
Musical Descriptions Based on Formal
Concept Analysis and Mathematical

Morphology

Carlos Agon1, Moreno Andreatta1,2(B), Jamal Atif3, Isabelle Bloch4,
and Pierre Mascarade3

1 CNRS-IRCAM-Sorbonne Université, Paris, France
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3 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,

LAMSADE, 75016 Paris, France
jamal.atif@dauphine.fr, pierre.m@protonmail.com
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Abstract. In the context of mathematical and computational represen-
tations of musical structures, we propose algebraic models for formalizing
and understanding the harmonic forms underlying musical compositions.
These models make use of ideas and notions belonging to two alge-
braic approaches: Formal Concept Analysis (FCA) and Mathematical
Morphology (MM). Concept lattices are built from interval structures
whereas mathematical morphology operators are subsequently defined
upon them. Special equivalence relations preserving the ordering struc-
ture of the lattice are introduced in order to define musically relevant
quotient lattices modulo congruences. We show that the derived descrip-
tors are well adapted for music analysis by taking as a case study Ligeti’s
String Quartet No. 2.
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1 Introduction

Despite a long historical relationship between mathematics and music, computa-
tional music analysis is a relatively recent research field. In contrast to statistical
methods and signal-based approaches currently employed in Music Information
Research (or MIR1), the paper at hand stresses the necessity of introducing
1 Following the Roadmap described in [18], we prefer to consider MIR as the field of
Music Information Research instead of limiting the scope to purely Music Informa-
tion Retrieval. This approach constitutes the core of an ongoing research project enti-
tled SMIR (Structural Music Information Research: Introducing Algebra, Topology
and Category Theory into Computational Musicology). See http://repmus.ircam.fr/
moreno/smir.
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a structural multidisciplinary approach into computational musicology making
use of advanced mathematics. It is based on the interplay between algebra and
topology, and opens promising perspectives on important prevailing challenges,
such as the formalization and representation of musical structures and processes,
or the automatic classification of musical styles. It also differs from traditional
applications of mathematics to music in aiming to build bridges between differ-
ent musical genres, ranging from contemporary art music to popular music, and
therefore showing the generality of the conceptual tools introduced into compu-
tational musicology. Most of these tools belong to the domain of Formal Concept
Analysis (FCA), a research field that has been introduced in the beginning of the
1980s by Rudolf Wille and, independently, by Marc Barbut and Louis Frey [3],
in both cases as an attempt at reconstructing Lattice Theory [20,23].2 Interest-
ingly, music was a major inspirational field for applying formal concept analysis,
within the Darmstadt tradition. In his introductory essay on the link between
mathematics and music [22], R. Wille proposed to represent the chords of the
diatonic scale as equivalence classes, leading to a chord concept lattice. Following
this seminal work, a morphology of chords has been proposed by Noll [13], show-
ing the interest of this approach for computational music analysis. Some recent
work renewed the interest of this approach as an original way to represent musi-
cal structures within the field of Music Information Research, by stressing the
underlying algebraic aspects, with application of ordered structures and concept
lattices to the algebraic enumeration and classification of musical structures for
computational music analysis [16,17].3

In this paper, we propose a way to combine algebraic formalizations and
lattice-based representations of harmonic structures within existing musical com-
positions. Instead of analyzing the musical pitch content,4 formal concept lat-
tices are built from intervallic structures. The objective is to provide a way of
summarizing the harmonic musical content by studying the properties of the
underlying lattice organization. We make use of operators belonging to Mathe-
matical Morphology (MM) which are defined on such lattices. This enables to
define congruences between elements of the lattice and associated quotient lat-
tices. These quotient lattices are in fact the symbolic and structural descriptors
of the musical pieces that we propose to use as a generic tool for computational
music analysis. As a case study, we show how the first movement of Ligeti’s
String Quartet No. 2 can be compactly described with three of such quotient
lattices.

This paper is organized as follows. In Sect. 2 we summarize previous work
on the definition of lattices of harmonic structures by means of their interval
2 See [21] for an interesting discussion on the mutual influences between the Darmstadt
school on Formal Concept Analysis and the French tradition on Treillis de Galois.

