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Abstract. This article proposes a functorial framework for generalizing
some constructions of transformational theory. We focus on Klumpen-
houwer Networks for which we propose a categorical generalization
via the concept of set-valued poly-K-nets (henceforth PK-nets). After
explaining why K-nets are special cases of these category-based transfor-
mational networks, we provide several examples of the musical relevance
of PK-nets as well as morphisms between them. We also show how to
construct new PK-nets by using some topos-theoretical constructions.
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1 Introduction

Since the publication of pioneering work by David Lewin [1,2] and Guerino
Mazzola [3,4] respectively in the American and European formalized music-
theoretical tradition, transformational approaches have established themselves
as an autonomous field of study in music analysis. Surprisingly, although group
action-based theoretical constructions, such as Lewin’s “Generalized Interval
Systems” (GIS), are naturally described in terms of categories and functors,
the categorical approach to transformational theory remains relatively marginal
with respect to the major trend in math-music community [5–7].

Within the transformational framework, which progressively shifted the
music-theoretical and analytical focus from the “object-oriented” musical con-
tent to the operational musical process, Klumpenhouwer Networks (henceforth
K-nets), as observed by many scholars, have stressed the deep synergy between
set-theoretical and transformational approaches thanks to their anchoring in
both group and graph theory [10]. Following David Lewin’s [11] and Henry
Klumpenhouwer’s [12] original group-theoretical description, theoretical stud-
ies have mostly focused until now on the underlying algebra dealing with the
automorphisms of the T/I group or of the more general T/M affine group [11,13].
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This enables one to define the main notions of positive and negative isographies,
a notion which can easily be extended to more isographic relations by taking into
account the group generated by affine transformations, together with high-order
isographies via the recursion principle. This surely provides a computational
framework for building networks of networks (and so on, in a recursive way)
but it somehow misses the interplay between algebra and graph theory, which is
well captured by category theory and the functorial approach. Since a prominent
feature of K-nets is their ability of instantiating an in-depth multi-level model
of musical structure, category theory seems nowadays the most suitable mathe-
matical framework to capture this recursive potentiality of the graph-theoretical
construction.

Following the very first attempt at formalizing K-nets as limits of diagrams
within the framework of denotators [14], we propose in this article a categorical
construction, called poly-K-nets and taking values in Sets (henceforth PK-nets).
This construction generalizes the notion of K-nets in various ways. K-nets theory
usually distinguishes two main types of isography: positive and negative isog-
raphy. Positive isography corresponds to two directed graphs having the same
transpositions, but having inversion operators that differ by a constant value.
Negative isography corresponds to two directed graphs in which the subscripts
of the transpositional and inversional operators sum to constant values, respec-
tively equal to 0 and different from 0. Figure 1 shows four K-nets, the first two
of which (K-nets (a) and (b)) are positively isographic, whereas the other two
(K-nets (c) and (d)) have the same node-content as the K-nets (a) and (b), but
their arrows are labeled in such a way that they are not isographic.

(a) (b) (c) (d)

Fig. 1. Four K-nets, the first two of which ((a) and (b)) are (positively) isographic
since the transpositions in K-net (b) are the same as those in (a), while the respective
inversions in (b) have subscripts 2 more than those of (a). The second two of the four
K-nets ((c) and (d)) do not have any isographic relation, although their node content
is the same as K-nets (a) and (b)

This clearly suggests that the concept of isography is highly dependent on
the selection of specific transformations and asks for more general settings in
which isographic networks remain isographic when the nodes are preserved and
the family of transformations between the nodes is changed. This has been one
of the main motivations for introducing PK-nets as natural extensions of K-nets
(Sect. 2). Moreover, PK-nets enable one to compare in a categorical framework
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digraphs with different cardinalities, a fact that occurs very often in many musi-
cally interesting analytical situations. They also realize Lewin’s intuition that
transformational networks do not necessarily have groups as support spaces,
since one can define PK-nets in any category. In this article we focus on the
category PKNR of PK-nets of constant form R whose (co)limit structure is
described in Theorem1. Morphisms of PKNR correspond to a change of a
musical context, as in the case of transformations between elements of a cyclic
group. Morphisms of PK-nets clearly show the structural role of natural trans-
formations by which one can generalize the case of isographic K-nets (Sect. 3).
In particular they enable us to define K-nets which remain isographic for any
choice of transformations between the original pitch-classes (or pitch-class sets).
The problem of determining the morphisms between PK-nets naturally leads to
the topos-theoretic formalization of the main construction we have introduced
in this paper, as it will be detailed in the final section.

