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N THIS PAPER we trace back the history of the construction and 
algebraic formalization of Tiling Rhythmic Canons as a “mathe-

musical” problem. This neologism, which is now commonly used in 
mathematical music theory, was introduced by the author in the early 
nineties with the aim of suggesting that, although the history of 
relations between music and mathematics offers many examples of 
applications of mathematical models to music, there are also several 
examples showing that music can be sometimes a very important 
source of inspirational ideas for mathematicians. One may thus balance 
the usual Leibnizian perspective of music as an exercitium arithmeticae 
by proposing that the reverse hypothesis also holds, according to 
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which mathematics can be considered, in some special cases, as an 
exercitium musicae.1

A “mathemusical” problem is characterized by a dynamic movement 
between a given musical problem, the mathematical statements and 
general theorems obtained respectively by the formalization and 
generalization processes, and the musical application of these results in 
music theory, analysis, and/or composition. In other words, setting 
the originally musical problem in an appropriate mathematical 
framework not only gives rise, eventually, to new mathematical results, 
but also paves the way to new music-theoretical, analytical, or compo-
sitional constructions that would have been impossible to conceive 
without the process of mathematization. Although generalized math-
ematical results can be applied to the music domain with a focus on 
music theory, analysis, or composition, in the case of the algebraic 
approach, it is often very difficult to distinguish between these three 
domains, as we discussed in a previous study (see Andreatta 2003). It 
is this double movement, from music to mathematics and back, which 
makes a “mathemusical” problem so intriguing to both mathemati-
cians and musicians. Example 1 shows the dynamical movement under-
lying a “mathemusical” activity.

In this paper I will discuss some historical aspects of the construction 
of Tiling Rhythmic Canons from the previously sketched “mathe-
musical” perspective. I will present two independent developments of 

EXAMPLE 1: THE DOUBLE MOVEMENT OF A “MATHEMUSICAL” ACTIVITY, FROM A 

MUSICAL PROBLEM TO ITS FORMALIZATION, GENERALIZATION, AND FINAL 

APPLICATION TO THE MUSIC DOMAIN
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music-theoretical constructions connected with tiling rhythmic canon 
structures: the first arising from Messiaen’s practice as “rythmicien,” 
and the second exploring the rhythmic analogies of Anatol Vieru’s 
modal theory.

Olivier Messiaen (1908–1992) made undoubtedly one of the most 
significant efforts to study canons by abstracting the pitch content and 
focusing on the underlying rhythmic structure. A brief description of 
Messiaen’s compositional practice shows that the starting point is a 
genuine compositional problem related to some apparently very 
different theoretical constructions, such as Anatol Vieru’s composition 
of modal classes or Pierre Boulez’s chord multiplication.

The history of tiling rhythmic canons is particularly interesting 
because it intersects a parallel history of mathematics, from number 
theory and the geometry of tiling to operator theory in functional 
analysis. We will discuss some aspects of these developments by 
sketching the Minkowski-Hajós problem, from the original formu-
lation by Hermann Minkowski (1896), concerning the approximation 
of real numbers by means of rational numbers, through its successive 
interpretation from a geometric perspective again by Minkowski 
(1907), and up to the definitive solution provided by Hajós in the 
forties (Hajós 1941). Although the Minkowski-Hajós problem is 
totally solved, there are some weak versions of the Minkowski 
conjecture that are still open, and whose musical application seems 
potentially interesting. We will briefly present some of these 
conjectures before focusing on a second parallel development of the 
theory of tiling that originated in a problem raised by Bent Fuglede in 
functional analysis (Fuglede 1974), and whose solution is deeply 
related to a special class of tiling rhythmic canons: Vuza canons.

1. THE MUSICAL PROBLEM OF THE CONSTRUCTION OF TILING RHYTHMIC 
CANONS AS SEEN FROM DIFFERENT COMPOSITIONAL PERSPECTIVES

There is probably no need to explain in depth the relevance of canons 
to music. There are few musical concepts that have been used as 
extensively, well beyond the boundaries of the Western classical music 
tradition, from the complex polyphonic structures of the Ars Nova 
(Schiltz & Blackburn 2007) to the orally transmitted musical practices 
of the Nzakara pygmies of the Central African Republic (Chemillier 
2002). As we already mentioned, Messiaen is probably one of the first 
composers to abstract the canonic process from all pitch considerations 
by focusing only on the rhythmic domain. The second of the seven 
volumes of his Traité de rythme, de couleur et d’ornithologie (1949–
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1992) is entirely devoted to the study of rhythmic structures (e.g., 
non-invertible rhythms, augmentation and diminution, irrational 
values, . . .). The problem of construction of rhythmic canons is 
developed in the second chapter of the volume entitled “Pedals and 
rhythmic canons.” As far as we know, this is the very first attempt 
toward a definition of the form of musical canons by considering 
exclusively the rhythmic organization and without starting from the 
melodic structure or the harmonic organization. Messiaen is partic-
ularly interested in establishing a connection between rhythmic canons 
and his favorite technique of non-invertible rhythms. According to the 
definition provided by Messiaen, non-invertible rhythms (or, 
equivalently, non-retrogradable rhythms) are “two groups of 
durations, one the retrograde of the other, surrounding [encadrant] a 
central free value which is common to the two groups. By reading the 
rhythm from left to right or from right to left, the order of its duration 
remains the same. It is a totally closed [fermé] rhythm” (Messiaen 
1994, 7). As Messiaen rightly observes, the non-invertibility 
corresponds to what is traditionally called a palindrome. A non-
invertible rhythm is thus a rhythm whose succession of duration values 
corresponds to a palindromic sequence of numbers, the central value 
being either a single number or the repetition of a given number. In 
his Traité, Messiaen postulates many times the analogy between non-
invertible rhythms and modes with limited transpositions (modes à 
transpositions limitées). The following quotation, also reprinted in the 
Traité, originally appears in his Technique de mon langage musical: 

These modes [of Limited Transpositions] realize in the vertical 
direction (transposition) what non-retrogradable rhythms realize 
in the horizontal direction (retrogradation). In fact, these modes 
cannot be transposed beyond a certain number of transpositions 
without falling again into the same notes, enharmonically speak-
ing; likewise, these rhythms cannot be read in a retrograde sense 
without one’s finding again exactly the same order of values as in 
the right sense. These modes cannot be transposed because they 
are—without polytonality—in the modal atmosphere of several 
keys at once and contain in themselves small transpositions; these 
rhythms cannot be retrograded because they contain in themselves 
small retrogradations. These modes are divisible into symmetrical 
groups; these rhythms, also, with this difference: the symmetry of 
the rhythmic groups is a retrograde symmetry. Finally, the last 
note of each group of these modes is always common with the first 
of the following group; and the groups of these rhythms frame a 
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central value common to each group. The analogy is now complete 
(Messiaen 1956, 21).