3 See the Mutabor language (http://www.math.tu-dresden.de/∼mutabor/) for a
music programming language making use of the FCA-based Standard Language
for Music Theory [12] originally conceived by Rudolf Wille and currently developed
at the University of Dresden.

4 Note that, at this stage, the time information is not taken into account, and a musical
excerpt is considered as an unordered set of chords.

http://www.math.tu-dresden.de/~mutabor/
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content. In Sect. 3 we recall some definitions of mathematical morphology on
complete lattices and propose specific operators (dilation and erosion) on musical
concept lattices. The main original contribution of this paper is contained in
Sect. 4 where we define a way to reduce a given concept lattice to its “core”
structure via congruence relations. The resulting quotient lattices are precisely
the structural descriptors used in the representation of a given musical piece. This
opens new challenging perspectives for automatic music analysis and structural
comparison between musical pieces of different styles.

2 Lattice of Interval Structures

In this section we recall how a concept lattice can be built from harmonic forms
(as objects) and intervals (as attributes) [16,17].

Definition 1 (Harmonic system). Let T be a set, I = (I,+,−, 0) an Abelian
group, and ∆ : T × T → I a mapping such that ∀t1, t2, t3 ∈ T :

∆(t1, t2) + ∆(t2, t3) = ∆(t1, t3) and ∆(t1, t2) = 0 iff t1 = t2.

Then the triplet T = (T,∆, I) is called algebraic harmonic system. Elements of
T are tones and any subset of T is a chord. Elements of I are musical intervals.

Here we consider Tn = (Zn,∆n,Zn), where n ∈ Z+ represents an octave, Zn =
Z/nZ, and ∆n is the difference modulo n. All chords are then projected in Tn

using a canonical homomorphism. Moreover, two chords having the same number
of notes (or chromas) and the same intervals between notes (i.e. defined up to a
transposition) are considered equivalent, thus defining harmonic forms.

Definition 2 (Harmonic forms). The set H(Tn) of the harmonic forms of
Tn is composed by the equivalence classes of the following equivalence relation
Ψ :

∀H1 ⊆ Zn,∀H2 ⊆ Zn, H1ΨH2 iff ∃i s.t. H1 = H2 + i

where H + i = {t+ i | t ∈ H} if t+ i exists for all t ∈ H.

In the sequel, we will use the following notation: IH,t = {∆(t, t′) | t′ ∈ H}.

Definition 3 (Musical formal context). A musical formal context, denoted
by K = (H(Tn),Zn, R) is defined by considering harmonic forms, in G = H(Tn),
as objects and intervals, in M = Zn, as attributes. The relation R is defined from
the occurrence of an interval in an harmonic form. A formal concept is a pair
(X,Y ), X ⊆ G,Y ⊆ M such that X × Y ⊆ R and that is maximal for this
property. The concept lattice (C(K),≼) is then defined from the formal context
and the partial ordering ≼ defined as:

(X1, Y1) ≼ (X2, Y2) ⇔ X1 ⊆ X2(⇔ Y2 ⊆ Y1).
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For X ⊆ G and Y ⊆ M , the derivation operators α and β are defined as α(X) =
{m ∈ M | ∀g ∈ X, (g,m) ∈ R}, and β(Y ) = {g ∈ G | ∀m ∈ Y, (g,m) ∈ R}. The
pair (α,β) induces a Galois connection between the partially ordered power sets
(P(G),⊆) and (P(M),⊆), i.e. X ⊆ α(Y ) iff Y ⊆ β(X). Then the pair (X,Y )
(with X ⊆ G and Y ⊆ M) is a formal concept if and only if α(X) = Y and
β(Y ) = X (X is then called extent and Y intent of the formal concept).

