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Abstract. A pitch-class set complex is a multidimensional object that
spatially represents a collection of pitch-class sets and the intersections
between them. If we consider the pitch classes within short time slices
a piece can be divided into, we can evaluate for how long some combi-
nations of pitch-classes sound simultaneously and then filter the piece
according to the most relevant ones. This filtration process is performed
by considering the superlevel sets of the function that computes the
cumulative duration of pitch-class sets during the piece. Experiments
show that musical sequences in the same style can exhibit similar sub-
complexes in the filtration of their pitch-class set complexes. Filtered
pitch-class set complexes also provide original informations on the use of
the tonality and on the notion of centricity within a piece.

Keywords: Pitch-class sets · Harmonic similarity ·
Simplicial complexes · Pitch-class set complexes · Filtration ·
Persistent homology

1 Introduction

Pitch-class set theory, as a part of music set theory introduced by A. Forte [11], is
largely used in musical analysis via a number of approaches. While mostly used
for the study of atonal music, pitch-class set theory provides efficient tools for
systematic study of any kind of music that can be represented with collections
of pitch-classes. We propose in this paper a method to organize pitch-class sets
occurring over a musical piece. Organizations resulting from different pieces can
be compared to evaluate harmonic similarity and perform stylistic classification.

Harmonic similarity in symbolic musical data has been studied with various
approaches including compression methods [1] and geometrical distances [8]. The
idea of reducing a musical sequence by keeping only the structurally more impor-
tant elements is a fundamental principle in Schenkerian analysis. Automatizing
Schenkerian analysis however raises problems of multiple outputs and high com-
putation times [15]. Rather, the reduction method proposed here is systematic
and does not face any complexity issue.
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Fig. 1. Pitch-Class distributions computed on different pieces.

In this work, pitch-class sets represent groups of notes that sound simulta-
neously.1 A musical piece is reduced to a sequence of successive slices, each slice
being labelled by a pitch-class set. The cumulative duration of a pitch-class set
over a musical piece is computed by summing the durations of the slices labelled
by this pitch-class set. This value gives an indication of the importance of the
pitch-class set over the whole piece. We use it as a filtration function to keep
only predominant pitch-class sets.

Experiments show that two collections of predominant pitch-class sets, com-
puted from distinct musical pieces, can be equivalent up to transposition. This
equivalence indicates a similarity regarding the relative importance of pitch-
classes and pitch-class sets in the two pieces and more generally regarding the
way tonality is implemented in these pieces.

1.1 Pitch-Class Distributions and Centricity

Pitch-class distributions enable to compare the cumulative duration of the 12
pitch-classes over a musical sequence. These distributions are computed by
counting the number of occurrences of each pitch-class, generally weighted by
their duration. Figure 1 displays pitch-class distributions of three musical pieces
and illustrates different composition strategies in terms of pitch-class use: a tonal
piece by J.-S. Bach, a tonal piece in the minimalist style by A. Pärt, and an
atonal piece by M. Babbitt. Pitch-class cumulative durations are normalized by
the duration of the piece.

Pitch-class distributions are used in a wide variety of applications, both in
symbolic and audio music information retrieval. They are particularly used for
chord recognition [14] and key detection, for which they can be compared to
pre-defined pitch-class profiles [20].

Pitch-class distributions also constitute an efficient tool for studying centric-
ity in a musical sequence. As discussed by D. Tymoczko [21], centricity relates
to the idea that “a particular note is felt to be more prominent, important,
or stable than the others.” In this work, we extend the notion of centricity to
1 Pitch-class sets in music set theory sometimes represent notes occurring close to each
other but not necessarily simultaneously.
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Fig. 2. Pitch-class set slicing of the first measure of chorale BWV 259 from J.-S. Bach.
In this example, all slices have the duration of a eighth note.

sets of simultaneous pitch-classes. As the number of pitch-class sets appearing
along a musical sequence can be large, we introduce the notion of filtration that
enables to keep only the most relevant collections of pitch-class sets, based on
their cumulative duration along the sequence. We use spatial representations of
pitch-class sets to provide an intuitive understanding of these concepts.

1.2 Spatial Representations

Musical objects and their relations are frequently represented as spatial struc-
tures that give intuitive interpretations of music-theoretical principles. The (gen-
eralized) Tonnetz [7,12,22] and voice-leading spaces [21] are examples of such
representations and have been used in a wide variety of applications in music
theory, analysis, and composition.