The analogy is, unfortunately, far from being complete, as many music 
theorists have already pointed out.2 If one wants to rigorously establish 
an analogy between non-invertible rhythms and some pitch config-
urations, a different property from the transpositional invariance of 
pitch used by Messaien has to be taken into account. As discussed by 
Anatol Vieru in his Book of Modes (Vieru 1993), given a collection of 
pitch-classes, an inversion induces a retrogradation of the correspond-
ing intervallic structure. This fact enables us to obtain a mathematical 
analogy, which is in fact an isomorphism, between non-invertible 
rhythms and, in Vieru’s terminology, “self-inverse modes.” One can 
associate to a given (periodic) non-invertible rhythm a self-inverse 
mode within an equal-tempered system !/n!, with n equal to the 
period of the rhythmic pattern. This correspondence is established at 
the level of the intervallic structure itself, which means that it is totally 
independent from the choice of the minimal rhythmic unit. In other 
words, by changing the rhythmic unit, one can attach to the same 
pitch collection an infinity of non-invertible rhythms, as shown in 
Example 2.

One of the main contributions by mathematician Dan Vuza, long 
before introducing the algebraic model of Complementary Unending 
Canons of Maximal Category in Perspectives of New Music (Vuza
1991–1993), was the precise algebraic formalization of this cor-
respondence between pitch domain and rhythmic domain (Vuza 
1985). We will not discuss here his model of periodic rhythm as a 
locally-finite, periodic subset of the set " of rational numbers. The 
important point is that the model enables the transfer of the algebraic 
structure of the equal tempered system into the rhythmic domain by 
canonically associating an intervallic (temporal) structure to a given 

EXAMPLE 2: CHANGE OF RHYTHMIC UNIT IN THE MAPPING FROM THE CIRCULAR 

REPRESENTATION TO THE RHYTHMIC DOMAIN
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subset of a cyclic group.3 But before providing some examples of this 
transfer principle with respect to the construction of tiling canons 
constructions, let us first analyze how Messiaen uses the property of 
non-invertibility of rhythms and the change of minimal unit to con-
struct a special family of rhythmic canons.  

By definition a rhythmic canon is the repetition, with a temporal 
translation, of a rhythmic structure or its transformations. The base 
rhythmic pattern, or “inner rhythm” (pédale rythmique in Messiaen’s 
terminology), is repeated, which gives the cyclic character of all 
rhythmic canons, and translated in time according to what we call the 
“outer rhythm,” providing the entries of the different voices of the 
canon. Messiaen considers many types of operations on this musical 
form. A first operation obtains a canon which is more and more tight, 
simply by reducing the value that establishes the distance between the 
voices. This value is normally the same for a given canon, which means 
that the voices enter regularly one after the other, each the same 
temporal distance from the previous one. The voices are not necessarily 
the same, since Messiaen explicitly includes in the definition of canonic 
operations transformations such as augmentations and diminutions. By 
means of augmentation processes, Messiaen is able to consider 
rhythmic canons in which the voices have a common starting point but 
progressively shift with respect to each other.

A particular type of rhythmic canon, recurrent in Messiaen’s 
examples, is obtained by considering as the inner rhythm a concat-
enation of non-invertible rhythms. Messiaen discusses, in particular, 
two examples of triple rhythmic canons (i.e., canons in three voices) 
based on concatenations of non-invertible rhythms. This means that 
from a structural point of view, the inner rhythm consists of the same 
canon, the only difference being the choice of the minimal value. More 
precisely, he starts from a concatenation of three palindromic 
intervallic structures providing the main rhythmic line of a three-voice 
canon that the composer initially uses in Visions de l’Amen (1943) for 
two pianos (in the part entitled “Amen des anges, des saints, du chant 
des oiseaux”) and later, with a simple change of the minimal rhythmic 
unit, in the piece Harawi (1945) for soprano and piano. In the first 
case, the minimal rhythmic unit is the 32nd-note, whereas in the 
second case is the 16th-note. Example 3 shows the rhythmic grid 
corresponding to the triple canon used in Visions de l’Amen. In the 
case of the piece Harawi (1945) for piano and soprano, the same 
rhythmic grid is used with, as we said, with the difference that the unit 
is now the 16th-note. Example 4 shows an extract of the score of 
Part 7 of Harawi, entitled “Adieu,” corresponding to the “new” 
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rhythmic canon in three voices. As in the case of Vision de l’Amen, the 
inner rhythm used to produce the rhythmic canon in Harawi is a 
concatenation of three non-invertible rhythms (see Example 5).  