2 From K-Nets to PK-nets

We begin this section by giving the definition of a PK-net. In the rest of this
paper, all functors are covariant.

2.1 Definition of PK-nets

Let C be a category, and S a functor from C to the category Sets with non
empty values. Such a functor corresponds to an action of the category C on the
disjoint union of the sets S(c) for the objects c ∈ C [15].

Definition 1. Let ∆ be a small category and R a functor from ∆ to Sets
with non empty values. A PK-net of form R and with support S is a 4-tuple
(R,S, F,φ), in which F is a functor from ∆ to C, together with a natural trans-
formation φ : R → SF .

The definition of a PK-net is summed up by the following diagram:

∆ C

Sets

R S

F

φ

The usual K-nets are a particular case of PK-nets in which

1. C is the group T/I of transpositions and inversions, considered as a single-
object category and the functor S : T/I → Sets defines the usual action of
T/I on the set Z12 of the twelve pitch classes,

2. ∆ is the graph describing the K-nets, the functor R associates the single-
ton {X} to each object X of ∆, and the natural transformation φ reduces to
a map from the objects of ∆ to the image of SF .
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Within the framework of denotators, Guerino Mazzola and Moreno Andreatta
have proposed in [14] a generalized definition of a K-net as an element of the
limit of a diagram R of sets (or modules). We can compare the notion of PK-
net with this notion of K-net as follows: if (R,S, F,φ) is a PK-net, the functor
lim: Sets∆ → Sets maps the natural transformation φ : R → SF to the map
limφ : lim R → lim SF from the set of K-nets of form R to the set of K-nets
of form SF . Thus a PK-net does not represent a unique K-net, but the set of
K-nets associated to SF and a way to ‘name’ them (via limφ) by the K-sets of
R. The PK-net reduces to a K-net if R(X) is a singleton for each object X of ∆.

Remark 1. In Definition 1 and in the sequel, the category Sets can be replaced
by any category H to obtain the notion of a P(oly-)K-net in H (developed in a
paper in preparation). Let us note two interesting cases:

i. H is a category of presheaves: the networks considered in [14] correspond
to PK-nets in Mod@

Z of the form (R,S, F,φ) where C = T/I (p. 104), and
to PK-nets in a category of presheaves, with F an identity, which they call
”network of networks” (pp. 106–107) and they show how to define iterated
networks using powerset constructions.

ii. H is the category Diag(C) of diagrams in a category C; in particular, if C
is the category PKNR of morphisms of PK-nets, a PK-net in Diag(PKNR)
gives a notion of “PK-net of PK-nets”, and by iteration of the Diag con-
struction we can define a hierarchy of PK-nets of increasing orders (without
recourse to powerset constructions as in [14]).

In the more general case, the category C provides the musically relevant trans-
formations, whose action on some musical objects (pitch classes, chords, etc.) is
given by the functor S. The form of a PK-net, given by the functor R, provides a
diagram of elements which are identified to the musical objects by the functor F
and the natural transformation φ. The definition of PK-nets provides advantages
over K-nets, some of which are detailed in the examples below.

Example 1. The functor R allows one to consider sets R(X), X ∈ ∆, whose
cardinality |R(X)| is greater than 1.

For example, let C be the group T/I, considered as a single-object category,
and consider its natural action on the set Z12 of the twelve pitch classes, which
defines a functor S : T/I → Sets. Let ∆ be the interval category, i.e. the category
with two objects X and Y and precisely one non-trivial morphism f : X → Y ,
and consider the functor F : ∆ → T/I which sends f to T4.

Consider now a functor R : ∆ → Sets such that R(X) = {x1, x2, x3} and
R(Y ) = {y1, y2, y3, y4}, and such that R(f)(xi) = yi, for 1 ≤ i ≤ 3. Consider
the natural transformation φ such that φ(x1) = 0, φ(x2) = 4, φ(x3) = 7, and
φ(y1) = 4, φ(y2) = 8, φ(y3) = 11, and φ(y4) = 2. Then (R,S, F,φ) is a PK-net
of form R and support S which describes the transposition of the C major triad
to the E major triad subset of the dominant seventh E7 chord. This functorial
construction is shown in Fig. 2.
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∆

Sets

R S

F

F (f) = T4

T/IX

Y
f

R(X)

R(Y )

R(f)

φ(X)

φ(Y )

Fig. 2. Diagram showing the functorial construction underlying the definition of PK-
nets as applied to the Example 1

Example 2. The definition of PK-nets allows one to consider networks of greater
generality than the usual K-nets.