As in any concept lattice, the supremum and infimum of a family of concepts
(Xt, Yt)t∈T are:

∧t∈T (Xt, Yt) =
(
∩t∈TXt,α

(
β(∪t∈TYt)

))
, (1)

∨t∈T (Xt, Yt) =
(
β
(
α(∪t∈TXt)

)
,∩t∈TYt

)
, (2)

Example 1. As a running example in this paper, we consider 7-tet T7 (e.g. the
diatonic scale C, D, E, F, G, A, B). Let us define the formal context K =
(H(T7),Z7, R), where R is a binary relation such that for any harmonic form
F ∈ H(T7) and any interval i ∈ Z7, we have (F, i) ∈ R iff there exists t ∈ F
such that i ∈ IF,t. Intervals are denoted by the index of the last note from the
starting one, hence for the 7-tet intervals are unison (0), second (1), third (2),
fourth (3). Note that other intervals (4, 5, and 6) are derived from these basic
ones by group operations (inversion modulo octave).

Figure 1 illustrates the formal context K = (H(T7),Z7, R) and the concept
lattice (C(K),≼) as defined in Definition 3.

This representation can be further enriched by considering interval multiplic-
ities in harmonic forms [17] (for instance {0, 1} contains two unisons and one
second). Such representations will be used in Sect. 4.

3 Mathematical Morphology Operations on Musical
Concept Lattices

3.1 Preliminaries

Let us recall the algebraic framework of mathematical morphology. Let (L,≼)
and (L′,≼′) be two complete lattices (which do not need to be equal). All the
following definitions and results are common to the general algebraic framework
of mathematical morphology in complete lattices [4,5,7,8,11,15,19]. Note that
different terminologies can be found in different lattice theory related contexts
(refer to [14] for equivalence tables).

Definition 4. An operator δ : L → L′ is an algebraic dilation if it commutes
with the supremum (sup-preserving mapping):

∀(xi) ∈ L, δ(∨ixi) = ∨′
iδ(xi),

where ∨ (respectively ∨′) denotes the supremum associated with ≼ (respectively
≼′).
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Fig. 1. Formal context K = (H(T7),Z7, R) and concept lattice (C(K),≼) (reproduced
from [17]).

An operator ε : L′ → L is an algebraic erosion if it commutes with the infi-
mum (inf-preserving mapping):

∀(xi) ∈ L′, ε(∧′
ixi) = ∧iε(xi),

where ∧ and ∧′ denote the infimum associated with ≼ and ≼′, respectively.

This general definition allows defining mathematical morphology operators such
as dilations and erosions in many types of settings, such as sets, functions, fuzzy
sets, rough sets, graphs, hypergraphs, various logics, etc., based on their corre-
sponding lattices.

Algebraic dilations δ and erosions ε are increasing operators; moreover δ
preserves the smallest element and ε preserves the largest element.

A fundamental notion in this algebraic framework is the one of adjunction.

Definition 5. A pair of operators (ε, δ), δ : L → L′, ε : L′ → L, defines an
adjunction if

∀x ∈ L,∀y ∈ L′, δ(x) ≼′ y ⇐⇒ x ≼ ε(y).

Note that the notion of adjunction corresponds to the Galois connection by
reversing the order of either L or L′. This induces a first direct link between
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derivation operators α,β on the one hand, and δ, ε on the other hand. Further
links between FCA and MM have been investigated in [1,2].

Some important properties, that will be used in the following, are summarized
as follows.

Proposition 1 (e.g. [8,15]). If a pair of operators (ε, δ) defines an adjunction,
then the following results hold:

– δ preserves the smallest element and ε preserves the largest element;
– δ is a dilation and ε is an erosion (in the sense of Definition 4).

Let δ and ε be two increasing operators such that δε is anti-extensive and εδ is
extensive. Then (ε, δ) is an adjunction.

The following representation result also holds. If ε is an increasing operator,
it is an algebraic erosion if and only if there exists δ such that (ε, δ) is an
adjunction. The operator δ is then an algebraic dilation and can be expressed as
δ(x) = ∧′{y ∈ L′ | x ≼ ε(y)}. A similar representation result holds for erosion.

All these results hold in the particular case of a concept lattice.
Particular forms of dilations and erosions can be defined based on the notion

of structuring element, which can be a neighborhood relation or any binary
relation [5,19]. In particular, such structuring elements can be defined as the
balls of a given distance. This has been investigated in concept lattices, using
several distances, in [1,2].