A constant rhythmic value, which is the eighth-note in Harawi 
(respectively the sixteenth-note in Visions de l’Amen), separates the 
different entries of voices, according to the traditional technique of 
canons construction by Messiaen, who never considers irregular entries 

EXAMPLE 3: RHYTHMIC CANON IN THREE VOICES USED IN THE PIECE

VISIONS DE L’AMEN (1943) FOR TWO PIANOS

EXAMPLE 4: EXTRACT OF THE SCORE OF “ADIEU,”
PART 7 OF THE PIECE HARAWI (1945) FOR PIANO AND VOICE
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of voices. In other words, in Messiaen’s canonical technique, the outer 
voice is always of type 0, d, 2d, . . ., for a given value d. But unlike 
traditional musical canons, each voice is a succession of different 
chords that are repeated cyclically by producing a “harmonic ostinato 
which is independent from the rhythmic organization” (Messiaen 
1994, 46). The fundamental aspect of this compositional process is the 
tension between non-invertible rhythms and the regular entries of 
voices. This induces a global perceptive result that is a mixture of cha-
otic behavior and organized structure. Quoting a passage that 
Messiaen wrote to describe Harawi, but which also applies in its 
general conclusion to Visions de l’Amen:

The three non-invertible rhythms divide the durations in 5+5+7 
durations, whereas the terms of the three harmonic ostinatos 
always contain six sonorities for the superior voice, and three so-
norities for the two other voices. Consider also that the durations 
are very unequal. As a result, the different sonorities mix together 
or contrast to each other in very different ways, never at the same 
moment nor at the same place. . . . It is an organized chaos” 
(Messiaen 1994, 46).

Although Messiaen never refers explicitly to the role of geometric and 
tiling processes in music, it is clear that he aims at using a special family 
of concatenations of non-invertible rhythms in order to canonically 
organize the global musical form in such a way that the onsets of the 
different rhythmic voices, potentially, never intersect. This is not what 
finally happens in the actual compositions, since mutual intersections 
between voices frequently occur—particularly in the second half of the 
canon (see Example 6).

Nevertheless, it seems reasonable enough to state that the use of the 
tiling concept in this special case of Messiaen’s compositional tech-
nique well describes the geometric character of the canonical process 

EXAMPLE 5: THE INNER RHYTHM OBTAINED BY CONTATENATION OF

THREE NON-INVERTIBLE RHYTHMS AND UTILIZED FOR 

GENERATING THE TRIPLE CANON SHOWN IN EXAMPLE 4
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and of the final global result. It is, however, pretty clear that there is 
generally no connection between Messiaen’s use of palindromic struc-
tures and the tiling process. There exist non-invertible rhythms that 
may eventually be taken as the “inner rhythm” of a rhythmic canon 
rigorously realizing the tiling of the time axis, as in one of the exam-
ples shown in the next section (see Example 9), but Messiaen was, of 
course, unaware of the existence of concepts such as “group factor-
izations” or “direct sums,” which are used today to elegantly describe 
the construction of tiling canons. This is one of Dan Tudor Vuza’s 
major contributions to the subject, rooted in a long-term collaboration 
with composer Anatol Vieru (1926–1998) and which led to a detailed 
formalization of Vieru’s modal theory—in particular the composition 
of modal structures and the interpretation of this composition law in 
the time domain. 

2. ANATOL VIERU’S COMPOSITION OF MODAL STRUCTURES AND DAN VUZA’S 
MODEL OF REGULAR COMPLEMENTARY CANONS OF MAXIMAL CATEGORY

The modal theory of composer Anatol Vieru represents, first of all, a 
remarkable example of an algebraically oriented perspective on the 
intervallic thinking in music theory, analysis, and composition. As 
pointed out by the composer,4 there are several deep connections 
between his theoretical model and some algebraic approaches which 
were developed independently by other composers/theorists during 
the second half of the twentieth century. For example, the concept of 
composition of modal structures is equivalent to the “transpositional 
combination” of the set-theoretical tradition (Cohn 1986), which 
happens to provide the general framework for serial techniques such as 
Pierre Boulez’s chord multiplications (Weiss 2007).

EXAMPLE 6: INTERSECTIONS BETWEEN ONSETS OF DIFFERENT VOICES IN THE 

TRIPLE CANON ON NON-INVERTIBLE RHYTHMS USED IN “ADIEU”
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As we mentioned, starting from a formalization of Vieru’s modal 
theory, Vuza built a mathematical model of periodic rhythms allowing 
what Bourbaki would call the “transfer of structures” from the modal 
(or pitch) universe to the time domain, as Vuza clearly explains in his 
critical review of David Lewin’s Generalized Musical Intervals and 
Transformations (Vuza 1988). Transposing one pitch-class set (or, 
more generally, an ordered or unordered subset of a given cyclic 
group) according to the intervallic content of a second pitch-class set is 
the “outside-of-time” equivalent, as Iannis Xenakis would have put it, 
of rhythmic canons by translation.5 This only works once an appro-
priate isomorphism between the pitch and the rhythmic domain is 
constructed, as Vuza rigorously does in his mathematical model of 
periodic rhythm (Vuza 1985). The tiling property follows immediately 
by considering the special case of the composition of two modal 
structures whose cardinalities, say m and n, divide the order of the 
underlying cyclic group, say c, in such a way that c is equal to the 
product of m and n. Example 7 shows one of the simple cases one can 
obtain in the traditional equal-tempered system !/12!. It corresponds 
to the Sylow decomposition of the cyclic group of order twelve into 
the direct sum of the cyclic groups of orders three and four, 
respectively, a well-known music-theoretical construction that is 
traditionally used to represent the pitch space as a torus.

EXAMPLE 7: SYLOW DECOMPOSITION OF !/12! INTO THE DIRECT SUM OF THE 

CYCLIC GROUPS OF ORDER 3 AND 4, RESPECTIVELY
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The interpretation of this Sylow decomposition in terms of a trans-
positional combination produces a tiling of the pitch space with four 
transpositions of a given pitch collection (i.e., the augmented triad) or, 
equivalently, three transpositions of another (i.e., the diminished 
seventh). From a rhythmic perspective, this decomposition leads to a 
tiling rhythmic canon in three or four voices, according to the choice 
of the factor of the group decomposition as the inner rhythm.6 

Example 8 shows the two “dual” canons obtained through the 
rhythmic interpretation of the Sylow decomposition of !/12!.

