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Topological & Geometrical models for Music
10 Chapitre 2. Espaces de hauteurs

Figure 1 – Le Speculum Musicum de Leonhard Euler représente les 12 hauteurs organisées
par quintes pures (axes horizontaux, vers la droite) et par tierces majeures pures (axes
verticaux, vers le bas) dans un espace 2D.
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Figure 2 – Le Tonnetz de Arthur von Oettingen. Les barres verticales représentent les
ajustements de comma syntonique nécessaires pour di�érencier les hauteurs dans le cadre
de l’intonation juste.

Oettingen souligne la proximité dans le Tonnetz des hauteurs séparées par un intervalle
de tierce mineur et propose de représenter cet intervalle par un troisième axe, en diagonale,
afin que les triades majeures et mineures (composées d’une tierce mineure, d’une tierce
majeure et d’une quinte) y soient représentées par des triangles. Ce nouveau voisinage entre
les hauteurs fit du Tonnetz un outil essentiel dans le cadre des théories et analyses néo-
riemanniennes [Cohn 1997, Cohn 1998] et suggéra de le redéfinir comme une organisation
des 12 classes de hauteurs dans le cadre du tempérament égal et non plus de l’intonation
juste. La représentation triangulaire des triades permet en e�et d’illustrer, sous la forme
de symétries entraînant un mouvement minimal, les transformations néo-riemanniennes 2

qui maximisent le nombre de notes communes d’un accord à l’autre (figure 3) :

– la transformation P (Parallel) met en relation les triades partageant une quinte (e.g.,
(C,E,G) et (C,E�, G)) et entraîne un mouvement d’un demi-ton sur la troisième
classe de hauteur (E � E�),

– la transformation L (Leading�tone) met en relation les triades partageant une tierce
mineure (e.g., (C,E,G) et (B,E,G)) et entraîne un mouvement d’un demi-ton sur
la troisième classe de hauteur (C � B),

– la transformation R (Relative) met en relation les triades partageant une tierce
majeure (e.g., (C,E,G) et (C,E,A)) et entraîne un mouvement d’un ton sur la
troisième classe de hauteur (G� A).

2. Pour une introduction à la théorie néo-riemannienne, se reporter à [Cohn 1998].

(a) Planar tonnetz,
polygons and graphs
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(b) Tonnetz on a
manifold

(c) Chords as points of
an orbifold

(a) Speculum Musicum. Leonhard Euler.
(c) Tymoczko, Dmitri. "The geometry of musical chords." Science
313.5783 (2006): 72-74.
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Mathematical preliminaries - Graph theory

Figure : Graph examples
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Mathematical preliminaries - Graph theory

Definition (Graph)
An abstract unoriented graph is a pair (V , E) where V is a finite set
and E is a set of unordered pairs of different elements of V . Thus an
element of E is of the form {v , w} where v and w belong to V and
v 6= w . We call vertices the elements of V and edges the elements
{v , w} of E connecting v and w (or w and v ).
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Mathematical preliminaries - Graph theory

Definition (Graph)
An abstract unoriented graph is a pair (V , E) where V is a finite set
and E is a set of unordered pairs of different elements of V . Thus an
element of E is of the form {v , w} where v and w belong to V and
v 6= w . We call vertices the elements of V and edges the elements
{v , w} of E connecting v and w (or w and v ).

Definition (Realization of a graph)
Let (V , E) be an abstract graph. A realization of (V , E) is a set of
points in RN , one point for each vertex and segments joining precisely
those pairs of points which correspond to edges. The points are the
vertices and the segments are the edges; the realization is termed a
graph. We require that the following two intersection conditions hold:

1 two edges meet either in a common end-point or at all;
2 no vertex lies on an edge except at one of its ends.
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The tonnetz as a Graph

Definition (Tonnetz 1)
A tonnetz is a labeled graph, i.e. it is a sextuple (V , E , LV , lV , LE , lE)
such that

V 6= ; is a set of vertices;
E 6= ;, E ✓ V ⇥ V is the set of arrows associated to V ;
LV and LE are non empty set of vertices’ and edges’ labels
repsectively;
lV : V ! LV is the map which allows to associate a label to a
vertex. (lE is defined in the same way on E).
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The tonnetz as a Graph

Comparing two definitions

Definition (Tonnetz 1)
A tonnetz is a labeled graph, i.e. it is a sextuple (V , E , LV , lV , LE , lE)
such that ...a

aZ̆abka, Marek. Generalized Tonnetz and well-formed GTS: A scale
theory inspired by the Neo-Riemannians. Mathematics and
Computation in Music 2009. 286-298.