In the next sections we describe two examples of dilations and erosions,
defined on the lattice C, used to handle musical format contexts. They have
been implemented in SageMath.5 The other definitions proposed in [1,2] could
be exploited as well for musical concept lattices.

3.2 Dilations and Erosions from the Decomposition into Join or
Meet Irreducible Elements

The first example relies on the decomposition of a concept in a join-irreducible
form (hence suitable for defining dilations), respectively meet-irreducible for
defining erosions.

Definition 6 (Join and meet irreducible element). An element a of a lat-
tice C is join (respectively meet) irreducible if it is not equal to the least element
of the lattice (respectively the largest element) and ∀(a, b) ∈ C2, a = b∨ c ⇒ a =
b or a = c (respectively a = b ∧ c ⇒ a = b or a = c).

Any element of the lattice can be written (usually not uniquely) as the join
(respectively meet) of some irreducible elements.

Since a dilation (respectively erosion) is defined as an operator that com-
mutes with the supremum (respectively infimum), it is sufficient to define these
operators on join (respectively meet) irreducible elements to extend them to any
element of the lattice. This will be exploited next, in the proposed algorithm in
Sect. 4.
5 http://www.sagemath.org/.

http://www.sagemath.org/
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3.3 Dilations and Erosions Based on Structuring Elements Derived
from a Valuation

In the second example, we define dilations and erosions, based on structuring
elements that are balls of a distance derived from a valuation on the lattice. In
the following we propose to use valuations defined as the cardinality of filters or
ideals.

Definition 7 (Filter and ideal). Let a be an element of a lattice C. The filter
and ideal associated with a are the subsets of C defined as:

F (a) = {b ∈ C | a ≼ b}

I(a) = {b ∈ C | b ≼ a}

Definition 8. Let (C,≼) be a concept lattice. A real-valued function w on (C,≼)
is a lower valuation if it satisfies the following (supermodular) property:

∀(a1, a2) ∈ C2, w(a1) + w(a2) ≤ w(a1 ∧ a2) + w(a1 ∨ a2), (3)

and is an upper valuation if it satisfies the following (submodular) property:

∀(a1, a2) ∈ C2, w(a1) + w(a2) ≥ w(a1 ∧ a2) + w(a1 ∨ a2) (4)

A real-valued function is increasing (isotone) if a1 ≼ a2 implies w(a1) ≤ w(a2)
and decreasing (antitone) if a1 ≼ a2 implies w(a1) ≥ w(a2).

Proposition 2 ([9,10]). Let w be a real-valued function on a concept lattice
(C,≼). Then the function defined as:

∀(a1, a2) ∈ C2, dw(a1, a2) = 2w(a1 ∧ a2) − w(a1) − w(a2) (5)

is a pseudo-metric if and only if w is a decreasing upper valuation.
The function defined as:

∀(a1, a2) ∈ C2, dw(a1, a2) = w(a1) + w(a2) − 2w(a1 ∨ a2) (6)

is a pseudo-metric if and only if w is a decreasing lower valuation.

Proposition 3 (Valuation from a filter or ideal). Let wF be the mapping
defined on a concept lattice C as ∀a ∈ C, wF (a) = |F (a)| where F is the filter
associated with a. Then wF is a decreasing lower valuation, i.e.

∀(a1, a2) ∈ C2, wF (a1) + wF (a2) ≤ wF (a1 ∧ a2) + wF (a1 ∨ a2)

The mapping d from C × C into R+ defined as ∀(a1, a2) ∈ C2, d(a1, a2) =
wF (a1) + wF (a2) − 2wF (a1 ∨ a2) is therefore a pseudo-distance.

Similarly, a pseudo-distance can be defined from the cardinality of the ideals.
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Once the distance is defined, a structuring element is defined as a ball of this
distance, for a given radius n. Dilations and erosions can then be written as:

∀A ⊆ C, δ(A) = {b ∈ C | d(b, A) ≤ n}

∀A ⊆ C, ε(A) = {b ∈ C | d(b,C \A) > n} = C \ δ(C \A)
where d(b, A) = mina∈A d(b, a). Note that such dilations and erosions can also
be applied to irreducible elements, in order to derive dilations and erosions using
the commutativity with the supremum or infimum, as will be used in Sect. 4.

