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• Generalized Tonnetze and Persistent Homology
• The Tonnetz as a simplicial complex
• Algebraic classification of the twelve possible Tonnetze
• Isotropic and anisotropic Tonnetze
• Application to automatic stylistic classification

• Formal Concept Analysis and Mathematical Morphology
• Lattice structure of formal concepts
• Derivation operators (in FCA) and dilation/erosion in MM
• Application to pattern recognition and extraction 

• Category theory and Transformational Theory
• From K-nets to PK-nets 
• Diatonicism

• ‘Mathemusical’ problems and open conjectures
• Tiling rhythmic canons and Fuglede Spectral Conjecture 
• Homometric musical structures

• Philosophy, Epistemology and Cognitive Science
• Geometry-based Neo-structuralism in music analysis
• Processes and techniques of mathemusical learning

è Andreatta, M., « From music to mathematics and backwards: introducing algebra, topology and category
theory into computational musicology », in M. Emmer and M. Abate (eds.), Imagine Math 6 - Springer, 2018

The SMIR Project: Structural Music Information Research



Structure of the two doctoral courses:

First course:

Moreno Andreatta: An overview of some research axes in Mathemusical Research
Emmanuel Amiot: Discrete Fourier Transform in music analysis: from tilings to musical scales
Greta Lanzarotto: Tiling Canons and Fuglede Spectral Conjecture 

Second course:

Franck Jedrzejewski: Homometry and neo-Riemannian Theory 
Thomas Noll: Word theory and its application to scales, modes, chords and rhythms  
Alexandre Popoff: Category-Theory formalization of transformational music analysis 

(36 hours)



• Gonzalo Romero, Morphologie mathématique et analyse musicale, PhD in computer science at Sorbonne 
University (supervised by Carlos Agon, in collaboration with Isabelle Bloch and Moreno Andreatta) 

• Riccardo Giblas, Topic to be defined, PhD in maths in cotutelle agreement, University of Padova (L. Fiorot & 
Alberto Tonolo) / Université de Strasbourg (M. Andreatta), ongoing.

• Victoria Callet, Modélisation topologique de structures et processus musicaux, PhD in maths, Université de 
Strasbourg (supervised by Pierre Guillot and Moreno Andreatta, IRMA)

• Matias Fernandez Rosales, Mathematical models in Computer-assisted composition, PhD in composition and 
research, HEAR/University of Strasbourg (supervision: Daniel D’Adamo, Xavier Hascher, Moreno Andreatta) 

• Greta Lanzarotto, Fuglede Spectral Conjecture, Musical Tilings and Homometry, PhD in maths in cotutelle 
agreement, University of Pavia (L. Pernazza) / Université de Strasbourg (M. Andreatta), ongoing.

• Alessandro Ratoci, Vers l’hybridation stylistique assistée par ordinateur, PhD in music composition & 
research, Sorbonne University / IRCAM (cosupervised with Laurent Cugny), ongoing

• Sonia Cannas, Représentations géométriques et formalisations algébriques en musicologie computationnelle, 
PhD in maths in cotutelle agreement, University of Pavia (L. Pernazza) / Université de Strasbourg (A. 
Papadopoulos & M. Andreatta), 2019.

• Grégoire Genuys, Théorie de l’homométrie et musique, PhD in maths, Sorbonne University / IRCAM 
(cosupervised with Jean-Paul Allouche), 2017.

• Hélianthe Caure, Pavages en musique et conjectures ouvertes en mathématiques, PhD in computer science, 
Sorbonne University (cosupervised with Jean-Paul Allouche), 2016.

• Mattia Bergomi, Dynamical and topological tools for (modern) music analysis, PhD in maths in a cotutelle 
agreement Sorbonne University / University of Milan (with Goffredo Haus, 2015). 

• Charles De Paiva, Systèmes complexes et informatique musicale, thèse de doctorat, Programme Doctoral 
International « Modélisation des Systèmes Complexes », PhD in musicology in a cotutelle agreement, Sorbonne 
University / UNICAMP, Brésil, 2016.