Geometrical simplicial complexes have been used to represent musical
objects, in particular pitch-class sets [5,6,18] and largely applied to stylistic
and transformational analysis [4].

Recent studies into musical simplicial complexes and persistent homol-
ogy [3,13] and the increasing field of Topological Data Analysis have opened
new perspectives for these approaches.

2 Cumulative Duration of Pitch-Class Sets

2.1 Slicing Musical Sequences

We represent musical sequences as ordered collections of consecutive pitch slices,
each slice having a proper duration. Every time a new pitch starts or stops being
played, the current slice ends and a new one begins. The process applies system-
atically for every note encountered within the score, including embellishments.
This segmentation method, widely used in computational musicology, also goes
under the name of pitch simultaneities or salami slicing [23]. It can be applied to
any musical sequence of any genre as long as the sequence can be represented in
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the MIDI format. It can be straightforwardly generalized to represent pitch-class
simultaneities by reducing every pitch set to its corresponding pitch-class set.2
A pitch-class set consists of any subset of Z12. The complete set of pitch-class
sets corresponds to the set of subsets of Z12, called the power set of Z12 and
notated P(Z12). Figure 2 illustrates this pitch-class set slicing process on the
first measure of chorale BWV 259 from J.-S. Bach. More formally, a pitch-class
slicing S is a sequence of N pitch-class sets Ai each accompanied by a duration
di:

S = [(A0, d0), (A1, d1), ..., (AN , dN )]

where the durations di sum up to the duration D of the whole musical
sequence.

2.2 Cumulative Duration

Let S be a pitch-class slicing and X any arbitrary pitch-class set. The cumulative
duration DS(X) corresponds to the sum of the durations of the slices of S whose
pitch-class set includes X, normalized by the length of the entire pitch-class
slicing D:

DS(X) = [
∑

{(Ai,di)∈S|X⊆Ai}

di]/D

The value DS(X) therefore indicates how much the pitch-class set X appears
in total along S and ranges between 0 (if the pitch-class set X is absent from the
sequence) and 1 (if the pitch-class set X is played in each slice). The inclusion
between pitch-class sets induces an ordering on their cumulative duration:

∀(X1,X2),X1 ⊆ X2 ⇒ DS(X2) ≤ DS(X1)

Figure 3 displays the 10 pitch-class sets having the highest cumulative dura-
tions within the 50 first slices of three musical excerpts. In order to facilitate the
comparison between the examples, three sequences in the same key (G major)
have been selected.

2.3 Ranking Pitch-Class Sets

We call αn
i the pitch-class set of size n (or n-pitch-class set) having the i-th

highest cumulative duration within a given musical sequence. For example, α1
1 is

the most prevalent pitch-class and α3
2 is the second most prevalent 3-pitch-class

set in the sequence. Therefore, the sequence αn
1 ,α

n
2 , . . . ,α

n
m gathers all n-pitch-

class sets appearing in the sequence, sorted by decreasing cumulative duration,
meaning that for every i ∈ [0,m − 1], we have DS(αn

i ) ≥ DS(αn
i+1).

2 In this work we restrain to twelve tone equal temperament in which pitch-classes are
represented by integers modulo 12.
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Fig. 3. 10 pitch-class sets having highest cumulative duration over the 50 first slices of
3 musical excerpts. The three excerpts are in the key of G Major.

3 Pitch-Class Set Complexes

3.1 Representing Pitch-Class Sets

We use labelled geometric simplices to represent pitch-class sets and labelled
geometric simplicial complexes to represent collections of pitch-class sets. This
approach goes back to Guerino Mazzola’s Mathematical Music Theory [17,18]
which has been enriched recently to study aspects of generalized Tonnetze [5,6].

A simplex of dimension n, or n-simplex, represents a pitch-class set of size
n+ 1. In particular:

– a single pitch-class is represented by a 0-simplex (a vertex),
– a 2-pitch-class set is represented by a 1-simplex (an edge),
– a 3-pitch-class set is represented by a 2-simplex (a triangle),
– a 4-pitch-class set is represented by a 3-simplex (a tetrahedron),
– a 5-pitch-class set is represented by a 4-simplex (a pentatope)

We say that a simplex is labelled by a pitch-class set and we denote by
λ(σ) the pitch-class set labelling the simplex σ. As in this work a simplex is
systematically labelled by a unique pitch-class set, we will simplify the notation
DS(λ(σ)) by writing DS(σ) to designate the cumulative duration of the pitch-
class set labelling the simplex σ.

