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A GEOMETRIC MODEL FOR THE 
ANALYSIS OF POP MUSIC 
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Pop music is unquestionably becoming the subject matter of a very 
rich field of study that is of concern to the music theory com-
munity and the computer-aided analysis community alike. This 
growing interest can partly be explained as a consequence of the 
flexibility of some of the formal tools and concepts that have been 
developed recently in music analysis and particularly within the 
transformational tradition—a branch that extends the set-
theoretical paradigm as well as includes other orientations such as 
neo-Riemannian analysis, diatonic theory, voice-leading orbifold-
based approaches and so on. In this essay, we will focus on some 
computational properties of neo-Riemannian music analysis, par-
ticularly once it is generalized by means of powerful computer-
aided paradigms such as spatial computing and then applied to the 
repertoire of pop music.1 This enables the extension of the classi-
cal Tonnetz structure to a family of generalized Tonnetze that can 
be selected according to the compactness property of a given 
musical grammar with respect to a possible geometrical space in 
which a musical piece will be represented. The underlying hypoth-
esis is that every musical style has its own spatial character since it 
is linked to the more or less compact way in which the musical 
structure can be embedded in a given geometry. 

As a starting point, let us take one of the most frequently quoted 
examples of a harmonic progression demonstrating the relevance 
of the traditional Tonnetz structure as a music-analytical tool, i.e. 
the “zigzag” chord sequence of the second movement of 
Beethoven’s Ninth Symphony. What makes the Tonnetz a good 
candidate for the analysis of this passage is clearly the fact that the 
trajectory of the harmonic progression within this geometrical 
space is a regular one. This no longer holds true when we change 
the intervals associated with the axes generating the space, taking 
for instance the Tonnetz generated by the minor second and the 
major second, which gives the major third as the diagonal axis. 
The different shapes afforded by this harmonic progression in the 
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traditional Tonnetz T[3,4,5] and in the “chromatic” Tonnetz 
T[1,2,9] are presented in example 1. 

Ex. 1. Two Tonnetze representing the harmonic progression of the often-
quoted passage of the second movement of Beethoven’s Ninth Symphony. 
The notation T[a,b,c] stands for the generic Tonnetz generated by two axes 
having respectively the intervals a and b as generators (where the interval 
corresponding to the diagonal axis is the inverse mod 12 of the sum of the 
two previous intervals). Note that this is equivalent to the notation T[a,b,c′], 
where c′ is the sum of a and b, since the diagonal axis has two orientations, 
one of which corresponds to the interval c and the other, opposite one to the 
interval c′. 

 
By mathematically defining the “compliance” of a space with re-
spect to some given musical material as the maximization of con-
nected trajectories corresponding to a harmonic progression,2 it is 
easy to show that T[3,4,5] is the space which best fits the musical 
logic of Beethoven’s chord sequence. This is not surprising, con-
sidering that the chord progression results from the alternation 
between the R (as Relative) and L (as Leading-Tone) operators—
which also explains the “zigzag” shape of the musical trajectory 
(see example 2). 

By leaving the tonal realm of Beethoven’s Symphony and by ana-
lysing musical pieces such as Milton Babbitt’s Semi-Simple Vari-
ations that explore the atonal universe, one clearly sees the inad-
equacy of the traditional Tonnetz and the relevance of other 
potential geometric spaces, first of all what we call the “small-
step” Tonnetz T[1,2,9], which provides maximal compliance with 
respect to all the possible geometric spaces (see example 3). 
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Ex. 2. The complete structure of the traditional Tonnetz T[3,4,5] with the 
three elementary neo-Riemannian transformations P, L, and R. 

 

Ex. 3. The Tonnetz distributions within Milton Babbitt’s Semi-Simple Vari-
ations, showing the relevance of the “chromatic” Tonnetz T[1,2,9] for captur-
ing the logical structure of the piece (always according to a criterion of com-
pactness of trajectory). 

 

The distribution of the compliance measures of the twelve possible 
Tonnetze also shows that there are many geometric spaces that 
provide a good description of the inner logics of a musical piece in 
accordance with the compliance criterion. This can be interpreted 
as a sign of the “complexity” of the piece, which can “live” 
equally (or almost equally) well in conceptually different geomet-
ric spaces. We can observe the same multiplicity of Tonnetze asso-
ciated with three jazz standards, although the high value obtained 
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for the traditional T[3,4,5] and the “pentatonic” T[2,3,7] Tonnetze 
suggests that, in the case of Thelonious Monk’s Brilliant Corners 
as well as of Chick Corea’s Eternal Child and Bill Evans’s Turn 
Out the Stars, the underlying musical logic is deeply rooted in the 
tonal idiom although it also extends towards more modal regions, 
particularly pentatonicism (example 4).  
Ex. 4. The Tonnetz statistics for three jazz standards. 