Apart from this first family of tiling rhythmic canons directly 
obtained by applying Sylow decomposition theorem, other less trivial 
tiling rhythmic canons can be constructed, providing some examples of 
possible connections between Messiaen’s non-invertible rhythms and 
the tiling process. Example 9 shows one tiling rhythmic canon whose 
inner rhythm corresponds to a non-invertible rhythm and for which 
the voices enter in a regular way, as requested by Messiaen in his 
original formulation.7

All the previous examples, as well as all the uses of rhythmic canons 
in the compositional literature, as far as we know, use factorizations in 
which one of the two factors is a subgroup of the underlying cyclic 
group, which means that the voices are always entering one after the 

EXAMPLE 8: TWO “DUAL” CANONS OBTAINED BY THE SYLOW DECOMPOSITION OF 

!/12! AS A DIRECT SUM OF THE SUBGROUPS !/3! AND !/4!



44 Perspectives of New Music

other in a regular way. The series of papers published by Dan Vuza in 
Perspectives of New Music from 1991 to 1993 not only constitute a 
milestone in the development of the mathematical theory of tiling 
canons but also offer new possibilities for composers to free themselves 
from the constraint of regularity with respect to the entries of the 
voices in a canon. Although there are today several examples of papers 
containing new mathematical theorems which are published in music 
theory journals, Vuza’s series of articles and his use of non-elementary 
mathematical concepts, like characters and the discrete Fourier 
transform applied to locally compact groups, still remains one of the 
most significant mathematical contributions to the musicological 
community. Among the rich collection of new, interesting music-
theoretical models introduced by Vuza, it is undoubtedly the concept 
of Regular Complementary Canons of Maximal Category that has 
proven to be a central construction, being capable of intersecting a 
variety of different areas in mathematics. These canons, which we 
simply call nowadays “Vuza Canons,” have the remarkable property of 
tiling the time axis without inner periodicity. From an algebraic point 
of view they correspond to a factorization of a cyclic group into two 
non-periodic subsets. These types of factorizations are fascinating 

EXAMPLE 9: A TILING RHYTHMIC CANON CONSTRUCTED ON A NON-INVERTIBLE 

RHYTHM AND WITH THE THREE VOICES ENTERING IN A REGULAR WAY
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objects for mathematicians, as one may infer from the reading of the 
collection of remarkable numbers compiled by François Le Lionnais 
(1983) in collaboration with mathematician Jean Brette. The founding 
member of the French Oulipo group (Ouvroir de littérature potentielle) 
grants a special place to the number 72 by virtue of the fact that “the 
cyclic group with seventy-two elements can be decomposed as S+T , 
with S and T which are non-periodic” (Le Lionnais 1983). The 
decomposition cited by Le Lionnais and originally proposed by László 
Fuchs in his monograph on abelian groups (Fuchs 1960) corresponds, 
in fact, to one of the possible solutions for the construction of Vuza 
canons. Example 10 shows the Vuza canon associated to this 
remarkable property of !/72!. 

Contrary to what happens for larger cyclic groups, the algorithm 
proposed by Vuza provides the complete catalogue of decompositions 
into two non-periodic factors in the case of !/72!. It is, nevertheless, 
useful to compare Vuza’s algorithm with an older and slightly more 
general approach which goes back to de Bruijn (1953b). As observed 
by Giulia Fidanza in her dissertation (Fidanza 2007), the decompo-
sition of a given N as the product p1p2n1n2n3 (with the usual conditions 
on the pi as being distinct prime numbers and on p1n1 as being 
relatively prime with p2n2) can be generalized as done by de Bruijn. He 

EXAMPLE 10: A VUZA CANON CONSTRUCTED BY THE TWO NON-PERIODIC FACTORS 

S=0,1,5,6,12,25,29,36,42,48,49,53 AND T =0,8,16,18,26,34 

ASSOCIATED WITH THE DECOMPOSITION OF A CYCLIC GROUP OF ORDER EQUAL TO 

THE REMARKABLE NUMBER 72
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considers, for a given order N of such a cyclic group, the decom-
position as nmk where:

1. ! n,m "=1 (i.e., n and m are relatively prime);
2. n=n1n2, m=m1m 2;
3. n1, n2, m1, m1, k are all greater than 1.

In order to apply the construction proposed by de Bruijn to 72=n!m!k  
=4!9!2, one needs the following subsets:

1. Rk=!N /k !N  (i.e., Rk=0, 1, 2,…, k"1, for every k!N );
2. C 1=knn1Rn2

#kn1 n2m1
!N ;

3. C 2=km1
Rm2

#km1 m 2 n1
!N .

Since n1=n2=2 and m 1=m 2=3, one obtains the following factor-
ization of !/72! into non-periodic subsets S and T:

S =C 2${1,2,…,k"1}#C 1

=km1
Rm2

#km1m 2n1
!N${1,2,...,k"1}#kn1

Rn2
#kn1n2m1

!N

=6{0,1,2}#36! /72!${1}#4{0,1}#24!/72!
={0,6,12,36,42,48}${1}#{0,4,24,28,48,52}
={0,1,5,6,12,25,29,36,42,48,49,53}

T =km1m2
Rn 1

#kn1n2
Rm1

=18{0,1}#8{0,1,2}
={0,8,16,18,26,34}

These are exactly the factors corresponding to the “remarkable” Vuza 
canon shown in Example 10. A critical comparison between the solu-
tions of the factorization problem for a general non-Hajós group 
obtained by using the two algorithms by Vuza and de Bruijn has still 
to be undertaken. For a first attempt at classifying Vuza canons by 
using this more general approach, see Fidanza (2007, 99–102).  

