices (i.e. vertices) are neighbors.

Cayley Graphs and Generalized Tonnetze. Let S be the 1-skeleton of a chord-
based simplicial complex built from a set of chords equivalent up to inversion and
transposition. S is a graph composed by vertices representing all the pitch classes,
and edges representing 2-note chords associated with a particular interval. If a
pitch class is connected to an edge associated with an interval i (for example
a minor third), it is easy to see that, thanks to the transposition operation of
the dihedral group, every other pitch class in S will be connected to an edge
associated with i as well. As a consequence, the neighborhood of each pitch class
of S can be defined by the same set of intervals J . For this reason, S can be
related to a generalized Tonnetz in which pitch classes are neighboring according
to a particular set of intervals. Moreover, by considering J as a generating set of a
subgroup of intervals I, one can consider the Cayley graph Cay(I, J) associated
with the group presentation < J |R > where R is the set of relations linking the
elements of J . Cay(I, J) can be related to S.

A simplicial complex C(X) is thus related to a particular generalized Tonnetz
defined by intervals contained in chords having the interval structure X . But a
generalized Tonnetz can be related to several simplicial complexes. For example
C(1, 3, 4, 4), C(1, 3, 5, 3) and C(1, 3, 1, 3, 1, 3) are all related to the same general-
ized Tonnetz in which two pitch classes are neighbor if they are separated by
an interval class in {1, 3, 4, 5}. For N = 12, among the 64 generalized Tonnetze
computed by enumerating all possible interval class sets, only 30 correspond to
a 1-skeleton of a chord-based simplicial complex.



44 L. Bigo et al.

4 Using Chord-Based Simplicial Complexes for
Computational Music Analysis

In this section, we present methods to visualize musical sequences in chord-based
complexes. These methods are implemented in Hexachord, a computer-aided
music analysis environment.

4.1 Sequence Visualization in Unfolded Chord-Based Complexes

Unfolding Simplicial Complexes. As previously mentioned, simplicial com-
plexes are often hard to visualize. Depending on their topological properties,
simplicial complexes can be unfolded as infinite planes to make their visualiza-
tion easier. The major difference between a simplicial complex and its unfolded
representation is that in the former, pitch classes are represented once, and in
the latter, by an infinite number of occurrences. Moreover, the graph correspond-
ing to the unfolding can be embedded in the Euclidean space such that parallel
1-simplices relate to the same interval class. An essential advantage of this un-
folding is that it preserves the neighborhood between elements. The neighbors
in the unfolded representation are the neighbors in the original representation.
The unfolded representation is built as follows: one chord of the set class is rep-
resented by its simplex. Then, 1-simplices (i.e., edges) are extended as infinite
lines. The interval labelling the edge is assigned to the line and all its paral-
lels. Pitch classes and chords are organized and repeated infinitely following the
lines by respecting the assigned intervals. By considering 1-skeletons of unfolded
C(3, 4, 5) and C(2, 4, 3, 3) (Figure 3), one gets, respectively, the neo-Riemannian
Tonnetz [2] and the Gollin 3D Tonnetz [16].

Chord classes complexes resulting from the assembly of n-note chords are un-
folded as (n−1)-dimensional infinite spaces. C(5, 7) is unfolded as an infinite line,
C(3, 4, 5) and C(2, 2, 3) as infinite triangular tessellations. Note that n-simplices
don’t systematically tessellate the n-dimensional Euclidean space. For example,
2-simplices (triangles) tessellate the 2D plane but 3-simplices (tetrahedra) do
not tessellate the 3D space. For this reason, the 3D unfolded representation of
complexes as C(2, 4, 3, 3) contains some holes.

Visualization in Hexachord. Hexachord1 is a computer-aided music analysis
environment, based on the previous simplicial representations. A first function-
ality is the visualization of the sequence of chords in a midi file inside some
simplicial complexes related to generalized Tonnetze.

Hexachord offers the visualization of musical sequences in unfolded repre-
sentations of simplicial complexes built from three-note chords. As previously
mentioned, these unfoldings are infinite 2D triangular tessellations.2 When a

1 Presentation videos available at http://vimeo.com/38102171
2 3D representation of unfolded tetrahedral spaces composed by 4-note chords in
Hexachord is currently under development.
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Fig. 3. On the top, the unfolding process is applied to C(3, 4, 5) by extending C Major
1-simplices to infinite lines on the plane. At the bottom, unfolding process is applied
to C(2, 4, 3, 3) in the 3D space.

midi file is read, cells representing played pitch classes and chords are filled in
real-time in light yellow (See Figure 4). Their remanence (in an alternate color)
can be adjusted to render the motion as a path in the complex.