• Louis Bigo, Représentation symboliques musicales et calcul spatial, PhD in computer science, University of 
Paris Est Créteil / IRCAM, 2013 (with Olivier Michel and Antoine Spicher)

• Emmanuel Amiot, Modèles algébriques et algorithmiques pour la formalisation mathématique de structures 
musicales, PhD in, Sorbonne University / IRCAM, 2010 (cosupervised with Carlos Agon) computer science

• Yun-Kang Ahn, L'analyse musicale computationnelle, PhD in computer science, Sorbonne University / 
IRCAM, 2009 (cosupervised with Carlos Agon) 

Some examples of PhD in maths / music / computer science



Maths & Music in Academic Research

Conferences of the SMCM:

• 2007 Technische Universität (Berlin, Allemagne)
• 2009 Yale University (New Haven, USA)
• 2011 IRCAM (Paris, France)
• 2013 McGill University (Canada)
• 2015 Queen Mary University (Londres)
• 2017 UNAM (Mexico City)
• 2019 Universidad Complutense de Madrid (Spain)
• 2022 Georgia State University (Atlanta, USA) 

Books Series:

• Computational Music Sciences Series, Springer (G. Mazzola & M. 
Andreatta eds. – 12 books published (since 2009)

• Collection Musique/Sciences, Ircam-Delatour France (J.-M. Bardez 
& M. Andreatta dir. – 16 books published (since 2006)

Official Journal and MC code (00A65: Mathematics and Music)

• Journal of Mathematics and Music, Taylor & Francis
(Editors: Th. Fiore, C. Callender | Associate eds.: E. Amiot, J. Yust) 
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Set Theory, andTransformation Theory

Finite Difference Calculus

Diatonic Theory and ME-Sets Block-designs

Rhythmic Tiling
Canons

Z-Relation and  
Homometric Sets

Some musically-driven mathematical problems

Neo-Riemannian Theory
and Spatial Computing

• Tiling Rhythmic Canons
• Z relation and homometry
• Transformational Theory
• Music Analysis, Spatial Computing and FCA
• Diatonic Theory and Maximally-Even Sets
• Periodic sequences and Finite Difference Calculus
• Block-designs in composition

è M. Andreatta : Mathematica est exercitium musicae, Habilitation Thesis, IRMA University of Strasbourg, 2010



Periodic sequences and finite difference calculus

f = 7 11 10 11 7 2 7 11 10 11 7 2 7 11…
Df = 4 11 1 8 7 5 4 11 1 8 7 5 4 11…
D2 f = 7 2 7 11 10 11 7 2 7 11 10 11…
D3 f = 7 5 4 11 1 8 7 5 4 11 1 8…
Dk f = …… 

Df(x)=f(x)-f(x-1)

Anatol Vieru: Zone d’oubli pour alto (1973)

Anatol Vieru



Reducible and reproducible sequences

f = 11  6  7  2  3  10  11 6 …
Df = 7  1 7 1 7 1 7 1…

D2f = 6  6 6 6 6…
D4f = 0 0 0

Reducible sequences:
$ k³1 such that
Dk f = 0 

f = 7 11 10 11 7 2 7 11 …

Df = 4 11 1 8 7 5 4 11 1 …

D2f = 7  2 7 11 10 11 7 2 7  …

D3f = 7 5 4 11 1 8 7 5 4 11 1 8…
D4f     = 10 11 7 2 7 11 10 11 … 

Reproducible sequences:
$ k³1 such that
Dk f = f

D5f = 1 8 7 5 4 11 1 8 …

D6f = 7 11 10 11 7 2 7 11 …



A decomposition property of any periodic sequence

• Decomposition theorem
(Vuza & Andreatta, Tatra M., 2001)
Every periodic sequence f 
can be decomposed in a 
unique way as a sum + 
of a reducible sequence and 
a reproducible sequence

Reducible sequences:
$ k³1 such that Dk f = 0 

Reproducible sequences:
$ k³1 such that Dk f = f

Anatol Vieru: Zone d’oubli for viola (1973)

D. Vuza, M. Andreatta (2001), « On some
properties of periodic sequences in Anatol
Vieru's modal theory », Tatra Mountains
Mathematical Publications, Vol. 23, p. 1-15 



A decomposition property of any periodic sequence

5       4        0        9       7        2       8       1        3       6       10     11

1        4      10       7       1       4      10      7        1       4      10      7

4       0        2       2       6       10     10      6       2        2       0       4

Reducible sequences

Reproducible sequence

Theorem (Vuza & Andreatta, 2001): Any periodic sequence can be decomposed
in a unique way as a sum of a reducible and a reproducible sequence.