3. FROM MINKOWSKI’S CONJECTURE TO VUZA CANONS:
THE INTERPLAY BETWEEN NUMBER THEORY, GEOMETRY,
ALGEBRA, AND MUSIC COMPOSITION8

As originally shown by the author (Andreatta 1996), Vuza canons that 
are obtained through the factorization of a cyclic group into two non-
periodic subsets are the musical metamorphosis of a tessellation 



Constructing and Formalizing Tiling Rhythmic Canons 47

problem initially raised by Minkowski in a number-theoretical form in 
his Geometrie der Zahlen (Minkowski 1896). His original problem is a 
generalization of a result concerning the approximation of a real 
number by rational numbers which states that for every real number a 
and for every integer t >1, there exist two integers x and y such that 
!ay"x!<1 /t  where 0<y %t . A first way of generalizing the problem is 
to consider an n-tuple of real numbers instead of a single real number. 
The new problem states that for every n-tuple of real numbers a1, . . ., 
an, and for every integer t>1, there exist n+1 integers x1, . . ., xn, y  
such that !a i y!x i!<1 /t  for every i=1, . . ., n where 0<y%t n. The 
following step is to consider the approximation problem with the 
parameter t being a real number instead of an integer number. This 
generalization led Minkowski to the following theorem, whose 
solution made use of geometric tools, such as the Lattice Point 
Theorem (Stein and Szabó 1994):

THEOREM (Minkowski). For every tuple of n+1 real numbers a1, . . ., an 

and t, with t >1, there exist n+1 integers x1, . . ., xn, y such that 
!ai"x i / y!%1 /(ty ) for every i=1, . . ., n where 0<y %t n.

This geometric technique applied to a number-theoretical problem 
was pushed even further by Minkowski some years later in his 
Diophantische Approximationen (Minkowski 1907), where this same 
problem lead the mathematician to investigate the structural properties 
of the tiling of Euclidean space by congruent unit cubes. In the 
attempt to generalize a property that is evident in two- and three-
dimensional Euclidean space (see Example 11), Minkowski made the 

EXAMPLE 11: MINKOWSKI’S CONJECTURE IN THE CASES OF THE LATTICE TILING OF 

THE TWO- AND THREE-DIMENSIONAL SPACES BY UNIT CUBES 
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following conjecture, which was solved almost half a century after its 
first formulation:

CONJECTURE (Minkowski). Any lattice tiling of n-dimensional Euclidean 
space by unit cubes has the property that some pair of cubes must share a  
complete (n"1)-dimensional face.

Before discussing Hajós’s reformulation of this geometric conjecture 
more algebrico, it can be useful to do a short exegesis of the content of 
the conjecture, which will enable us to mention two historical attempts 
at relaxing some conditions contained in the original formulation. As 
observed by Szabó (1993), there are, in fact, four conditions which are 
somehow hidden in Minkowski’s problem:

1. the cubes are all obtained by translation;
2. the translation vectors describe a lattice;
3. the interiors of the cubes are disjoint;
4. every point of the space not belonging to a cube’s boundary is 

contained in exactly one cube (simple-like condition).

By removing the lattice condition, as suggested by O. Keller (1930), 
one obtains the following weak version of Minkowski’s conjecture:

CONJECTURE (Keller). Any simple tiling of the n-dimensional Euclidean 
space by unit cubes has the property that some pairs of cubes must share a  
complete (n"1)-dimensional face.

Unlike Minkowski’s conjecture, which is true in all dimensions, the 
validity of the Keller conjecture deeply depends on the dimension n of 
the underlying Euclidean space. It is true when n%6 (Perron 1940) 
and false for n&8 (Mackey 2002). The only case which still remains 
open is the dimension n=7. Around the same period as the Keller 
conjecture, there was an interesting attempt at weakening the simple-
like lattice condition of Minkowski’s conjecture, asking whether the 
conclusions still held when one allowed every point of the space not 
belonging to a cube’s boundary to be contained in exactly a given 
number of cubes. Such a lattice tiling is also called “multiple,” and the 
number k of cubes that contain every point of the space not belonging 
to a boundary of a cube is called the multiplicity of the tiling. The new 
version of Minkowski’s conjecture in the case of multiple tiling is, 
therefore, the following: 

CONJECTURE (Furtwängler 1936). Any multiple lattice tiling of n-
dimensional Euclidean space by unit cubes, with multiplicity equal to k,  
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has the property that some pair of cubes must share a complete (n"1)-
dimensional face.  

The cases when the conjecture holds (i.e., n%3) were established 
and studied by Furtwängler and, independently, by Hajós who proved 
that whenever n>3, there exist some values of k for which the 
Furtwängler conjecture is not true. Hajós obtained these counter-
examples while working on the original version of Minkowski’s 
conjecture, whose reformulation in algebraic terms directly induced an 
algebraic version of Furtwängler’s conjecture.9 Recalling the history of 
Fermat’s last theorem, which was solved more than two-and-a-half 
centuries after its first formulation, we suggested calling this problem 
Minkowski’s last theorem (Andreatta 2004). In fact, like his French 
colleague, Minkowski largely underestimated the difficulties of the n-
dimensional version of a problem that he had no difficulty in proving 
in lower dimensions. And indeed, the problem turned out to be so 
difficult that its solution, provided by Hajós some forty years later 
(Hajós 1941), has been described as “the most dramatic work in 
factoring” (Stein 1974). As Szabó points out by referring to Stein’s 
enthusiastic perspective, the reformulation by Hajós of Minkowski’s 
conjecture as an algebraic problem is no less remarkable than the 
metamorphosis of a caterpillar into a butterfly (Szabó 2004, 4). 
Hajós’s result is sometimes referred to as the second main theorem for 
finite abelian groups (Rédei 1967), and it can be easily formulated by 
using the notion of a “cyclic subset” A of a group G (i.e., a subset A of 
G with elements e, a, a2, . . ., ar-1 for a given integer r "2). In other 
words, a cyclic subset consists of the first r elements of the cyclic group 
generated by the element a. 

THEOREM (Minkowski/Hajós). If a finite abelian group G is a direct sum 
of its cyclic subsets A1, A2, . . ., Ak then there exists at least one i such 
that Ai is a subgroup.

The reason the Minkowski/Hajós theorem has a central place in the 
theory of finite abelian groups also relates to the logical duality 
between this result and the Frobenius/Stickenberger theorem, 
expressing the fact that every finite abelian group can be factored into 
the direct sum of some of its cyclic subgroups. This logical duality was 
first observed by Laszlo Rédei (1965a) who, in the same year, 
generalized Minkowski/Hajós by means of the concept of “normalized 
factorization” of a finite abelian group (i.e., decomposition into the 
direct sum of subsets all containing the identity element). 
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THEOREM (Rédei 1965b) If a finite abelian group G admits a normal-
ized factorization into subsets A1, A2, . . ., Ak where each Ai has a prime 
number of elements, then at least one of the subsets is a subgroup of G . 