Consider the category C = T/I and the functor S : T/I → Sets as in the
previous example, and consider the category ∆ with one single-object X and one
non-trivial morphism f : X → X such that f2 = idX . Consider now the functor
F : ∆ → T/I which sends f to I1 ∈ T/I.

If we restrict ourselves to functors R : ∆ → Sets such that R(X) is a single-
ton, then there exists no natural transformation φ : R → SF , since the equation
φ(x) = 1 − φ(x) has no solution in Z12. However, it is possible to consider a
functor R such that R(X) = {x1, x2}, with R(f)(x1) = x2 and vice-versa, and
a natural transformation φ which sends x1 to 0 and x2 to 1. Then (R,S, F,φ) is
a valid PK-net of form R and support S.

Example 3. In addition to groups, the definition of PK-nets allows one the use of
any category C. Thus, PK-nets can describe networks of musical objects being
transformed by the image morphisms of C through S.

Consider for example the monoid M = {(u, 2v) | u ∈ Z[ 12 ], u ≥ 0, v ∈ Z}
whose multiplication law is given by the following equation:

(u1, 2v1) ∗ (u2, 2v2) = (u2 + u1 · 2v2 , 2v1+v2). (1)

The monoid M is generated by the elements a = (1, 1) and b = (0, 1/2) and
has presentation M = 〈a, b | a2b = ba〉. It can be considered as a discrete monoid
version of Lewin’s continuous group of time-span transformations.

Recall that a time-span, in the sense of Lewin [2], is a pair (t, d), where t ∈ R
is called the onset of the time-span, and d ∈ R, d > 0, is called its duration.
Consider the set T = {(t, 2δ) | t ∈ Z[ 12 ], δ ∈ Z} of dyadic time-spans, equipped
with the action M × T → T given by the following equation:
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(u, 2v) · (t, 2δ) = (t+ 2δ · u, 2δ+v) (2)

This action defines a functor S : M → Sets. Let then the category C be the
monoidM , and S be the functor as defined above. Let ∆ be the interval category,
and consider the functor F : ∆ → M which sends the non-trivial morphism
f : X → Y to (2, 1/2) ∈ M . Consider the functor R : ∆ → Sets such that R(X)
andR(Y ) are singletons, and the natural transformation φ : R → SF which sends
R(X) to {(1, 1)} ⊂ T and R(Y ) to {(3, 1/2)} ⊂ T . Then the PK-net (R,S, F,φ)
describes the transformation of the dyadic time-span (1, 1) into (3, 1/2) by the
element (2, 1/2) of the monoid M . Observe that, contrary to the group of Lewin,
no element of M can describe the transformation of the time-span (3, 1/2) to the
time-span (1, 1), since the action of the elements of M only translates time-spans
by a positive amount of time.

2.2 The Category of PK-nets with Constant Form

Let ∆ be a small category andR a functor from ∆ to Sets with non empty values.
One can form a category PKNR of PK-nets of constant form R, according to
the following definition.

Definition 2. The category PKNR has

– objects which are PK-nets (R,S, F,φ) of form R : ∆ → Sets, and
– morphisms between PK-nets (R,S, F,φ) and (R,S′, F ′,φ′) which are pairs

(L,λ), where L is a functor from C to C′, and λ is a natural transforma-
tion from S to S′L such that φ′ = (λF ) ◦ φ.

The following theorem describes part of the structure of PKNR. We omit here
the proof, which is rather technical.

Theorem 1. The category PKNR is complete, and has all connected colimits.

Musically speaking, a morphism (L,λ) of PK-nets of constant form R can be
interpreted as a change of musical context, through the change of functor from
S to S′. We give some examples of such morphisms below.

Example 4. Let the category C be the cyclic group G = Z12, generated by an
element t of order 12. Consider the action of t on the set Z12 of the twelve pitch
classes given by t·x = x+1, ∀x ∈ Z12. This defines a functor S : G → Sets, which
corresponds to the traditional action of Z12 by transpositions by semitones.
Consider now the action of t on the set Z12 of the twelve pitch classes given
by t · x = x + 5, ∀x ∈ Z12. This defines another functor S′ : G → Sets, which
corresponds to the action of Z12 by transpositions by fourths. Let L be the
automorphism of G which sends tp ∈ G to t5p in G, ∀p ∈ 1, . . . , 12, and let λ
be the identity function on the set Z12. It is easily checked that λ is a natural
transformation from S to S′L.