A3g = 8  4   8  10  11  1  5  1  2  10  2  4  5  7  11  7 8 4 …

A2g = 8 4  2  1   2   4   8 1  8 4…

Ag = 8 10 11 1 2  4   5  7   8 10 …

g = 2  1  2  1  2  1  2  1

Growing by additions and proliferation of values



Vieru’s periodic sequences
Riccardo Gilblas

supervised by
Moreno Andreatta and Luisa Fiorot

Introduction
In his Book of Modes, the romanian composer Ana-

tol Vieru studies periodic sequences taking values in

Zm = Z/mZ using finite di�erence calculus. From the

musical point of view, each coe�cient of the sequence

may represent a pitch class or an interval, as well as a

rhythmic beat.

Musical meaning

Starting from the constant sequence (6), corresponding

to the triton interval, Vieru collects other periodic se-

quences by iteratively applying the finite sum operator.

Then he decodes from each sequence a musical aspect,

giving rise to a composition, Zone d’Oubli.

The mathematical environment

The periodic sequences
On the Zm-module ZN

m, consider the shifting operator:

◊(f )(i) := f (i + 1) ’i œ N.

A sequence f œ ZN
m is periodic if there exists k Ø 1

such that

f œ ker(◊k ≠ id).

The minimal k satisfying this condition is the period

of f . We work in the Zm -(sub)module of periodic se-

quences

Pm =
[

kØ1

ker(◊k ≠ id).

The operators
On the module Pm of periodic sequences, we consider

two other operators:

• the discrete derivative

� := ◊ ≠ id;

• given c œ Zm, a finite sum operator : for each

f œ Pm,

�cf (i) :=

8
<

:
c if i = 1

f (n ≠ 1) + �cf (n ≠ 1) if i > 1.

We write just � to mean �0; we say that �
kf is the

discrete k-primitive of f .

Some properties of the operators
• For every c œ Zm and f œ Pm, �cf = �f + (c),

where (c) is the constant sequence (c, c, c, . . . ).

• For every c œ Zm,

� ¶ � = id.

• The period of �f is a multiple of the period of f .

Decomposition in p-parts

If m œ N, m Ø 2 and its factorization is:

m =

sY

i=1

pni
i ,

the group isomorphism

Z/mZ æ
sM

i=1

Z/pni
i Z

gives rise to an isomorphism of abelian groups

Pm æ
sM

i=0

Pp
ni
i

f ‘æ(f mod pni
i )0ÆiÆs.

f mod pni
i is the pi-part of f. We can study separately

the pi-parts, so we can restrict to work in Pp
ni
i
.

�-nilpotent and �-idempotent sequences

Definitions

• f œ Pm is �-nilpotent (resp. �-idempotent ) if

there exists k Ø 1 such that �
kf = 0 (resp.

�
kf = f ); the minimal k such that this happens is

said nilpotency ( resp. idempotency) order of f .

• We denote by I�
m the subset of Pm of �-idempotent

sequences and by N�
m the subset of �-nilpotent

sequences.

Fitting Lemma
The Fitting Lemma gives the decomposition

Pm = N�

m ü I�

m

hence any f œ Pm uniquely determines fI œ I�
m and

fN œ N�
m such that

f = fI + fN.

The properties of �-nilpotent sequences

The period
Let f œ Ppn be a periodic sequence. Then:

• f œ N�
pn if and only if the period of f is pm

for

m œ N;

• if f œ N�
pn with period pm

and nilpotency order ÷,

then ÷ Æ npm
.

Sum of constants

Sequences in N�
m are finite sums of discrete k-primitives

of constant sequences ; furthermore, one shows that for

any c œ Zm and any i œ N:

�
k
(c)(i) ©m c

 
i

k

!

.

Kummer’s and Luca’s generalized
Theorems

We need to study the binomial coe�cient modulo a

power of a prime. The main classical tools in this setting

are:

Kummer’s Theorem

Given integers i Ø k Ø 0 and a prime number p, the p-

adic valuation ‹p(

⇣
i
k

⌘
) is equal to the number of carries

when k is added to i ≠ k in base p.

This result allows us to find out if a binomial coe�cient

is 0 modulo a power of a prime.