Definition (Tonnetz 2)
A tonnetz is a note based graph in which points represent notes and
chords corresponds to extended shapes of some kind. a

aTymoczko, Dmitri. "The Generalized Tonnetz." Journal of Music
Theory 56.1 (2012): 1-52.
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Some examples

(a) C[1,1,10] (b) C[1,2,9]

(c) C[2,3,7] (d) C[2,5,5]
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Some examples

Fact
Let C[a, b, c] be a tonnetz, where {a, b, c} ⇢ Z/12Z, is a
representation of the whole set of pitch classes if a, b or c, is a
generator of Z/12Z.

(a) C[2,2,8]
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Some examples

(a) C major diatonic tonnetz

[Bigo, Louis, et al. "Computation and visualization of musical structures in
chord-based simplicial complexes." Mathematics and Computation in Music. 2013.
38-51.]
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The Geometrical side
From notes graphs to chords diagrams

Figure : The Oettingen-Riemann Tonnetz

(Unimi - Ircam - UPMC) Geometry in Music Analysis ATIAM 7 / 18



The Geometrical side
From notes graphs to chords diagrams

Figure : Chicken-wire torus, Douthett and Steinbach (1998).
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The Geometrical side
From notes graphs to chords diagrams

Definition (Convex polytope)
A convex polytope is a compact convex set with a finite number of
extreme points (i.e. vertices)a.

a[Grunbaum, Branko, et al. Convex polytopes. Vol. 2. Springer, 1967.]

Definition (Dual polytope)
Given a convex polytope P, the dual polytope associated to P is a
polytope P⇤ whose vertices correspond to the faces of P.
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The Geometrical side
From notes graphs to chords diagrams

It is pretty natural to associate an interval to each vertex of a square.
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The Geometrical side
From notes graphs to chords diagrams
...and triads to a cube

(Unimi - Ircam - UPMC) Geometry in Music Analysis ATIAM 7 / 18



The Geometrical side
From notes graphs to chords diagrams
The dual polytope allows to go back to the notes
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Some conclusions
about the geometrical generalization of the tonnetz

Fact (1)
The Tonnetz, while apparently a two-dimensional structure, can also
be understood as a three-dimensional circle of octahedra linked by
shared faces. The shared faces represent augmented triads, which do
not appear on the traditional Tonnetz. The two versions of the Tonnetz
are graph-theoretically identical but geometrically (and topologically)
distinct.
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25 Recall that every vertex of a cross-polytope is located 
either on the top face or on the bottom face; there are no 
vertices not contained by these two faces.

(vertical line segments) representing the completely even two-note chords 
(tritones). Each vertex in one tritone-simplex is connected by a line segment 
to all those notes in the neighboring tritone-simplexes except for those that are 
a semitone away. The tritone-simplexes thus form the “top” and “bottom” 
faces of a two-dimensional cross-polytope (! square, the dual of the two-
dimensional cube, which is also a square).25 Similarly, Figure 14b is a circle of 
two-dimensional simplexes (horizontal triangles) containing completely even 
three-note chords (augmented triads); each vertex in one augmented-simplex 

Figure 14. To form the note-based graph of nearly even three-note chromatic 

chords, we start with the chord-based graph at the center of three-note chromatic 

chord space (a); then we replace each cube with its dual and glue the resulting 

octahedra together in the appropriate way. This produces a circle of octahedra 

linked by common faces (b). Here, triangles represent major, minor, and augmented 

chords, and edge-preserving flips represent single-semitone voice leading. Note 

that the top face is a 120° rotation of the bottom face, indicating that the structure 

is globally twisted.