 

The previous examples show the flexibility of a spatial computing 
model together with a compliance measure of the trajectories asso-
ciated with a given harmonic structure, with respect to the analysis 
of style. In the special case of the analysis of pop music, there is 
rarely any ambiguity about which geometric space best fits a 
musical passage. Nevertheless, there are interesting questions that 
arise: firstly, from representing the structure and the evolution of a 
musical piece within a given geometric space and, secondly, from 
transforming either the trajectory of the piece or the underlying 
musical space. We will discuss these geometric properties by tak-
ing as a case study a song by the Italian “chansonnier” Paolo 
Conte, Madeleine, which is almost entirely based on a highly 
symmetric harmonic progression. This progression (see example 
5) can be decomposed in four blocks, the first three of which are 
related by minor-third transposition. The fourth block shows a 
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different trajectory on the Tonnetz; its function is basically that of 
“closing the loop” by forcing the musical piece to return to the 
initial chord (and hence to the initial key).3  

Ex. 5. The overall structure of the main harmonic progression of the song 
Madeleine by Paolo Conte. The letters a to d indicate the four blocks of the 
progression, the first three of which are related by minor third transposition.  

 

As observed and discussed by one of the present authors in an 
introductory article on formal methods for the study of popular 
music,4 the passage is also intriguing from a theoretical point of 
view since it almost realizes a covering of a proper subspace of the 
traditional Tonnetz, which is only constituted by the twelve major 
chords. There is a kind of “maximal variety principle” acting in 
this piece, together with a clear directionality in the chord progres-
sion, which draws the listener into a permanent “translational” 
state. The same holds for the piece Easy Meat by Frank Zappa, in 
which the harmonic sequence can also be decomposed in element-
ary blocks related by descending minor-third transpositions.5 The 
main structure of the chord progression, with all its inner symmet-
ries, is given in example 6. 

Both musical examples resonate with those contemporary compo-
sitional techniques that avoid repetition and maximize the variety 
of the musical material such as are found in the integral serialism  
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Ex. 6. The four blocks that make up one of the most recurrent harmonic 
progressions in Frank Zappa’s Easy Meat. (Note that accidentals only affect 
the note before which they are placed.) 

 
tradition, or the stochastic approaches of algorithmic musical com-
position. This observation gave us the idea to try to push the 
“maximal variety principle” even further and see if it is possible to 
find Hamiltonian chord progressions in a Tonnetz in the context of 
pop music. By definition, a Hamiltonian chord progression in the 
traditional “tonal” Tonnetz T[3,4,5] is a harmonic progression 
which modulates to all major and minor chords, where every ma-
jor (respectively minor) chord is followed by a minor (respectively 
major) by using one of the three possible neo-Riemannian opera-
tors P, L, or R. When the progression ends by reverting to the in-
itial chord, it is called a Hamiltonian cycle. Beethoven’s “zigzag” 
harmonic progression of example 1—if the process is carried on 
until completion—is the easiest example of a Hamiltonian cycle 
that is obtained by repeating twelve times a given “zigzag genera-
tor” (equal to RL in the case of this particular musical passage).6 
There are however far more interesting Hamiltonian cycles of 
length 24 that cannot be decomposed into sub-patterns.7 One ex-
ample of such a “non-redundant” Hamiltonian cycle has been used 
by one of the authors of this essay to structure the harmonic ma-
terial of the song Aprile (to lyrics by the Italian decadent poet 
Gabriele D’Annunzio). This cycle is represented in example 7 as a 
closed trajectory in T[3,4,5].8 
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Ex. 7. A non-redundant Hamiltonian cycle which is used to structure the 
harmonic material of the song Aprile, by Moreno Andreatta (lyrics by Gab-
riele D’Annunzio).   