Lucas’s generalized Theorem
The generalization of Lucas’s Theorem permits to com-

pute explicitly a binomial coe�cient modulo a power

of a prime. Example: consider 41 = [1112]3 and

11 = [0102]3; lets us compute the residue class of

⇣
41

11

⌘

modulo 9. One gets
 

[1112]3

[0102]3

!

©9 È 11
01 Í È 1

1 Í≠1 È 11
10 Í È 1

0 Í≠1 È 12
02 Í ©9 7.

Angled parentheses here denote a generalization of the

binomial coe�cient to the case when the numerator is

smaller than the denominator.

New results

The period of primitives of constants
Let (c) be a non zero constant sequence in Ppn with

c = plb, p - b. Let s œ N and [akak≠1 · · · a1a0]p, ak ”= 0,

the representation of s in base p. Then the sequence

�
s
(c) has period pn≠l+k

.

Leading coe�cient

Given f œ N�
pn, there is a constant c among the con-

stants in the decomposition of f which definitively leads

the period of the primitives of f .

The sequence from Messiaen’s second
mode of limited transpositions

Vieru noticed that starting from a particular sequence

and collecting its primitives, some values prolifer. This

observation gave rise to some interest in understand-

ing the motivation of this proliferation. The sequence

is f = (2, 1, 2, 4, 8, 1, 8, 4), whose decomposition in �-

nilpotent and �-idempotent part coincides with the de-

composition in p-parts:

fI = (2, 1) œ Z/3Z, fN = (2, 1, 0, 0, 1, 0, 0) œ Z/4Z.

fI is also �-idempotent, so it gives constant contribution

to the primitives of f . On the other hand,

fN = �
4
(2) + �

3
(3) + �

2
(2) + �(3) + (2)

is the decomposition in primitives of constant sequences

and �
3
(3) is the leading term for the period. Studying

the behaviour of the primitives of the constant sequences

(2) and (3), we found an algebraic explanation to the

proliferation.

References
M. Andreatta and D.T. Vuza,

On some properties of periodic sequences in Anatol Vieru’s modal theory,

Tatra Mountains Mathematical Publications, 23, (2001), 1–15.

N. Ancelotti,

On some algebraic aspects of Anatol Vieru Periodic Sequences

Tesi di Laurea Triennale in Matematica, Universitá degli Studi di Padova, Rel. L. Fiorot.

K.S. Davis, W.A. Webb

Lucas’ theorem for prime powers,

Europ. J. Cobinatorics 11 (1990), 229–233.

Riccardo Gilblas

Luisa Fiorot

Alberto Tonolo
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Aperiodic Rhythmic Tiling Canons (Vuza Canons) 

Dan Vuza

Anatol Vieru

? ? ?

Which is the smallest factorisation of Zn into two non-periodic subsets?



Aperiodic Rhythmic Tiling Canons (Vuza Canons) 

Dan Vuza

Anatol Vieru

72 72 72

Which is the smallest factorisation of Zn into two non-periodic subsets?



A subset of the
n-dimensional
Euclidean space tiles
by translation iff it is
spectral.
(J. Func. Anal. 16, 1974)

èFalse in dim. n≥3 
(Tao, Kolountzakis, 
Matolcsi, Farkas and 
Mora)

è Open in dim. 1 et 2

Theorem (Amiot, 2009)
• All non-Vuza canons are 

spectral. 
• Fuglede Conjecture is

true (or false) iff it is true
(or false) for Vuza Canons

n=1

M. Andreatta & C. Agon (eds), « Tiling Problems in Music », Special Issue of the Journal of Mathematics and Music, 
Vol. 3, Number 2, July 2009 (with contributions by E. Amiot, F. Jedrzejewski, M. Kolountzakis and M. Matolcsi)

Orders of non-Hajos
groups (‘Bad groups’)
72 
108 120 144 168 180 
200 216 240 252 264 270 280 288 
300 312 324 336 360 378 392 396 
400 408 432 440 450 456 468 480 
500 504 520 528 540 552 560 576 588 594 
600 612 616 624 648 672 675 680 684 696 
700 702 720 728 744 750 756 760 784 792 
800 810 816 828 864 880 882 888…

(Sloane’s sequence A102562)

Vuza Canons and Fuglede Spectral Conjecture 



Fuglede Spectral conjecture for convex domains is true
(in all dimensions)