21Dmitri Tymoczko  The Generalized Tonnetz

25 Recall that every vertex of a cross-polytope is located 
either on the top face or on the bottom face; there are no 
vertices not contained by these two faces.

(vertical line segments) representing the completely even two-note chords 
(tritones). Each vertex in one tritone-simplex is connected by a line segment 
to all those notes in the neighboring tritone-simplexes except for those that are 
a semitone away. The tritone-simplexes thus form the “top” and “bottom” 
faces of a two-dimensional cross-polytope (! square, the dual of the two-
dimensional cube, which is also a square).25 Similarly, Figure 14b is a circle of 
two-dimensional simplexes (horizontal triangles) containing completely even 
three-note chords (augmented triads); each vertex in one augmented-simplex 

Figure 14. To form the note-based graph of nearly even three-note chromatic 

chords, we start with the chord-based graph at the center of three-note chromatic 

chord space (a); then we replace each cube with its dual and glue the resulting 

octahedra together in the appropriate way. This produces a circle of octahedra 

linked by common faces (b). Here, triangles represent major, minor, and augmented 

chords, and edge-preserving flips represent single-semitone voice leading. Note 

that the top face is a 120° rotation of the bottom face, indicating that the structure 

is globally twisted.

(Unimi - Ircam - UPMC) Geometry in Music Analysis ATIAM 8 / 18



Some conclusions
about the geometrical generalization of the tonnetz 21Dmitri Tymoczko  The Generalized Tonnetz

25 Recall that every vertex of a cross-polytope is located 
either on the top face or on the bottom face; there are no 
vertices not contained by these two faces.

(vertical line segments) representing the completely even two-note chords 
(tritones). Each vertex in one tritone-simplex is connected by a line segment 
to all those notes in the neighboring tritone-simplexes except for those that are 
a semitone away. The tritone-simplexes thus form the “top” and “bottom” 
faces of a two-dimensional cross-polytope (! square, the dual of the two-
dimensional cube, which is also a square).25 Similarly, Figure 14b is a circle of 
two-dimensional simplexes (horizontal triangles) containing completely even 
three-note chords (augmented triads); each vertex in one augmented-simplex 

Figure 14. To form the note-based graph of nearly even three-note chromatic 

chords, we start with the chord-based graph at the center of three-note chromatic 

chord space (a); then we replace each cube with its dual and glue the resulting 

octahedra together in the appropriate way. This produces a circle of octahedra 

linked by common faces (b). Here, triangles represent major, minor, and augmented 

chords, and edge-preserving flips represent single-semitone voice leading. Note 

that the top face is a 120° rotation of the bottom face, indicating that the structure 

is globally twisted.

To form the note-based graph
of nearly even three-note chromatic chords,
we start with the chord-based graph at the
center of three-note chromatic chord space
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This produces
a circle of octahedra linked by common
faces. Here, triangles represent major, minor,
and augmented chords, and edge-preserving
flips represent single-semitone
voice leading. Note that the top face is
a 2⇡/3 rotation of the bottom face, indicating
that the structure is globally twisted.
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Some conclusions
about the geometrical generalization of the tonnetz

Fact (2)
Any sufficiently large note-based graph will inevitably contain either flip
restrictions or redundancies that is, the graph will either contain flips
that represent nonstepwise voice leadings or multiple representations
of the same chord. The traditional Tonnetz is unusual in that it lacks
both features.
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Some conclusions
about the geometrical generalization of the tonnetz

Fact (3)
Chord-based voice-leading graphs are associated with note-based
Tonnetze by the geometrical property of duality. However, the duality
relation obtains not between graphs considered as unified wholes, but
rather between their cubic and octahedral components.