 
This is clearly not the only possible non-redundant trajectory in 
this Tonnetz to pass without repetition through all major and minor 
chords. Example 8 shows the other two Hamiltonian cycles that 
can be found in the same song. We leave to the interested reader 
the task of checking that these two harmonic progressions are also 
indecomposable into sub-patterns and that they are structurally 
different from each other and from the progression shown in ex-
ample 8 (meaning that they are associated with essentially differ-
ent words of length 24 in the P, R and L neo-Riemannian alpha-
bet).9 

We conclude this short investigation of the use of the Tonnetz 
model and of its possible generalization to the analysis of popular 
music by presenting some transformational techniques that are 
now available to the analyst (and potentially to the composer in-
terested in the exploration of the creative ramifications of these  
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Ex. 8. The two remaining non-redundant Hamiltonian cycles used in the 
instrumental part of the song Aprile.  

 
analytical tools). We are far from understanding all the potential 
musical meanings of these transformations, of which only a small 
part is well defined in the music-theoretical literature. As we have 
seen, our analytical model rests on the hypothesis that musical 
style is endowed with a spatial character. In other words, in order 
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to understand the “logic” of a musical piece, we must first under-
stand how this piece moves within a given geometry. This is not 
entirely different from what other music-theorists and analysts 
have suggested when highlighting the relevance of generalized 
manifolds such as orbifolds with regard to the voice-leading prob-
lem.10 The main difference concerns the fact that, for a given 
musical piece, we can easily switch between “intrinsic” and “ex-
trinsic” notions of space. The twelve possible Tonnetze define an 
“extrinsic” universe of possible spatial interpretations of a piece 
that “intrinsically” has its own natural space. This “intrinsic” space 
is given by the simplicial complex generated by the piece itself—a 
topological structure that is essentially multi-dimensional and 
which we can only visualize by projecting it in low dimensions. 

As an example, let us consider Chopin’s Prelude, Op. 28, No. 4 
whose harmonic progression has been largely discussed in the 
context of orbifold-based voice-leading theory.11 In the same way 
that all the possible Tonnetze are obtained by spatially pasting 
together generic trichords—such as major and minor chords in the 
special case of T[3,4,5]—it is possible to “naturally” associate 
with a specific harmonic collection the simplicial complex gener-
ated by that collection. In the case of Chopin’s piece, we obtain a 
topological structure that corresponds to the “intrinsic” space gen-
erated by the chord progression (example 9). 

Ex. 9. The multi-dimensional simplicial complex associated with the har-
monic chord progression of Chopin’s Prelude, Op. 28, No. 4.  
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Note that this simplicial complex is an abstract structure that neg-
lects the temporal character of the harmonic progression. The tem-
poral dimension of the analysis is recovered by considering all 
possible trajectories within a given simplicial complex. It can be 
demonstrated that there are 120 potential Hamiltonian paths for 
this particular topological structure and, astonishingly, Chopin 
made use of the only Hamiltonian path that exhibits the strong 
property of involving the shortest motion of the remaining tone in 
the transition between two consecutive trichords that retain two 
common tones. 

Starting with these simple topological constructions associated 
with a given harmonic progression, one can try to understand what 
it means to work at the simplicial level. Example 10 displays sim-
plicial complexes representing the chorales BWV 324 and BWV 
254 by J.S. Bach. The first structure has the strong property of 
being linked to the second by an injective morphism. Intuitively, 
this can be understood as the possibility of mapping the trajectory 
of BWV 324 into the structure representing BWV 254. This rare 
particularity enables the generation of a new musical sequence that 
results from embedding the progression of the first chorale in the 
“intrinsic” space of the second one. 

Ex. 10. Two Chorales by J.S. Bach and their simplicial representations. The 
left simplex is structurally included in the right one. 
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Morphisms between simplicial complexes constitute powerful 
tools for capturing style intersections within a set of musical 
pieces. The Tonnetze can be used to achieve similar transforma-
tions on trajectories owing to the generic topology shared by the 
different Tonnetze used in this study, which all appear as triangular 
tessellations. Thus, two Tonnetze are related by several isomorph-
isms and a trajectory drawn in one space can easily be embedded 
in the second one. Example 11 shows on the left-hand side the first 
measures of J.S. Bach’s Choral BWV 256. The sequence is repre-
sented as a trajectory in the Tonnetz T[3,4,5]. On the right-hand 
side, the trajectory is embedded in the Tonnetz T[2,3,7]. This latter 
space has the property of being generated by the predominant in-
tervals of the pentatonic scale (major second, minor third and 
fifth), which is typically associated with traditional Asian music. 
On the bottom right of the example, the same measures are repro-
duced after the pitches have been updated according to the new 
underlying space. The resulting sequence has unquestionably 
undergone a switch to a different style, which may be perceived as 
close to Asian music.  