Mate Matolcsi (Rényi Institute, Budapest)

Nir Lev (Bar-Ilan University, Tel-Aviv)



Vuza’s Algorithm and other approaches (PhD Greta Lanzarotto)

Greta Lanzarotto

Ludovico Pernazza
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Polynomial representation of tiling canons

Dn = 1 + X + X 2 + … + X n-1 = Õ Fd (X)
d | n 
d ¹ 1

F2 (X) =   1 + X
F3 (X) =   1 + X + X 2
F4 (X) =   1 + X 2
F6 (X) =   1 - X + X 2

D12 = 1 + X + …+X 11 = F2 ´ F3  ´ F4 ´ F6 ´ F12

A(X) = F2´F3´F6 ´F12= 1 + X + X 4 + X 5 + X 8 + X 9

B(X) = F4= 1 + X 2

B = {0, 2}

A = {0, 1, 4, 5, 8, 9}
(T1) A(1) = 6 = F2 (1) ´ F3 (1) = 2 ´ 3

F2 (X) =   1 + X
F3 (X) =   1 + X + X 2

(T2) F2 | A(X)  et F3 | A(X)  ÞF2´3 | A(X) 

Coven & Meyerowitz
conditions

E. Coven & A. Meyerowitz, “Tiling the integers with translates of one finite set”, J. Algebra, 212, pp.161-174, 1999



C&M Conditions, tiling and spectrality

• T1 + T2 => tiling
• tiling => T1

• T1 + T2 => spectral
• T2 => spectral
• spectral => T1

C&M
(1999)

Laba
(2002)

• Tiling of a Hajos group => T2. 
Amiot
(2009)

Is condition T2 
mandatory for tiling? 

Vuza Canons

E. Coven & A. Meyerowitz, “Tiling the integers with translates of one finite set”, J. Algebra, 212, pp.161-174, 1999



M. Babbitt

A historical example of “mathemusical” problem

?
Hexachord

Theorem
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1
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2

2

2

2
2

2

A historical example of “mathemusical” problem

≈
Hexachord

Theorem

M. Babbitt

è https://guichaoua.gitlab.io/web-hexachord/hexachordTheorem



The shortest proof of Babbitt’s Theorem? 

E. Amiot : « Une preuve élégante du théorème de Babbitt par 
transformée de Fourier discrète », Quadrature, 61, 2006.

ICA = [4, 3, 2, 3, 2, 1 ] = [4, 3, 2, 3, 2, 1 ] = ICA’

≈
Hexachord

Theorem

M. Babbitt



SUBMITTED

Some generalizations of Babbitt’s Theorem

Nicolas Juillet



1 2 3 4 5 6 7 8 9 10 11 12
1 6 19 43 66 80 66 43 19 6 1 1
1 6 12 29 38 50 38 29 12 6 1 1
1 5 9 21 25 34 25 21 9 5 1 1
1 6 12 15 13 11 7 5 3 2 1 1

352Zalewski / Vieru / Halsey & HewittCyclic group
Forte/ Rahn 
Carter

224

Dihedral group

Morris / Mazzola 158

Affine 
group

Estrada 77

Symmetric group

77

F. Klein

W. Burnside

G. Polya

Group actions and the classification of musical structures



do

… …

…
do# ré# fa# sol# la#ré mi fa sol la si

0 1 2 3 4 5 6 7 8 9 10 11 (12)

(do)
… 0

1

2

3

4

5
6

7

8

9

10

11

sol#

la#

mi

do

ré

do#

ré#

fa# fasol

la

si

The partition lattice of musical structures

DIA= (2,2,1,2,2,2,1)

0-(1122222)

DIAE = (1,1,2,2,2,2,2)

Julio Estrada, Théorie de la composition : discontinuum –
continuum, université de Strasbourg II, 1994 



Permutohedron and Tonnetz: a structural inclusion

1

2

3

4

5

6

=
=
=
=
=
=

(3 5 4)

(5 3 4)

(5 4 3)

(4 5 3)

(4 3 5)

(3 4 5)

R

L

P

L

L

R

R
P

P



Permutohedron and Tonnetz: a structural inclusion

R RL LP P

(3 5 4) (5 3 4) (5 4 3) (4 5 3) (4 3 5) (3 4 5)