See Tymoczko, Dmitri. "The Generalized Tonnetz." Journal of Music
Theory 56.1 (2012): 1-52, for further details and a deeper dissertation.
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The topological side
Trajectories on the tonnetz and homology

Example
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Figure 1: Tonnetz S1K(3, 4, 5)

Given the simplicial complex K(3, 4, 5) we can represent seventh chords as a higher dimensional
simplex. In figure 2 this step is depicted.
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Figure 2: Seventh chord tetrahedron

In figure 3 two adjacent 2-simplex of the tonnetz are depicted. In this particular case the
triangles represent respectively the minor and major triads of C. Reasonably we can build an
octahedron representing four classes of seventh chord.

a
E�

a
C

a
G

a
E

Figure 3: A portion of K(3, 4, 5)

The octahedron in figure 4 gives the major seven, dominant, minor seven and minor major
seven, seventh chords 3-dimensional space. Here follows a combinatorial remark on the geometry
of the complex.

2

Figure : S1 (|KT | [3, 4, 5])
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The topological side
Trajectories on the tonnetz and homology

Definition (n-simplex)
A n-simplex in Rk is a set of the form

�n =

( nX

i=0

ti vi s.t . 0  ti  1 end
nX

i=0

ti = 1

)
,

where vi are (affine) independent points of Rk .
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The topological side
Trajectories on the tonnetz and homology

Let � and ⌧ be two simplices in Rn. ⌧ is a face of � if V⌧ ✓ V�. If
V⌧ ⇢ V� then ⌧ is said to be a proper face of �.
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The topological side
Trajectories on the tonnetz and homology

Definition (Simplicial complex)
A finite collection K of simplices in Rn is said to be a simplicial complex
if

� 2 K , then every face of � belongs to K ;
�1 2 K , �2 2 K , then either �1 \ �2 = ; or else �1 \ �2 is a
common face of both �1 and �2.
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The topological side
Trajectories on the tonnetz and homology

Remark
The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of
all the simplices of K is a compact subset |K | of Rk referred to as the
polyhedron of K . (The polyhedron is compact since it is both closed
and bounded in Rk .)

Definition (Subcomplex)
Let K be a simplicial complex in Rk . A subcomplex of K is a collection
L of simplices belonging to K with the following property:
if � ⇢ L then every face of � belongs to L.
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The topological side
Trajectories on the tonnetz and homology

A particular family of subcomplexes of a simplicial complex K is the
filtration given by its n-skeletons, where n 2 {0, . . . , dim(K )}.

[Henri Cartan in 1937 and subsequently used by Bourbaki in their book Topologie
Générale]
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The topological side
Trajectories on the tonnetz and homology
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The octahedron in figure 4 gives the major seven, dominant, minor seven and minor major
seven, seventh chords 3-dimensional space. Here follows a combinatorial remark on the geometry
of the complex.

2

Figure : S1 (|KT | [3, 4, 5]) is the 1-skeleton of the realization of the complex
KT (3, 4, 5)
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Simplicial complexes on the tonnetz

Each musical piece can be seen has a simplicial complex. In the
following figures an instant of Summertime is depicted

(a) C(3,4,5) (b) C(2,2,5)
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Simplicial complexes on the tonnetz

Each musical piece can be seen has a simplicial complex. In the
following figures an instant of Summertime is depicted

(a) C(2,2,8) (b) C(4,4,4)
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Trajectories on the tonnetz

The same holds for trajectories, this allows to relate harmony and time

(a) Trace in C(3,4,5) (b) Trace in C(2,5,5)
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The Euler characteristic and the Betti numbers

Definition
Given a polyhedron P, the Euler characteristic � is given by

�(P) = V � E + F

Definition
Given a simplicial complex K , �(K ) is given by the alternate sum

�(K ) =
nX

i=0

(�1)i ki

where ki = |{k � simplices 2 K}|

The Euler characteristic is topologically invariant.
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The Euler characteristic and the Betti numbers

Figure : Computing �(T2)
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The Euler characteristic and the Betti numbers

Figure : Computing �(T2)
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The Euler characteristic and the Betti numbers

Figure : Computing �(T2)
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The Euler characteristic and the Betti numbers

The tonnetz can be seen as a simplicial complex, in which we can
compute some invariants which identifies the topology of a certain
space.