Let (R,S, F,φ) be the PK-net wherein ∆ is the interval category, F is the
functor from ∆ to G which sends the non-trivial morphism f : X → Y of ∆
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to t10 in G, R is the functor from ∆ to Sets which sends the objects of ∆ to
singletons, and φ is the natural transformation which sends R(X) to {0} ⊂ Z12

and R(Y ) to {10} ⊂ Z12. This PK-net describes the transformation of C to B%
by a transposition of ten semitones.

By the morphism of PK-nets (L,λ) introduced above, one obtains a new
PK-net (R,S′, F ′,φ′), wherein the functor F ′ = LF sends f ∈ ∆ to t2 ∈ G,
and the natural transformation φ′ = (λF ) ◦ φ sends R(X) to {0} ⊂ Z12 and
R(Y ) to {10} ⊂ Z12. This new PK-net describes the transformation C to B% by
a transposition of two fourths.

Example 5. We give here an example of a morphism between a PK-net of beats
and a PK-net of pitches. Figure 3 shows a passage from the final movement of
Chopin’s Piano Sonata Nr. 3, op. 58 in B minor, wherein the initial six-notes
motive is raised by two semitones every half-bar.

Fig. 3. A passage from the final movement of Chopin’s Piano Sonata Nr. 3 op. 58

Let the category C be the infinite cyclic group G = Z, generated by an
element t. Let Z be the set of equidistant beats of a given duration and consider
the action of t on this set given by t · x = x + 1, ∀x ∈ Z. This action defines a
functor S : G → Sets.

Let the category C′ be the cyclic group G′ = Z12, generated by an element
t′ of order 12. Consider the set U = {ui | i ∈ Z12} of the twelve successive
transpositions of the pitch class set u0 = {10, 11, 0, 3, 4}, and consider the action
of t′ on U given by t′ · ui = ui+1 (mod 12), ∀i ∈ Z12. This defines a functor
S′ : G′ → Sets.

Let (R,S, F,φ) be the PK-net wherein

– ∆ defines the order of the ordinal number 4 (whose objects are labelled Xi),
– F is the functor from ∆ to G which sends the non-trivial morphisms

fi,i+1 : Xi → Xi+1 of ∆ to t in G,
– R is the functor from ∆ to Sets which sends the objects Xi of ∆ to singletons

{xi}, and
– φ is the natural transformation which sends R(Xi) to {i} ⊂ Z.

This PK-net describes the successive transformations of the initial set by trans-
lation of one half-bar in time. Let (R,S′, F ′,φ′) be the PK-net wherein
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– F ′ is the functor from ∆ to G′ sending the non-trivial morphisms
fi,i+1 : Xi → Xi+1 of ∆ to t′2 in G′,

– φ′ is the natural transformation which sends R(Xi) to {u2i} ⊂ U .

This PK-net describes the successive transformations of the initial set
{10, 11, 0, 3, 4} by transpositions of two semitones.

Consider the functor L : G → G′ which sends t to t′2, together with the
natural transformation λ : Z → U given by λ(x) = u2x (mod 12). As compared
to a traditional K-net approach which would typically focus on the pitch-class
set transformation, the morphism of PK-nets (L,λ) allows us to describe the
relation between the translation in time and the transposition in pitch.

Given the knowledge of two functors S : C → Sets and S′ : C′ → Sets, and
a functor L : C → C′, there may not always exist a natural transformation
λ : S → S′L. The following theorem gives a sufficient condition on S for the
existence of the natural transformation λ : S → S′L.

Theorem 2. Let S : C → Sets, S′ : C′ → Sets, and L : C → C′ be three
functors, where S′ has non empty values. If S is a representable functor, then
there exists at least one natural transformation λ : S → S′L.

Proof. If S is a representable functor, then there exists a natural isomorphism
µ : S → Hom(c,−) for some object c of C. We therefore need to prove that
there exists at least one natural transformation λ′ : Hom(c,−) → S′L, as the
composition λ′ ◦ µ will give the desired natural transformation λ. By Yoneda
Lemma, the natural transformations from Hom(c,−) to S′L are in bijection
with the elements of S′L(c), thus there exists at least one λ′ since S′L(c) is
supposed to be non empty. !
An immediate corollary of this result is that, given a PK-net (R,S, F,φ) where S
is a Generalized Interval System (GIS), a functor S′ : C′ → Sets, and a functor
L : C → C′, one can always form a new PK-net (R,S′, F ′ = LF,φ′). Indeed,
from a result of Vuza [16] and Kolman [8], a GIS is known to be equivalent
to a simply transitive group action on a set, which is in turn equivalent to a
representable functor from the group (as a single-object category) to Sets. The
previous theorem can then be used to form the new PK-net.