L: CmajàEmin

R: CmajàAmin

P: CmajàCmin



Permutohedron and Tonnetz: a structural inclusion

(3 5 4) (5 3 4) (5 4 3) (4 5 3) (4 3 5) (3 4 5)

R RL LP P

L: CMàEm

R: CMàAm

P: CMàCm



Asse delle quinte
The three main major-minor symmetries

R as RELATIVE P as PARALLEL L as LEADING-TONE
(EXCHANGE)

C major

A minor

C major C major

C minor E minor 6



From the Tonnetz to the dual one 

duality

9



è www.morenoandreatta.com/software/



https://imaginary.org/

• Current research. The latest trends of 
research in the connection of maths and 
music. Artificial Intelligence, theoretical and 
new instruments, classification and 
composition tools.

• Art and entertainment. A joyful display of 
artworks from artists and mathematicians in 
the field. Talks/concerts at scheduled events

May. 17, 2019 to Dec. 2020

La.La.Lab brings the visitor to an interactive exploration and discovery of 
music from a mathematical perspective. The exhibition pivots over three axis:

• Music theory. Learning what tools build music, and how these tools are 
used to create art. Basic concepts and historical comments.

The Tonnetz web environment (developer: C. Guichaoua)



• Assembling chords related by some equivalence relation
– Equivalence up to transposition/inversion: 

…
C

E

G

B

B♭
F#

C#

AF

The Tonnetz as a simplicial complex
L. Bigo, Représentation symboliques musicales et calcul spatial, PhD, Ircam / LACL, 2013

Intervallic 
structure major/minor triads



The Tonnetze as simplicial complexes
Betti Numbers

L. Bigo P. Lascabettes



Musical style and space trajectories

Towards a geometry-based automatic musical style analysis
Bigo L., M. Andreatta (2015), Topological Structures in Computer-Aided Music Analysis, in D. Meredith (ed.), Computational Music Analysis, Springer

43 32

T [2,3,7]T [3,4,5]



The score

The simplicial
complex

generated by 
the piece

A specific
trajectory in the 

complex

Topological
signature?

The simplices and their self-assembly

Towards a topological signature of a musical piece
A structural approach in Music Information Retrieval

Score 
reduction



¹

Towards an anisotropic Tonnetz

Ionian mode

Locrian mode

Ionian mode

=
Locrian mode

Mattia Bergomi



• Mattia Bergomi, Dynamical and topological tools for (modern) music analysis, Sorbonne/LIM Milan, 2015. 
• Mattia Bergomi, "Homological persistence in time series: an application to music classification", Journal of Mathematics and Music, Vol. 

14, Nr. 2, pp. 204-221, 2020 (Special Issue on Geometry and Topology in Music; Guest Editors: M. Andreatta, E. Amiot, and J. Yust).

Persistent homology and music 

Mattia Bergomi

Journal of Mathematics and Music, 2020
Vol. 14, No. 2, 204–221, https://doi.org/10.1080/17459737.2020.1786745

Homological persistence in time series: an application to music
classification

Mattia G. Bergomi a∗ and Adriano Baratèb

aVeos Digital, Milan, Italy; bMusic and Computer Science Laboratory, University of Milan, Milan, Italy

(Received 22 May 2019; accepted 2 June 2020)

Meaningful low-dimensional representations of dynamical processes are essential to better understand
the mechanisms underlying complex systems, from music composition to learning in both biological
and artificial intelligence. We suggest to describe time-varying systems by considering the evolution of
their geometrical and topological properties in time, by using a method based on persistent homology. In
the static case, persistent homology allows one to provide a representation of a manifold paired with a
continuous function as a collection of multisets of points and lines called persistence diagrams. The idea
is to fingerprint the change of a variable-geometry space as a time series of persistence diagrams, and
afterwards compare such time series by using dynamic time warping. As an application, we express some
music features and their time dependency by updating the values of a function defined on a polyhedral
surface, called the Tonnetz. Thereafter, we use this time-based representation to automatically classify
three collections of compositions according to their style, and discuss the optimal time-granularity for the
analysis of different musical genres.