For a detailed description of the proof of Rédei’s theorem, as well as 
Hajós’s original algebraic version of Minkowski’s geometric conjec-
ture, we refer the reader to the monograph by Stein and Szabó (1994), 
currently the most comprehensive study of the Minkowski/Hajós 
problem. As amply documented by the authors, Hajós’s solution to 
Minkowski’s conjecture not only clearly showed the interplay between 
the geometry of tiling and the algebra of group factorizations, but also 
paved the way for the classification of groups featuring the property 
that they cannot be factored into a direct sum of subsets without at 
least one of the factors being periodic. This factorization property, 
compelling one of the factors to be periodic, is also called the “Hajós 
property.” It distinguishes the family of the so-called Hajós (or good) 
groups, whose exhaustive classification engaged many mathematicians, 
including Hajós himself, for more than twenty years. Example 12 
contains the complete list of good groups in chronological order of 
discovery. The notation (a, b, . . ., z) is an abbreviation for the product 
!/a !'! /b !'('! /z ! where p, q, r, s are distinct primes and ! is an 
integer greater than 1.

Surprisingly, the proof that the group G=!/ p !'!/ p ! is a good 
group historically precedes the proof of Minkowski’s conjecture by 
Hajós. As we can see from Example 12, it took several years to fully 

Rédei 1947 (p,p) Sands 1962 (p,3,3)

Hajós 1950 ! (p,22,2)

!/n!withn=p) (p,2,2,2,2)

de Bruijn 1953 (p),q ) (p2,2,2,2 )

(p,q ,r ) (p3,2,2)

Sands 1957 (p2,q 2) (p,q ,2,2 )

(p2,q ,r ) Sands 1964 !
(p,q ,r ,s ) !+! /p!

Sands 1959 (22,22) "+!/p!
(32,3)

(2n ,2)

EXAMPLE 12: THE COMPLETE LIST OF GOOD GROUPS IN CHRONOLOGICAL ORDER. 

THE OUTLINED REGION CORRESPONDS TO THE SPECIAL CASE OF CYCLIC GROUPS
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classify the good groups in the special case of the cyclic groups. This 
classification result immediately offers the list of non-Hajós (or bad) 
cyclic groups, which correspond exactly to the algebraic structures 
enabling us to obtain Vuza’s rhythmic tiling canons. 

Starting from a purely musical problem, Vuza not only unexpectedly 
came across a domain of group-theoretical research with profound 
intersections with the geometry of tessellations, but he also provided 
an original contribution in the field of non-Hajós groups. To mention 
only one of these new results, he proved that the tiling property in 
rhythmic canons is invariant up to musical augmentations, which can 
be mathematically expressed by saying that if a non-Hajós cyclic group 
!/n! admits a factorization into two subsets A and B, it also admits 
the factorizations into the subsets kA and B (or equivalently A and kB) 
for any k coprime with the period n of the group. As we will see in the 
next section, this property suggests that the paradigmatic approach, 
which is commonly used in mathematical music theory for classifying 
chords as orbits under the action of different groups on the powerset 
*(!/n!), can also be applied to the classification of Vuza canons and, 
more generally, any type of tiling rhythmic canon.10    

Published in Perspectives of New Music, this result had almost no 
chance to be noticed by professional mathematicians, which explains 
that it was rediscovered several years later as a purely mathematical 
problem and proved in different ways, first by Robert Tijdeman (1995) 
who calls this result the “Fundamental Lemma” and later by Ethan M. 
Coven and Aaron Meyerowitz (1999). The first employed a combi-
natorial argument, while the latter provided a proof of this property in 
a polynomial ring. Note that Vuza’s original proof makes use of 
convolutions and discrete Fourier transforms, following the path which 
David Lewin opened in the late fifties (Lewin 1959). These Fourier-
based algebraic tools are now commonly applied in mathematical 
music theory and they provide the most elegant framework in which to 
study the constructions of tiling rhythmic canons.11

4. THE RELEVANCE OF THE COMPUTATIONAL PERSPECTIVE,
AND THE CONNECTIONS BETWEEN VUZA CANONS AND ONE OPEN 
MATHEMATICAL CONJECTURE.

The implementation of Vuza’s algorithm in the OpenMusic visual 
programming language, which was done at IRCAM together with 
computer-scientist Carlos Agon,12 raised several questions that were 
not explicitly addressed in the original theory: is the algorithm 
exhaustive for any non-Hajós cyclic group !/n !? How big is the 
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solution space? Can the same computational model be taken as a 
starting point for stylistically different compositional processes? 

After the initial belief that Vuza’s algorithm was exhaustive, we soon 
realized that the family of factorizations of non-Hajós cyclic groups 
into two non-periodic subsets is generally larger than the family of 
Regular Complementary Canons of Maximal Category obtained by the 
algorithm published in Perspectives. The catalogue for the smallest non-
Hajós group (i.e., !/72!) using Vuza's algorithm, happens to be 
complete (Andreatta 1999). This has been verified by Harald 
Fripertinger by exhaustive testing of all possible factorizations. But 
already for the next order (i.e., n=108), Emmanuel Amiot and Harald 
Fripertinger found, independently, 252 new canons that were not 
constructible using Vuza’s original algorithm. Again, by exhaustive 
testing Fripertinger showed that these are all the tiling canons that 
have to be added to the catalogue of Vuza canons in order to complete 
the list of Vuza canons for n=108. At this point we had the complete 
catalogue of Vuza canons corresponding to the first two non-Hajós 
cyclic groups. By using the invariance of the tiling process up to affine 
transformations, as we mentioned before, we computed the 30 non-
isomorphic solutions for the subsets with eighteen elements (usually 
representing the voices or “inner rhythms” of the canon) and three 
non-isomorphic solutions for the subsets with six elements (called 
“outer rhythms” and providing the entries of the voices of the canon). 
There are, thus, 90 non-isomorphic Vuza canons for the non-Hajós 
group !/108 !. The number of solutions dramatically decreases for 
!/72!, with only one non-isomorphic, twelve-element inner rhythm 
and two non-isomorphic solutions for outer rhythms with six elements. 
This leads to the astonishing result that there are only two different 
Vuza canons with period 72 (always up to affine transformations). 