Ex. 11. On the left-hand side, the trajectory representing the first measures of 
Bach’s Chorale BWV 256 in T[3,4,5]. On the right-hand side, the trajectory 
has been embedded in T[2,3,7] and the notes of the score have been updated. 

 
Furthermore, the notion of a matching relation between a trajec-
tory and a space reaches to other transformations of musical 
pieces. In particular, a large variety of geometric operations on a 
trajectory drawn within a Tonnetz are possible as a result of the 
regularity of this structure. For example, the trajectory illustrated 
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in example 1 could be translated along one of the axes, thus gener-
ating a new musical sequence. In the case of a translation, it is 
easy to see that the musical result will amount to an exact transpo-
sition of the original sequence. However, this musical interpreta-
tion is less obvious for alternative operations such as rotations or 
homothetic transformations. Example 12 illustrates the case of two 
trajectories related by a 180° rotation. The left side of the example 
represents the beginning of the song Hey Jude by The Beatles in a 
Tonnetz that includes only the pitch-classes of the F-major to-
nality. The three axes are respectively associated with the diatonic 
intervals of a second, a third and a fifth. The transformation pro-
duces a new piece, also in the key of F major. The two score ex-
cerpts display the first measures of the melody before and after the 
transformation. 

Ex. 12. On the left-hand side, a trajectory represents the first measures of the 
song Hey Jude by The Beatles in a diatonic Tonnetz. On the right-hand side, 
a rotation is applied to the trajectory. The two scores correspond to the be-
ginning of the melody before and after the transformation. 

 

Because of its 180° angle, this rotation is musically equivalent to a 
diatonic inversion. However, other transformations such as a 60° 
rotation or a 120° rotation would raise additional questions with 
regard to their musical implications and necessitate further music-
theoretical research. 
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NOTES 

 1 See Louis Bigo, Moreno Andreatta, Jean-Louis Giavitto, Olivier 
Michel and Antoine Spicher, “Computation and Visualization of Musi-
cal Structures in Chord-based Simplicial Complexes,” in J. Yust, J. 
Wild and J.A. Burgoyne (eds.), Mathematics and Computation in 
Music: Proceedings of the 4th International Conference, MCM 2013 
(Berlin: Springer, 2013), pp. 38–51. 

 2 See Bigo et al., “Computation and Visualization of Musical Struc-
tures,” for the precise definition of the compliance measure of a piece 
with respect to a given geometric space.   

 3 For a multi-dimensional visualization of this chord progression, from 
the standard Tonnetz to the “Any Set Hypersphere Model” of Gilles 
Baroin, see the video posted on the MatheMusic4D YouTube channel: 
http://www.youtube.com/user/MatheMusic4D?feature=watch. 

 4 See Moreno Andreatta, “Modèles formels dans et pour la musique pop, 
le jazz et la chanson: introduction et perspectives futures,” in Z. Ka-
poula, L.-J. Lestocart and J.-P. Allouche (eds.), Esthétique et complexi-
té, II: neurosciences, évolution, épistémologie et philosophie (Paris: 
Éditions du CNRS, forthcoming in 2014). 

 5 See Guy Capuzzo, “Neo-Riemannian Theory and the Analysis of Pop-
Rock Music,” Music Theory Spectrum 26 (2004): 177–99. 

 6 Note that zigzags generated by other pairs of operators (LP or RP) do 
not generate Hamiltonian paths. RL is the only pair to verify this prop-
erty. 

 7 See Giovanni Albini and Samuele Antonini, “Hamiltonian Cycles in 
the Topological Dual of the Tonnetz,” in Elaine Chew, Adrian Childs 
and Ching-Hua Chuan (eds.), Mathematics and Computation in Music: 
Proceedings of the 2nd International Conference, MCM 2009 (Berlin: 
Springer, 2009), pp. 1–10. 

 8 We leave it as an exercise to the reader to verify that the harmonic 
progression is non-redundant, meaning that it is not possible to find a 
combination of the three neo-Riemannian operators P, R and L that 
provides a sub-pattern generating the entire sequence by simple repeti-
tion.  

 9 A computer-aided visualization of this song, together with some other 
combinatorial and geometrical song-writing experiences directly influ-
enced by the use of generalized Tonnetze, are also available from 
Gilles Baroin’s MatheMusic4D YouTube channel at http://www.you 
tube.com/watch?v=oazDu9t_DTk. 

10 See Dmitri Tymoczko, A Geometry of Music: Harmony and Counter-
point in the Extended Common Practice (New York, Oxford Univer-
sity Press, 2011). 

11 See ibid. 