Keywords: Tonnetz; topology; time-series analysis; persistent homology; dynamic time warping; classi-
fication; style

2010 Mathematics Subject Classification: 00A65; 20B35; 18B25
2012 Computing Classification Scheme: Applied computing

1. Introduction

A time-varying system can be interpreted as a series of relevant geometric and topological
events. Persistent homology has mainly been applied to the study of static point clouds and
shapes (Edelsbrunner and Harer 2009), by providing a description of both the geometry and
topology of the analyzed space. One of the reasons that make persistent homology so effective
when applied to the study of static spaces is that it provides a representation in which the features
of the space appear arranged by relevance. Thus, the analysis can be tuned on a specific applica-
tion need, by balancing the computational cost and the retrieval of details. Briefly one can think
about persistent homology as a scalable fingerprint of a static object.

Persistent homology has been generalized to time-varying systems either by considering
continuous representations (Cohen-Steiner, Edelsbrunner, and Morozov 2006), or introducing
statistics, in order to evaluate the evolution in time of the analyzed system (Munch 2013; Turner
et al. 2014).

*Corresponding author. Email: mattia.bergomi@veos.digital

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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Figure 6. Fundamental music representation spaces. On the left pitches are visualized as points on the real line. The
pitch-class space is visualized on the right.

Figure 7. On the left, a finite subcomplex of the planar Tonnetz T. On the right, the Tonnetz torus T.

of 2-simplices (i.e. triangles) correspond to either major or minor triads. A finite subcomplex of
the Tonnetz T is depicted in Figure 7(left). We observe that the labels on its vertices are periodic
with respect to the transposition of both minor and major third. This allows one to generate the
finite toroidal representation T displayed in Figure 7(right).

It is possible to analyze and classify music by considering the subcomplexes of T generated by
a sequence of pitch-classes (Bigo et al. 2013). However, this approach does not allow us to dis-
criminate musical styles in a geometric or topological sense. Indeed, as the example in Figure 8
shows, two perceptively distinct sonorities can be represented by isomorphic subcomplexes.

Imagine the planar Tonnetz as embedded in R3. Then, the information concerning the har-
monic relationships and the temporal hierarchy (durations) of notes in a musical phrase can be
expressed by displacing the vertices of the Tonnetz along the axis normal to its surface. More-
over, music is often organised in bars. For instance, modulations generally occur every four or
eight bars in a jazz context, and oftentimes melodic lines are arranged in a question and answer
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Figure 6. Fundamental music representation spaces. On the left pitches are visualized as points on the real line. The
pitch-class space is visualized on the right.

Figure 7. On the left, a finite subcomplex of the planar Tonnetz T. On the right, the Tonnetz torus T.

of 2-simplices (i.e. triangles) correspond to either major or minor triads. A finite subcomplex of
the Tonnetz T is depicted in Figure 7(left). We observe that the labels on its vertices are periodic
with respect to the transposition of both minor and major third. This allows one to generate the
finite toroidal representation T displayed in Figure 7(right).

It is possible to analyze and classify music by considering the subcomplexes of T generated by
a sequence of pitch-classes (Bigo et al. 2013). However, this approach does not allow us to dis-
criminate musical styles in a geometric or topological sense. Indeed, as the example in Figure 8
shows, two perceptively distinct sonorities can be represented by isomorphic subcomplexes.

Imagine the planar Tonnetz as embedded in R3. Then, the information concerning the har-
monic relationships and the temporal hierarchy (durations) of notes in a musical phrase can be
expressed by displacing the vertices of the Tonnetz along the axis normal to its surface. More-
over, music is often organised in bars. For instance, modulations generally occur every four or
eight bars in a jazz context, and oftentimes melodic lines are arranged in a question and answer

è Victoria Callet, Modélisation topologique de structures et processus musicaux, ongoing PhD, Université de Strasbourg



Mixing Algebra, Topology and Category Theory

C

E

G

B

B♭F#

C#

AF



Anton Webern, Drei Kleine Stücke, Op. 11/2    

Limitations of a paradigmatic action-based approach

<T0> <T0>



A category-based approach of transformational analysis

?

☐

Popoff A., M. Andreatta, A. Ehresmann, « A Categorical Generalization of 
Klumpenhouwer Networks », MCM 2015, Queen Mary University, Springer, p. 303-314

☐ ☐



Neurosciences and Mathemusical Learning

J.-L. BesadaE. Bisesi C. Guichaoua

è http://repmus.ircam.fr/moreno/proappmamu
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