4 Harmonico-Morphological Descriptors Based on
Congruence Relations

By using the concepts we have previously introduced, we define a way of reduc-
ing a concept lattice via some equivalence relations, namely congruences. This
ideas goes back to Birkhoff [4], and was used in several works such as [6] with
extension to non transitive relations (tolerance relations). Here we propose new
congruences based on mathematical morphology.

4.1 Definitions

Definition 9 (Congruences and quotient lattices). An equivalence relation
θ on a lattice L is a congruence if it is compatible with join and meet, i.e.
(θ(a, b) and θ(c, d)) ⇒ (θ(a ∨ c, b ∨ d) and θ(a ∧ c, b ∧ d)), for all a, b, c, d ∈ L.
This equivalence relation allows defining a quotient lattice which will be denoted
as L/θ.

Hence ∨ and ∧ induce joint and meet operators on the quotient lattice L/θ.
By denoting [a]θ the equivalence class of a ∈ L for θ, we have [a]θ ∨ [b]θ = [a ∨ b]θ,
and a similar relation for ∧ (note that the same notations are used on L and on
L/θ for meet and join, when no ambiguity occurs). This way of defining quotient
lattices enables to transfer the structure from the original concept lattice to the
reduced one, therefore preserving the order relations between the elements.
Example 2. Let us apply these notions to the concept lattice (C(K),≼) associ-
ated with the musical formal concept defined from the 7-tet, as before (see Exam-
ple 1), using the interval multiplicities. In this diatonic space, one may define
a formal equivalence relation between major/minor chords and major/minor
seventh chords allowing us to reduce the initial lattice to the corresponding
quotient lattice. More precisely, the congruence relation is defined in order to
group {0, 2, 4} and {0, 1, 3, 5} into the same class. The other classes are derived
so as to preserve the ordering relations between concepts. This reduction pro-
cess is represented in Fig. 2.6 For instance, let us consider {0, 1} (we only men-
tion the extent of the concepts here). We have {0, 2, 4} ∧ {0, 1} = {0} and
6 Note that the lattice contains the nodes representing the harmonic forms, and addi-
tional nodes, labeled with an arbitrary number, arising from the completion to obtain
a complete lattice [16]. These intermediate nodes are already present in Wille’s orig-
inal lattice-based formalization of the diatonic scale.
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{0, 1, 3, 5}∧ {0, 1} = {0, 1}, which is consistent with the fact that {0} and {0, 1}
are in the same congruence class.

Fig. 2. Left: concept lattice, where all concepts of a same color belong to the same
equivalence class according to the chosen congruence. Right: quotient lattice.

The quotient lattice C/θ formalizes the partition of the harmonic system,
preserving its structure. A sub-lattice of C(K) isomorphic to C/θ is interpreted
as a harmonic sub-system compatible with the harmonic structure generated by
the partition defined from a set of harmonic forms.

Example 3. An interesting congruence, from a musical point of view, can be
defined by gathering the most common harmonic tonal forms in the same equiv-
alence class (perfect chords, seventh chords and ninth chords). The generat-
ing elements for this class are {0, 2, 4}, {0, 1, 3, 5}, and {0, 1, 2, 3, 5} (again only
the extent is mentioned here). Another class is generated from {0, 3} (i.e. the
fourths, which are also interesting from a musical point of view). The other
classes are derived to preserve the ordering relations. This congruence θ∗ is
illustrated in Fig. 3, still for the 7-tet, along with the corresponding quotient
lattice. The first generated class is displayed in pink and the second one in
green. In this case, the quotient lattice is simply a chain, representing a linear
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complete ordering among equivalence classes.7 The remaining concepts (exclud-
ing the top and the bottom of the lattice) form a third equivalence class. Let
us consider the following example, to illustrate the consistency of the generated
classes: {0, 3} and ({0, 1, 3}, {0, 2, 3}) are congruent (both are in the green class);
similarly {0, 1, 3, 5} and {0, 1, 2, 3} are congruent (both in the pink class). The
conjunctions {0, 3} ∧ {0, 1, 3, 5} = {0, 3} and ({0, 1, 3}, {0, 2, 3}) ∧ {0, 1, 2, 3} =
({0, 1, 3}, {0, 2, 3}) are congruent, and the disjunctions {0, 3} ∨ {0, 1, 3, 5} =
{0, 1, 3, 5} and ({0, 1, 3}, {0, 2, 3}) ∨ {0, 1, 2, 3} = {0, 1, 2, 3} are also congruent.