Definition (Betti numbers - intuitive definition)
Given a simplicial complex, the Betti numbers count the holes of the
complex in the following way:

�0 counts the number of connected components;
�1 counts the holes of dimension 1;
�n counts the n-dimensional holes.
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The Euler characteristic and the Betti numbers

ATMCS2 2004 .
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Figure : Betti numbers for a growing torus
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The Euler characteristic and the Betti numbers

Link between � and �i .

Definition (Boundary homomorphism)
Let K be a simplicial complex. We define the boundary
homomorphism @n : Cn(K )! Cn�1(K )), where C�1 is trivial, as

@n (< v0, . . . , vn >) =
nX

i=0

(�1)i < v0, . . . , v̂i , . . . , vn >

Remark
@n = 0 for all n > dim(K ) and for n  0;
@n � @n+1 = 0
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The Euler characteristic and the Betti numbers

Figure : Simplicial complex homology

@[v0, v1] = [v1]� [v0]

@[v0, v1, v2] = [v1, v2]� [v0, v2] + [v0, v1]

@[v0, v1, v2, v3] = [v1, v2, v3]� [v0, v2, v3] + [v0, v1, v3]� [v0, v1, v2]
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The Euler characteristic and the Betti numbers

Definition
We define the i-th homology group Hi as

Hi = Zi/Bi

where Zi = ker(@i) and Bi = im(@i+1).

In fact @2 = 0 implies that im(@i) ✓ ker(@i�1).

Definition
�i = dim(Hi) and

Fact
� =

Pn
i=0(�1)i�i =

Pn
i=0(�1)i dim (Zi/Bi).

(Unimi - Ircam - UPMC) Geometry in Music Analysis ATIAM 12 / 18



The Euler characteristic and the Betti numbers

PERSISTENT TOPOLOGY OF DATA 7

Theorem 2.3 ([22]). For a finite persistence module C with field F coe�cients,

(2.3) H�(C; F ) ⇠=
�

i

xti · F [x] �

�

�
�

j

xrj · (F [x]/(xsj · F [x]))

�

� .

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter ti and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter rj and disappear at parameter rj + sj . At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H�(C; F ) in
Equation (2.3) inspire a visual snapshot of Hk(C; F ) in the form of a barcode. A
barcode is a graphical representation of Hk(C; F ) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values �i).

H0

H1

H2

�

�

�

Figure 4. [bottom] An example of the barcodes for H�(R) in the
example of Figure 3. [top] The rank of Hk(R�i) equals the number
of intervals in the barcode for Hk(R) intersecting the (dashed) line
� = �i.

Figure : Simplicial complex homology
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The Euler characteristic and the Betti numbers

Dimension Complex Cardinality Betti numbers �
0 K; 0 0 0
0 KT [0] 12 [12] 12
1 KT [5, 7] 12 [1, 1] 0
2 KT [3, 4, 5] 12 [1, 13, 0] �12
2 KT [4, 4, 4] 4 [4, 0, 0] 4

Table : Chords’ complexes classification
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The Euler characteristic and the Betti numbers

Fact
Betti numbers are not enough. One requires a means of declaring
which holes are essential and which can be safely ignored. The
standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how
fragile or fine.

[Robert Ghrist Barcodes: the persistent topology of data. Bulletin of the American
Mathematical Society (New Series) 45, 1 (2008), 61-75.]
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The voice leading space
Intuition

Here follows a list of well known identifications in music
1 Octave

x ⇠O x + 12k , k 2 Z
2 Transposition

x ⇠T x + c(1, ..., 1), c 2 R
3 Permutation

x ⇠P �(x), � 2 Sn

4 Inversion
x ⇠I �x

5 Multiplicity
(..., xi , xi+1) ⇠C (..., xi , xi , xi+1, ...)
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The voice leading space
Intuition

Each identification corresponds to a specific space
1 Octave

Tn

2 Transposition
Rn o Tn

3 Permutation
Rn/Sn or Tn/Sn

4 Inversion
Rn/Z2 or Tn/Z2

5 Multiplicity

SPn(R) or infinite dimensional Ran space
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The voice leading space
Intuition

What we need to build an orbifold:
1 Octave

x ⇠O x + 12k , k 2 Z
2 Permutation

x ⇠P �(x), � 2 Sn

3 Multiplicity
(..., xi , xi+1) ⇠C (..., xi , xi , xi+1, ...)
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The voice leading space
Mathematical Preliminaries

Dmitri Tymoczko, The Geometry of Musical Chords, Science,
2006;
Dmitri Tymoczko, Rachel Wells Hall, Submajorization and the
Geometry of Unordered Collections, preprint, 2010;
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The voice leading space
Mathematical Preliminaries

Definition (Multiset)
A multiset is a couple (A, m) where A is a set and m : A! N is a map
such that m : a 7! n is the multiplicity of a 2 A.