Note that given a functor S : C → Sets and a functor L : C → C′, it is known
that there always exists a functor SK : C′ → Sets and a natural transformation
κ : S → SKL obtained by the Kan extension [17] of S along L. Any other
natural transformation λ : S → S′L, where S′ is a functor from C′ to Sets,
factors through it.

3 Application of PK-net Morphisms to Isographic
Networks

We have seen previously that, given two functors S : C → Sets and
S′ : C′ → Sets, a morphism of PK-nets is a pair (L,λ) where L is a func-
tor from C to C′, and λ is a natural transformation from S to S′L such that
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φ′ = (λF ) ◦ φ. One notable feature which is directly derived from the definition
of the natural transformation λ in a PK-Net morphism is that, given two objects
X and Y in C, and two elements x ∈ S(X), y ∈ S(Y ) such that y = S(f)(x) for
some morphism f ∈ C, we have

λ(y) = λ(S(f)(x)) = S′L(f)(λ(x)), (3)

In other words, whatever the transformation f in C which relates the elements
x and y, their images by λ are related by the image transformation L(f).

This property is all the more interesting in the case S = S′, which covers the
case of isomorphic networks (see below). However, in the general case, the prob-
lem of determining the existence of a natural transformation λ : S → SL given
the functors L and S has no obvious solution. It can nevertheless be solved for
some particular cases: we consider here the case when C is a “generalized” group
of transpositions and inversions, with an application to isographic networks.

Let C be the dihedral group D2n of order 2n whose presentation is given
by 〈T, I | Tn = I2 = ITIT−1 = 1〉. By analogy with the T/I group, the
elements of D2n are designated by Tn = Tn, and by In = TnI. Consider the set
Zn of pitch classes in n-equal temperament (n-TET), equipped with the action
of D2n given by T · x = x + 1, and I · x = −x, for all x ∈ Zn. This defines a
functor S : C → Sets. The following theorem establishes the existence of natural
transformations λ : S → SL, for a given automorphism L of D2n.

Theorem 3. Let L be an automorphism of C = D2n. Then:

– if n is even, there exists either 0 or 2 natural transformations λ : S → SL.
– if n is odd, there exists exactly one natural transformation λ : S → SL.

Proof. From known results about dihedral groups, an automorphism L of D2n

sends, for all p ∈ Zn, the elements Tp ∈ D2n to Tkp, and the elements Ip ∈
D2n to Ikp+l, where k, l ∈ Zn, with gcd(k, n) = 1. Assume that there exists a
natural transformation λ : S → SL, which defines (by an abuse of notation)
a function λ : Zn → Zn. Given any element x of the set Zn, the definition of
a natural transformation imposes Tkp · λ(x) = λ(Tp · x) for all p ∈ Zn, which
leads to the equation kp + λ(x) = λ(p + x). By setting x = 0, we have that
λ(p) = kp + λ(0), for all p ∈ Zn. Similarly, given any element x of the set Zn,
the definition of λ imposes the equation Ikp+l · λ(x) = λ(Ip · x), which leads to
kp+ l−λ(x) = λ(p−x), for all p ∈ Zn. We therefore obtain a condition on λ(0)
given by the equation kp+ l−λ(0) = kp+λ(0), which reduces to l−λ(0) = λ(0).
If n is odd, this equation has exactly one solution, given by λ(0) = l/2 if l is
even, and by λ(0) = (n + l)/2 if l is odd. If n is even and l is odd, then the
equation has no solution. Finally, if n and l are even, this equation has two
solutions λ(0) = l/2 and λ(0) = (n+ l)/2. !
We now give an application to isographic networks. We have previously intro-
duced two isographic K-nets (see the Fig. 1, networks (a) and (b)). These can
be considered as PK-nets (R,S, F,φ) and (R,S, F ′ = LF,φ′), wherein the cat-
egory C corresponds to the usual T/I group, the functor S : C → Sets corre-
sponds to the usual action of T/I on the set Zn of pitch classes, and the functor
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L : T/I → T/I is the automorphism which sends Tp ∈ T/I to Tp, and Ip ∈ T/I
to Ip+2. Figure 1 presents one PK-net (R,S, F ′′,φ′′) with the same pitch classes,
wherein the functor F ′′ labels the arrows with transpositions (Fig. 1, networks
(c)). Figure 1 also shows the PK-net (b) where arrows are labelled with trans-
positions: the two PK-nets (c) and (d) of Fig. 1 are not isographic, which could
be deduced from the fact that, in this particular case, we have F ′′ = LF ′′.