By giving such a detailed description of computational results 
concerning the thoroughness of Vuza’s original model of tiling canons, 
we would like to stress one of the major ingredients of contemporary 
“mathemusical” research. Building computational models of formal 
constructions may radically change the perspective on a given music-
theoretical problem by emphasizing its experimental component. In 
the case of the construction of tiling canons, having a computer-aided 
model made evident a series of properties that would have been 
difficult to perceive by relying purely on the original theoretical model. 
For example, one can show computationally that in non-Hajós groups 
almost all “outer rhythms” obtained by Vuza’s algorithm have the 
property of being palindromes, which establishes an unexpected 
connection with Olivier Messiaen’s original attempt at constructing 
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canons based on non-invertible rhythms. This is the case, for example, 
for all the solutions that we obtained for n=72 and n=108. Although 
transpositional symmetry is forbidden in both factors, making these 
canonic forms very difficult to grasp for the listener, the palindromic 
character of one of the factors, as well as some local periodicities, can 
eventually become a structural element in a compositional application 
of the model. This is what actually happened once the catalogue of 
solutions for Vuza canons was made accessible to composers. 

Surprisingly, in spite of the rigid form of tiling rhythmic canons, the 
catalogue suggests to composers a large variety of possible applications 
of the model in compositional practice. The first compositional 
application of Vuza canons was made by composer Fabien Lévy in his 
orchestral piece Coïncidences (1999). Complex musical objects filled 
the underlying rhythmic grid provided by a Vuza canon in such a way 
that the global perceptual result is not heard contrapuntally but rather 
as a continuous information flow where timber melodies spontaneously 
emerge via the combinatorial play of the different voices of the canon. 
Some years later, composer Georges Bloch proposed a very different 
use of the catalogues of Vuza canons in several compositional projects. 
These range from the piece Empreinte sonore pour la Fondation Beyeler 
(2001), a guided musical tour for an exhibition of the Beyeler 
Foundation in Basel, Switzerland (Bloch 2006), to the recent 
experiments in computer-aided improvisations using the OMax 
program developed at IRCAM and combining OpenMusic formal 
models and Max/MSP real-time functions.

A third example of a composer having benefitted from a 
computational model of Vuza canons is Mauro Lanza, who was 
inspired by the local periodicity of some of the factors in the case of 
cyclic groups with large cardinality. In his piece entitled La descrizione 
del diluvio (Ricordi 2007), for choir and electronics, he uses a 
particular Vuza canon of period 392 built on an inner rhythm of 
cardinality 28 and in which the fourteen voices enter according to a 
non-invertible rhythm. Although, according to the theory of Vuza 
canons, the inner rhythm has no inner periodicity, its structure is 
locally highly redundant (i.e., it is possible to find local repetitions of 
smaller rhythmic patterns of different length, which suggested to the 
composer that he select the notes and the durations by emphasizing 
these quasi-periodicities of the Vuza canon, which provides some 
redundancy within each voice) (Example 13). 

This short description of compositional applications of Vuza’s model 
illustrates the importance of closely connecting theoretical research and 
computational modeling. Moreover, as we suggested earlier in our 
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description of “mathemusical problems,” a single music-theoretical 
construction may intersect with a number of different mathematical 
problems. This is precisely what is happening in the case of Vuza’s 
model, which, beyond the Minkowski/Hajós problem,13 calls upon a 
still open conjecture in functional analysis: the Fuglede, or spectral, 
conjecture (Fuglede 1974). This conjecture deals with the relation 
between the spectral property of a domain in n-dimensional Euclidean 
space and its tiling character. It states that such a domain admits a 
spectrum if it tiles !n  by translation. But conversely to the case of the 
Minkowski/Hajós problems, the cases which are the most difficult to 
tackle and still remain unsolved correspond to the two lowest 
dimensions: n=1 and n=2. 

Surprisingly, despite the tiling character of the Fuglede conjecture, 
its connection with the Minkowski/Hajós problem was not at all 
evident at the beginning. One may say that there are two parallel 
developments of tiling theory, the first one in the extension of the 
Minkowski/Hajós conjecture and the second one which focuses on 
spectral theory, without directly referring—at least initially—to the 
theory of Hajós and non-Hajós groups. As an example, simply consider 
that there is no mention of the Minkowski/Hajós problem in 