We mentioned in the previous section that pitch classes and chords occur at
multiple locations in unfolded representations. As a consequence, multiple paths
can be chosen to represent the same sequence of chords. Figure 4 illustrates
this phenomenon by a simple example. The sequence representation at the top
shows that the transition from C to G can be interpreted as different motions
in C(1, 2, 9), for the reason that this region of the unfolded representation of the
complex includes two occurrences of the pitch class C and three of G.

The user can thus choose to illuminate every location representing a played
element, or just one in order to observe motions locally, as shown at the bottom
of Figure 4. Locations are chosen by following both static and dynamic criteria.
The static criterion requires that when several elements are played together, the
filled cells must be as close as possible from each other. In other words, the region
containing filled cells must be as compact as possible. This criterion allows to
interpret pitch class sets as geometrical shapes. The dynamic criterion requires
the evolution from a set of elements to another one to be represented by the
smallest possible motion. This second criterion facilitates the interpretation of a
motion as a geometrical transformation.
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Fig. 4. Visualization with Hexachord of the pitch sequence [C,G] in a region of the
unfolded representation of C(1, 2, 9). On the top each cell labelled by the played pitch
is illuminated. On the bottom, pitch classes are illuminated in a single location. Arrows
represent possible interpretations of the motion during the sequence.

4.2 Introduction of the Compliance

We call compliance the capacity of a space to reveal the regularity of an object
and/or its evolution, when represented in it. Informally, a regularity is something
which cannot be interpreted as randomness.

In the context of our musical study, we will consider only a limited set of
spaces. Objects refer to pitch class sets. Their evolutions are interpreted as pitch
class sequences and pitch class set sequences. Spaces are simplicial complexes
whose 1-skeletons are generalized pitch class Tonnetze. These complexes are built
by assembly of simplices representing pitch class sets related by transposition and
inversion as described in the previous section. Any possible pitch class set can
be used to build a particular simplicial complex among the 224. Its 1-skeleton
is one of the 30 generalized Tonnetze described in section 3. Before giving a
more precise definition of the compliance, let’s look at an example motivating
our approach.

Chord Sequence in C(3, 4, 5). The interpretation of measures 143 to 176
of the second movement of Beethoven’s ninth Symphony has been frequently
studied as a succession of neo-Riemannian operations R and L [2,17].

The representation of this sequence in the Tonnetz reveals a geometric regu-
larity due to interval properties shared by the space and the chord sequence [2].
This regularity can be noticed in C(3, 4, 5) due to the deep relation, highlighted
in the previous section, between this complex and the original Tonnetz. Figure 6
compares representations of this chord sequence in C(3, 4, 5) and C(1, 2, 9). The
spatial regularity emerging in C(3, 4, 5) illustrates the compliance of this space
with this chord sequence. We see two main reasons for this regularity:
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Fig. 5. Chord sequence extracted from Beethoven’s 9th Symphony

1. Three-note chords used in this sequence are represented by 2-simplices thus
by compact objects.

2. The regular alternation between the neo-Riemannian operations L and R
represents the sequence as following a straight trajectory.

The first property is static, the second one is dynamic. In the following we
investigate the static property by proposing a method to measure compactness
of pitch class sets in simplicial complexes. Of course, compactness is not the only
property to take into consideration when estimating the regularity of musical
objects representations in these complexes. Nevertheless, it makes an interesting
first indication.

Fig. 6. Evolution of the chord sequence extracted from Beethoven’s 9th Symphony in
unfolded representation of C(3, 4, 5) (on the left) and C(1, 2, 9) (on the right)

4.3 Measure of Compactness

As a first example of compliance, we propose here a method to calculate com-
pactness of a pitch class set in a simplicial complex by a sub-complex. We define
the compactness of a simplicial complex A at the dimension m by

m-compactness(A)=
fm+1(A)(f1(A)

m+1

)

In other words, the m-compactness compares the number of m-simplices the
complex has, with the number of m-simplices it could maximally have given its
number of vertices. The values of m-compactness lie in the real interval [0, 1].