Fig. 3. Left: congruence θ∗ on the 7-tet concept lattice. Right: quotient lattice C/θ∗.

We now propose to exploit the two notions of congruence and of morpholog-
ical operators to define musical descriptors.

Definition 10 (Harmonico-morphological descriptors). Let M be a musi-
cal piece, TM the harmonic system associated with it, and C(M) the correspond-
ing concept lattice. The core idea of the proposed descriptors is to use dilations
and erosions of the set of formal concepts to provide upper and lower bounds
of the description on the one hand, and congruences to provide a structural
7 An interesting question, which still remains open, concerns the possible ways of
generating chains which are musically relevant by carefully selecting the underlying
equivalence classes.
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summary of the harmonic forms on the other hand. The set of formal concepts
corresponding to the harmonic forms in M is denoted by HM

C . The dilations δ
and erosions ε can typically be defined from a metric associated with a valuation
on C(M). Three congruences are then defined:

– θ grouping all formal concepts in HM
C into one same class;

– θδ grouping all formal concepts in δ(HM
C ) into one same class;

– θε grouping all formal concepts in ε(HM
C ) into one same class.

The proposed harmonic descriptors are the quotient lattices C(M)/θ, C(M)/θδ,
and C(M)/θε.

We argue that these descriptors are good representative ofM, since they preserve
the intervallic structures, and provide compact summaries, which would allow
for comparison between musical pieces.

4.2 Algorithm

The procedure developed to generate the proposed descriptors is given in Algo-
rithm1 (the implementation was done in SageMath).

Algorithm 1 . Generating a morphological interval of harmonic descriptors
based on congruence relations and quotient lattices
Require: C(M): concept lattice built from the harmonic system TM
Require: HM: set of harmonic forms present in M
Require: w: valuation on C(M)
Require: Mw: metric associated with w on C(M)
Require: (ε, δ): adjunction C(M), where the dilation δ and the erosion ε are built from the metric

Mw

Require: n size of the dilation and erosion
Ensure: C(M)/θ, C(M)/θδ et C(M)/θε: harmonico-morphological descriptors of M
1: function harmonico-morphological descriptors(C(M), HM, (δ, ε), n)
2: Compute the set of formal concepts HM

C associated with the harmonic forms present in HM

3: Compute the congruence relation θ on C(M) such that all concepts in HM
C belong to the

same equivalence class [·]θ
4: Compute the dilation δ(HM

C ) and the erosion ε(HM
C ) of the set of formal concepts HM

C using
a structuring element defined as a ball of radius n of the considered metric

5: Compute the congruence relation θδ such that all concepts in δ(HM
C ) belong to the same

equivalence class [·]θδ

6: Compute the congruence relation θε such that all concepts in ε(HM
C ) belong to the same

equivalence class [·]θε
7: Compute the quotient lattices C(M)/θ, C(M)/θδ and C(M)/θε according to the congruence

relations θ, θδ and θε, respectively
8: return (C(M)/θ, C(M)/θδ, C(M)/θε)

4.3 Example on Ligeti’s String Quartet No. 2

As an illustrative example, we apply the proposed method for computing the
musical descriptors on M corresponding to the first movement of Ligeti’s String
Quartet No. 2. For example, the first set, {0, 1}, corresponds to the two notes
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chord {C,D}, whereas the last one, {0, 1, 2, 3}, corresponds to the tetrachord
{C,D,E, F}.

We use the previous 7-tet lattice for the analysis by selecting a limited number
of harmonic forms which are used by the composer. These forms are given in
Fig. 4 by means of a circular representation corresponding to the underlying
cyclic group of order 7.