EXAMPLE 13: LOCAL PERIODICITIES IN ONE FACTOR OF A VUZA CANON WHICH WAS 

USED BY MAURO LANZA IN HIS PIECE LA DESCRIZIONE DEL DILUVIO (2007)
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Fuglede’s paper on the spectral conjecture and, conversely, Coven and 
Meyerowitz (1999) were not aware of Fuglede’s conjecture when they 
tried to establish necessary and sufficient conditions for a subset of the 
integers to tile by translation. One may argue that the two domains are 
different in nature, since Fuglede’s conjecture concerns continuous 
spaces, whereas the theory of Hajós groups is essentially discrete. In 
fact, although the original Minkowski conjecture deals with the tiling 
of !n , Hajós (1938) has shown that there is no loss of generality in 
considering rational lattices, which leads to the algebraic reformulation 
of the problem in terms of group factorization. With the same 
argument, one may show that one of the two cases of Fuglede’s 
conjecture which still remain open—the equivalence between 
spectrality and the tiling property in the case of subsets of the real axis 
!—can be reduced to the tiling of the integers problem, which itself 
turns out to be equivalent to the factorization of a cyclic group into 
subsets, under the hypothesis that the factors have finite length.14 The 
connection between the Minkowski/Hajós problem and Fuglede 
conjecture became clear once Izabella Łaba showed the relationships 
between the two conditions T1 and T2 established by Coven and 
Meyerowitz15 and the property of a set being spectral (Łaba 2002). 
Using the fact that the two conditions are sufficient and that the 
condition T1 is also necessary for the 0-1 polynomial A(x) associated 
with a subset A of Z to tile the integers by translation, Izabella Łaba 
showed that T1 and T2 are sufficient for A to be spectral and that the 
condition T1 is necessary in some special cases. In both cases, the tiling 
property and spectrality, the open problem is the necessity of the 
condition T2. Once again, Vuza canons are precisely the musical 
constructions that could help mathematicians give an answer to this 
open problem and, as a consequence, to the Fuglede conjecture in the 
one-dimensional case. More precisely, Emmanuel Amiot has shown 
that if there exists a subset R of a cyclic group "/n ! that tiles the 
space by translation without being spectral, then the tiling rhythmic 
canon generated by R either is a Vuza canon or can be reduced to one 
whose inner voice is not spectral either. In other words, as we 
suggested elsewhere (Andreatta and Agon 2009), a possible counter-
example of the spectral conjecture may already exist within the yet 
unwritten pages of the catalogues of all possible (and still unheard) 
Vuza canons.
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NO T E S

1. For a more detailed presentation of this research perspective in 
contemporary mathematical music theory, see Andreatta (2010).

2. See, for example, Guerino Mazzola’s criticisms raised in Geometrie  
des Töne (Mazzola 1990, 98–99), further developed in The Topos of  
Music (Mazzola 2002, 150–152).

3. For a discussion of this model with respect to similar music-
theoretical construction from the American set-theoretical and 
transformational tradition, see Vuza (1988). The model has also 
been described by the present author within the module-theoretic 
framework of Guerino Mazzola’s mathematical music theory in 
Mazzola (2002, 380–382).

4. See Vieru (1998).

5. The reference to Xenakis is more than simply anecdotic. His Sieve 
Theory (Xenakis 1990) is a further example of theoretical con-
struction based on the assumption that intervallic (or relational) 
thinking has a major role in twentieth-century composition. For an 
epistemological discussion of this aspect within Gilles-Gaston 
Granger’s “operational/objectal” duality, see Andreatta (2011).

6. In Andreatta (2004) we suggested using the term “duality” to 
describe the change of role of the factors in the process of the con-
struction of tiling rhythmic canons. Note that the compatibility of 
the tiling property with the duality operation, which comes from 
the commutativity of the direct sum, raises many interesting music-
theoretical questions. Duality is also one of the two main opera-
tions which can be performed in order to structurally reduce a 
given tiling rhythmic canon either to a Vuza canon or to the trivial 
canon 0#0=0  (Fidanza 2007).  

7. This corresponds to the case of k-asymmetric rhythms (Hall and 
Klinsberg 2006), a concept which generalizes the property of 
“imparité rythmique” [rhythmic odditivity] introduced by 
ethnomusicologist Simha Arom and mathematically formalized by 
Marc Chemillier (see Chemillier 2007 for a larger description of 
the odditivity property from the perspective of “natural” 
mathematics).

8. In this section we will follow the presentation contained in Giulia 
Fidanza’s dissertation (Fidanza 2007), which is one of the most 
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recent and most detailed accounts of the Minkowski/Hajós prob-
lem in connection with the theory of tiling rhythmic canons. 

9. See Zong (2006) for one of the most recent accounts of the 
Furtwängler conjecture and its interplay with the Keller conjecture 
and the Minkowski/Hajós problem. In Andreatta (2004) we sug-
gested that the Furtwängler conjecture could be taken as a starting 
point for a more general theory of tiling rhythmic canons allowing 
precise control over the number of intersections between voices. A 
recent conversation with mathematicians Máté Matolcsi and Sinai 
Robins seems to suggest that this approach would also open new 
mathematical questions, since, crucially, it generalizes the tradi-
tional theory of tiling rhythmic canons (in which the multiplicity of 
the tiling is equal to 1). Unfortunately we are not able at present to 
provide more elements confirming this hypothesis. 

10. See Fripertinger (2001) for the first attempt at applying combinat-
orial algebraic techniques adapted from Polya enumeration theory 
in order to provide an explicit formulation for counting the num-
ber of non-isomorphic tiling rhythmic canons. The combinatorial 
explosion, however, prevented the author from considering the 
case of Vuza canons.

11. See, for example, the special issue of the Journal of Mathematics  
and Music devoted to Tiling Problems in Music (Andreatta and 
Agon 2009). Also, see Emmanuel Amiot’s contribution in the 
present issue of Perspectives of New Music for a Fourier-based 
approach to the Fundamental Lemma, using the fact that the aug-
mentation is a Galoisian automorphism in the cyclotomic field !n . 

12. For a more detailed presentation of the implementational aspects 
of Vuza canons, see Agon and Andreatta’s article “Modeling and 
Implementing Tiling Rhythmic Canons in the OpenMusic Visual 
Programming Language” in the present issue of Perspectives. 

13. For a recent discussion on the connections between Vuza’s model 
and the Minkowski/Hajós problem, see Fidanza (2007).

14. The fact that a tiling of the integers with translates of itself on a 
finite set is periodic was established simultaneously and independ-
ently by Hajós (1950a) and de Bruijn (1950). 

15. For a description of these two properties, see the contribution by 
Emmanuel Amiot in the present issue of Perspectives. Since condi-
tions T1 and T2 are sufficient in order for a subset to tile the 
integers by translation, we implemented an algorithm to obtain all 
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tiling rhythmic canons starting from a subset of a cyclic group sat-
isfying the two conditions by Coven and Meyerowitz. This leads to 
a special class of tiling rhythmic canons that we call “Cyclotomic 
Canons,” and whose construction is described in our paper “Mod-
eling and Implementing Tiling Rhythmic Canons in OpenMusic 
Visual Programming Language,” also in the present issue.
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