This definition of compactness depends on the dimension m. For example,
the 1-skeleton of a tetrahedron (composed by 4 vertices and 6 edges) has a 1-
compactness equal to 1 and a 2-compactness equal to 0. Naturally, these different
forms of compactness are related. Especially, the existence of high dimensional
simplices induces compactness of the lower levels. For example, if a complex
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includes a 3-simplex (a tetrahedron), it includes by definition its four vertices
too, which are all neighbor and thus compact. Thus, compactness at a high level
induces compactness at lower levels. However, compactness at a low level does
not necessarily induce compactness at higher levels. For example, four neighbor
vertices don’t necessarily surround a 3-simplex.

The pitch class set A is represented in C by a sub-complex CA of C. CA is com-
posed by all simplices in C representing an element included in A (pitch classes,
two-note chords, etc.). In other words, CA is the intersection between SA (the
simplicial representation of A as defined in Section 3) and C. The topological
aspect of CA thus results from the constitution of C. Figure 7 shows the inter-
section between chord (C,E,G,Bb) and C(3, 4, 5) and between chord (C,G,B)
and C(2, 3, 5).

Bb 

E 

C 

G 

Bb 

E 

C 

G 

G 

C 

B G 

C 

B 

∩ C(3,4,5) 

∩ C(2,3,5) 

Fig. 7. On the left, the simplicial representations of chords (C,E,G,Bb) (top) and
(C,G,B) (bottom) and on the right their intersection respectively with C(3, 4, 5) and
C(2, 3, 5)

The compliance relates the m-compactness of an n-sized pitch class set A in
a complex C by the formula:

fm+1(SA ∩ C)(
n

m+1

)

where SA is the simplicial representation of A.

Statistics on Chord Sequences. A musical sequence can be seen as a sequence
{Ai}i∈!0,size" of pitch class sets. Each time a new pitch class is played, or a played
pitch class is stopped, a new set is created and concatenated in the sequence.
The duration of a pitch class set Ai is noted di and the total duration of the

sequence is noted D =
size∑
i=0

di. We can thus compute the m-compactness of a

complex C with the sequence {Ai} by computing
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1

D
×

size∑
i=0

[
fm+1(SAi ∩ C)

(f1(SAi )
m+1

) × di]

Some Applications. This approach can be useful in musical analysis since it
enables classification. For example, one can be interested in finding most com-
pliant spaces with a chord progression, a whole piece or a corpus related to
a style or an author. Figure 8 shows the average 2-compactness of the twelve
complexes built from three-note chords for four jazz standards. Each red bar
represents the average compactness of the piece in a particular complex. Some
similarities between these histograms seem to represent common practices in
jazz. In particular, most 2-compact spaces are for each piece C(2, 3, 7), C(2, 4, 6)
and C(3, 4, 5).

Fig. 8. Average compliance of the twelve complexes built from three-note chords with
the standards Turn Out The Stars of Bill Evans (top left), Eternal Child of Chick
Corea (top right), Ask Me Now of Thelonious Monk (down left) and As Time Goes By
of Art Tatum (down right)

Figure 9 shows the same measure on the whole second movement of
Beethoven’s ninth Symphony and Schönberg’s Klavierstücke Op. 19, No. 6. The
difference of style is here expressed by the need to switch from C(3, 4, 5) to
C(2, 3, 7) to visualize compact three-note chords.

Another possible application is harmonization by spatial criteria. An extra
pitch class is added to a pitch class set when it maximizes the compliance of a
given space with this set.
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Fig. 9. Average compliance of the 12 complexes built from three-note chords with
second movement of Beethoven 9th Symphony (left) and Schoenberg Klavierstücke
Op. 19, No. 6

5 Conclusion and Future Works

Simplicial representation of chords is a powerful tool to analyse chord sequences
and musical style. However, this analysis could be more fruitful by considering
a more complete catalog of chord based complexes. We plan to investigate par-
ticularly complexes built from equivalence classes described by Mazzola [11] and
Julio Estrada [13]. Moreover, the research of a compliant space with a musical
piece rarely ends in a unique complex. The comparison of complex compliance
over time aids in the harmonic segmentation of the piece. A study of the suc-
cessive most compliant complexes during a piece gives interesting information
about composers’ practices.

Finally, as illustrated for parsimonious voice leading in section 3.1, we are in-
terested in translating compositional strategies into topological rules that specify
paths on chord complexes.
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