Definition (Voice leading)
A voice leading among two multisets {x1, ..., xm} e {y1, ..., yn} is a
multiset of ordered couples (xi , yj) denoted by
{x1, ..., xm}! {y1, ..., yn}.
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The voice leading space
Mathematical Preliminaries

The lowest dimensional case: intervals

Figure : R2/S2
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Figure : T2/S2
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The voice leading space
Mathematical Preliminaries

The lowest dimensional case: intervals
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The voice leading space
Mathematical Preliminaries

From a square to the Möbius strip.
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The voice leading space
Mathematical Preliminaries
From the torus to the Möbius strip.
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The voice leading space
Mathematical Preliminaries
From the torus to the Möbius strip.
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The voice leading space
Mathematical Preliminaries
From the torus to the Möbius strip.
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The voice leading space
Mathematical Preliminaries

Definition (Orbifold - Intuitive)
An orbifold is a space which is locally modeled on the quotient of a
vector space by a finite group.

Definition (Orbifold)
Too difficult, 30’ needed!

Example
A manifold is an orbifold in which each finite group is trivial.

[Vladimir G. Ivancevic, Tijana T. Ivancevic. Applied Differential Geometry: A Modern
Introduction. World Scientific. 2007.]
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The space of chords
Tn/Sn, 2  n  4

  

Figure : (a): The orbifold T2/S2, is the space of intervals. It is a two
dimensional prism. The base is glued to the opposite face. Before gluing it is
necessary to twist the face. The centre of the figure represent the most even
interval in the octave, that is the augmented fourth.
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The space of chords
Tn/Sn, 2  n  4

  

Figure : (b) The orbifold T3/S3, is the space of triads, it is a 3-dimensional
prism, whose faces have to be identified, by a rotation of 2

3⇡ such that the
chords’ labels match. In the middle of the orbifold we find the augmented
triads.
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The space of chords
Tn/Sn, 2  n  4

  

Figure : (c) The orbifold T4/S4, is the space of fourth chord, which is a four
dimensional prism, where the two tetrahedral faces have to be indentified.
The dotted line represents the fourth dimension. Before the gluing one of the
face has to be twisted to make the chords labels at each vertex to
correspond. The centre of this orbifold is occupied by a diminished chord.
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Applications 1 - Visualization
Videos have been removed, you can find them on
http://prezi.com/tdocmoa87v47/music-math/

Chopin’s prelude on R/12Z
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Application 2 - Efficient voice leadings

Voice leading metric constraints:

Definition
Let <MNC be the partial order induced on Rn/Sn by:

The monotonicity principle. Let X e Y be two multisets of
cardinality n of non-negative real numbers, such that yi � xi for all
i , we have X MNC Y .
No-Crossings Principle. If A = {a1, ..., an} e B = {b1, ..., bn} are
multisets of real numbers, then

{|b[1] � a[1]|, ..., |b[n] � a[n]|} MNC {|b1 � a1|, ..., |bn � an|},

where a[i] denotes the i th maximum elements of A.
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Application 2 - Efficient voice leadings
T2/S2
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{F↔G}        

 
  

Fig. 4. (left) most efficient voice-leadings between diatonic fifths form a chain that runs 

through the center of the Möbius strip from Figure 1.  (right) These voice leadings form an 

abstract circle, in which adjacent dyads are related by three-step diatonic transposition, and are 

linked by single-step voice leading. 
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             {G↔A}                {E↔
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Fig. 5. (left) most efficient voice-leadings between diatonic triads form a chain that runs 

through the center of the orbifold representing three-note chords. (right) These voice leadings 

form an abstract circle, in which adjacent triads are linked by single-step voice leading.  Note 

that here, adjacent triads are related by transposition by two diatonic steps. 