By the previous theorem, there exists two natural transformations from S to
SL, given by the functions λ1(x) = x+1 and λ2(x) = x+7, for x ∈ Z12. By the
PK-net morphisms (L,λ1) and (L,λ2) applied to (R,S, F,φ), two new PK-nets
are obtained, which are represented in Fig. 4. The reader can verify that, for any
other choice of transformations between the original pitch-classes, these PK-nets
remain isographic to the initial one.

λ(x) = x+ 1 (x) = x+ 7

Fig. 4. Isographic PK-nets

4 PK-nets and Topoi

It is a well-known result that for any small category C, the category of functors
SetsC is a topos. The category SetsC therefore has a subobject classifier Ω,
and for any subobject A ∈ SetsC of an object B ∈ SetsC, there exists a
characteristic map χA : B → Ω. Topoi have found applications in music theory,
for example in the work of Mazzola [5] and more recently in the work of Noll,
Fiore and Satyendra [6,9].

In the context of PK-nets, the characteristic map can be considered as a
morphism of PK-nets. Let (R,S, F,φ) be a PK-net of form R and of support
S ∈ SetsC. Let A be a subobject of S: this defines a characteristic map χA :
S → Ω which is equivalent to a morphism of PK-nets (idC,χA). This morphism
thus defines a new PK-net (R,Ω, F,φ′). We detail below a concrete example
based on the monoid introduced in Example 3.

Example 6. Consider the monoid M = {(u, 2v) | u ∈ Z[ 12 ], u ≥ 0, v ∈ Z}
introduced above, acting on the set T = {(t, 2δ) | t ∈ Z[12 ], δ ∈ Z} of dyadic
time-spans, which defines a functor S ∈ SetsM . For a given k ∈ Z[12 ], the set
Tk = {(t, 2δ) | t ∈ Z[12 ], t ≥ k, δ ∈ Z} equipped with the same action of M is a
subobject A of S. Let Z[ 12 ]≥0 be the set {p ∈ Z[12 ] | p ≥ 0}. The reader can verify
that the subobject classifier of SetsM is the union of Z[12 ]≥0 and a singleton {x},
equipped with the following action of the generators of M
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(1, 1) · p =
{
p − 1 if p ≥ 1
0 otherwise (4)

and
(0, 1/2) · p = 2p (5)

for all p ∈ Z[12 ]≥0, and where the singleton {x} is a fixed point by the action

of M . The characteristic map χA then sends any element (t, 2δ) ∈ T to
k − t

2δ

if k ≥ t, or 0 otherwise. In other words, the characteristic map measures the
time period t − k from a time-span (t, 2δ) in units of 2δ. Consider for example
the PK-net (R,S, F,φ) defined in Example 3, and the subobject A defined from
the set T9/2. The morphism of PK-nets (idM ,χA) sends the PK-net (R,S, F,φ)
to the new PK-net (R,Ω, F,φ′), where the natural transformation φ′ = χA ◦ φ
sends R(X) to {7/2} and R(Y ) to {3}.

5 Conclusions and Perspectives

We have presented a generalized framework of Klumpenhouwer Networks based
on category theory. In order to show the richness of this new framework we
have chosen some pedagogical examples by focusing on the concept of set-valued
PK-nets of constant form R and the category PKNR they form. This construc-
tion stresses the categorical description of musical objects based on the synergy
between algebra and graph-theory, as it is the case for Klumpenhouwer Networks
and other constructions within transformational theory. The category PKNR

is the category of objects under R of the category Diag(Sets) of diagrams in
Sets which we denote by PKN; the morphisms of PKN are all the PK-nets
(where the diagram ∆ and/or the functor R may vary). Our current research
addresses the question of the musical relevance of PKN, of Span(PKN),
and of different constructions based on PKN, such as the construction of PK-
nets of higher order (see Remark 1), or the characterization and musical appli-
cations of a notion of PK-homographies generalizing the problem of isographies.

We are also planning to better study some computational aspects under-
lying PK-nets, once they are integrated into some programming languages for
computer-aided music theory and analysis, such the MathTools environment in
OpenMusic [18]. This will probably enable one to better understand the cogni-
tive and perceptual relevance of transformational theory and contribute to the
programmatic research area of a categorical approach to creativity [19].
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