Fig. 4. Some harmonic forms in Ligeti’s quartet fragment.

The chosen valuation is the cardinality of the filter wF (see Sect. 3). Note
that other valuations could be used as well. The associated distance was used
to defined elementary dilations and erosions (with n = 2) on join-irreducible
(respectively meet-irreducible) elements. The dilation or erosion of any concept
is then derived from its decomposition into irreducible elements and using the
commutativity with the supremum, respectively the infimum.

The steps of Algorithm1 for this fragment are illustrated in Figs. 5, 6 and
7. As we could guess from the congruence relations, the final quotient lattices
show isomorphic relations between C(M)/θ and C(M)/θδ. The larger number
of different congruence classes in the erosion ε(HM

C ) is reflected in the form of
the corresponding quotient lattice C(M)/θε, which contains more elements.

This example is particularly interesting because the musical excerpt does
not only contain the usual perfect major and minor, seventh and ninth chords.
However, the use of the 7-tet, used here for the simplicity of the illustration, is
too limited. It would be even more interesting to use the 12-tet, which would
better account for chromatic parts. This is surely more relevant for musical pieces
where the chromaticism is more relevant than the diatonic component. However,
the proposed approach paves the way for such deeper investigations.
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Fig. 5. Formal concepts associated with the harmonic forms found in HM. From left to
right: HM

C (concepts displayed in red), dilation δ(HM
C ) (green concepts), and erosion

ε(HM
C ) (yellow concepts). (Color figure online)

Fig. 6. Congruence relations θ, θδ, and θε on C(M) (7-tet) generated by: HM
C , δ(HM

C ),
and ε(HM

C ), respectively (from left to right).
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Fig. 7. Quotient lattices. From left to right: C(M)/θ, C(M)/θδ, and C(M)/θε.

5 Conclusion

This paper suggests for the first time a possible strategy to approach music infor-
mation research by combining tools and ideas belonging to two autonomous
fields, i.e. Mathematical Morphology and Formal Concept Analysis. Although
some of the concepts described in the paper had already found potential appli-
cations in music analysis, it is the first attempt at conceiving structural descrip-
tors based on the joint exploitation of these concepts within a computational
musicological perspective. Introducing congruence relations in lattice-based rep-
resentations provides a new way of extracting and summarizing the information
contained in a musical piece by preserving the core intervallic structure. The pro-
posed descriptors, particularly suited for atonal and contemporary music which
explores the whole space of harmonic forms, are aimed to be used to characterize
styles of music, or comparing different pieces of music, using matching between
quotient lattices for instance.

Further investigations are needed in order to find meaningful distances (or
pseudo-distances) between formal concepts in order to express musically relevant
morphological operations. At a more abstract level, the question of comparing
quotient lattices still remains open in the context of music information research.
This goes with the definition of similarities between the descriptors, as for exam-
ple by establishing whether quotient lattices from two different pieces, or two
excerpts of a musical piece, are (or are not) isomorphic. In order to make this
comparison computationally reasonable, the compact representation provided by
the quotient lattice would be directly exploited. This would clearly provide an
assessment of the structural and harmonic similarity between them.
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pp. 149–167. Helbing, Innsbruck (1990)

13. Noll, T., Brand, M.: Morphology of chords. In: Perspectives in Mathematical and
Computational Music Theory, vol. 1, p. 366 (2004)

14. Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl.
Algebra Eng. Commun. Comput. 21(5), 343–396 (2010)

15. Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology -
part II: openings and closings. Comput. Vis. Graph. Image Proc. 54, 74–97 (1991)

16. Schlemmer, T., Andreatta, M.: Using formal concept analysisto represent chroma
systems. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI),
vol. 7937, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39357-0 15

17. Schlemmer, T., Schmidt, S.E.: A formal concept analysis of harmonic forms and
interval structures. Ann. Math. Artif. Intell. 59(2), 241–256 (2010)

18. Serra, X., Magas, M., Benetos, E., Chudy, M., Dixon, S., Flexer, A., Gómez, E.,
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