2   Voice-leading lattices and acoustic affinity 

Voice-leading and acoustics seem to privilege fundamentally different conceptions of 

pitch distance: from a voice leading perspective, the semitone is smaller than the 

perfect fifth, whereas from the acoustical perspective the perfect fifth is smaller than 

the semitone.  Intuitively, this would seem to be a fundamental gap that cannot be 

bridged.   

Figure : Efficient voice leadings between diatonic fifths
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Application 2 - Efficient voice leadings
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that here, adjacent triads are related by transposition by two diatonic steps. 

2   Voice-leading lattices and acoustic affinity 

Voice-leading and acoustics seem to privilege fundamentally different conceptions of 

pitch distance: from a voice leading perspective, the semitone is smaller than the 

perfect fifth, whereas from the acoustical perspective the perfect fifth is smaller than 

the semitone.  Intuitively, this would seem to be a fundamental gap that cannot be 
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Application 2 - Efficient voice leadings
Chords configuration in the space of triads

 
Fig. 6. Major, minor, and augmented triads as they appear in the orbifold representing three-

note chords.  Here, triads are particularly close to their major-third transpositions. 

 

Things become somewhat more complicated, however, when we consider the 

discrete lattices that represent voice-leading relationships among familiar diatonic or 

chromatic chords.  For example, Figure 4 records the most efficient voice leadings 

among diatonic fifths—which can be represented using an irregular, one-dimensional 

zig-zag near the center of the Möbius strip T2/S2.  (The zig-zag seems to be irregular 

because the figure is drawn using the chromatic semitone as a unit; were we to use the 

diatonic step, it would be regular.)  Abstractly, these voice leadings form the circle 

shown on the right of Figure 4.  The figure demonstrates that there are purely 

contrapuntal reasons to associate fifth-related diatonic fifths: from this perspective 

{C, G} is close to {G, D}, not because of acoustics, but because the first dyad can be 

transformed into the second by moving the note C up by one diatonic step.  One 

fascinating possibility—which we unfortunately cannot pursue here—is that acoustic 

affinities actually derive from voice-leading facts: it is possible that the ear associates 

the third harmonic of a complex tone with the second harmonic of another tone a fifth 

above it, and the fourth harmonic of the lower note with the third of the upper, in 

effect tracking voice-leading relationships among the partials. 

Figures 5-7 present three analogous structures: Figure 5 connects triads in the C 

diatonic scale by efficient voice leading, and depicts third-related triads as being 

particularly close; Figure 6 shows the position of major, minor, and augmented triads 

in three-note chromatic chord space, where major-third-related triads are close5; 

Figure 7 shows (symbolically) that fifth-related diatonic scales are close in chromatic 

space.  Once again, we see that there are purely contrapuntal reasons to associate 

fifth-related diatonic scales and third-related triads.   

                                                             
5 This graph was first discovered by Douthett and Steinbach (1998).   

Figure : Here, triads are particularly close to their major-third transpositions
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Application 2 - Efficient voice leadings

[Tymoczko, Dmitri. "Three conceptions of musical distance."
Mathematics and computation in music. Springer Berlin Heidelberg,
2009. 258-272.]
[Tymoczko, Dmitri. "Scale Theory, Serial Theory and Voice Leading."
Music Analysis 27.1 (2008): 1-49.]
[Hall, Rachel Wells, and Dmitri Tymoczko. "Submajorization and the
geometry of unordered collections." The American Mathematical
Monthly 119.4 (2012): 263-283.]
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Thank you!

(Unimi - Ircam - UPMC) Geometry in Music Analysis ATIAM 18 / 18


	Tonnetz
	Graph Theory - Sketches
	The tonnetz as a Graph
	The geometrical side of the tonnetz
	The topological side of the tonnetz

	Orbifold
	Geometrical intuition
	Mathematical preliminaries
	Space of chords - Representation and examples
	Orbifolds in music