The faces of a n-simplex σ are the simplices incident to σ whose dimen-
sion is lower than n. Simplices verify the closure condition which requires that
a n-simplex is systematically bounded by n + 1 faces of dimension n − 1, and
recursively. For instance, a 2-simplex (a triangle) is bounded by three 1-simplices
(edges) which are each bounded by two 0-simplices (vertices). The faces of a sim-
plex σ represent subsets of the pitch-class set labelling σ. The closure condition
results in the systematic representation of every subsets of pitch-classes included
in a pitch-class set, which also fits with a perceptual and cognitive assumption.
In fact, one could argue that during the listening process, a listener is hearing
all possible subsets of notes included in a played chord.

Figure 4 displays simplices representing pitch-class sets of various size. The
goal of these representations of pitch-class sets is to highlight inclusions between



218 L. Bigo and M. Andreatta

Fig. 4. Projection in R3 of 5 n-simplices, respectively representing (n+ 1)-pitch-class
sets, with n = 0, 1, 2, 3 and 4.

subsets via incidence relationships between simplices. The coordinates of the
vertices in the figure do not matter and have been arbitrarily chosen to facilitate
the visualization.

3.2 Representing Collections of Pitch-Class Sets

A pitch-class set slicing S can be represented by a pcs-complex KS which is
obtained by:

1. representing every pitch-class set included in S by a simplex,
2. merging simplex faces that represent the same pitch-class set.

The merging step ensures that a given pitch-class set can label one simplex at
most [5]. Figure 5 illustrates two pcs-complexes. The right pcs-complex gathers
the pitch-class sets included in the pc-slicing of Fig. 2. It consists in 3 3-simplices
(tetrahedra) that share a common 2-simplex (a triangular face) labelled by the
pitch-class set {E,G,B} (in dark gray in the figure).

Fig. 5.On the left, a pcs-complex representing the collection of pitch-class sets {(C,E,G),
(D,G,B), (G,A)}. On the right, the pcs-complex representing the collection of pitch-class
sets included in the slicing illustrated on Fig. 2.
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3.3 Filtration of Pcs-Complexes

In this section, we introduce the idea of applying a filtration on a pcs-complex in
order to keep only pitch-class sets that sound the most frequently over a musical
piece. This process can be formalized by filtration functions.

A filtration function is a function f : K → R, that associates a real number to
any simplex of a simplicial complex K and that is non-increasing3 on increasing
sequences of faces. This means that f(σ1) ≥ f(σ2) whenever σ1 is a face of σ2

in K.
Given a filtration function f and a constant value c ∈ R, we define the

superlevel complex L+
c (f) as the sub-complex of K that includes simplices for

which f attributes a value superior or equal to c:

L+
c (f) = {σ ∈ K | f(σ) ≥ c}

The monotonicity of f on increasing sequences of faces ensures that any
superlevel complex will respect the closure condition on its simplices. The set
of superlevel complexes produced by a filtration function can be ordered as a
sequence of nested complexes, that starts with the empty complex and ends with
the complete complex K:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

We may think of a filtration process as a description of how to construct
K by adding chunks at a time [9].4 As the simplices forming pcs-complexes are
labelled by pitch-class sets, any function that systematically attributes a real
value to a pitch-class set and that is non-increasing on sequences of increasingly
inclusive pitch-class sets, can potentially be used as a filtration function on a
pcs-complex. In Sect. 3.4 we will use the cumulative duration of pitch-class sets
as a filtration function on the pcs-complex representing the slicing of a musical
sequence.

3.4 A Filtration Based on Cumulative Durations

When applied to pitch-class sets that label a pcs-complex, cumulative duration
is a non increasing function on increasing sequences of faces. It can therefore be
used as a filtration function on pcs-complexes.

3 Note that filtration functions can equally be defined as non-decreasing on increas-
ing sequences of faces as long as f is monotonic. In this paper we define filtration
functions as non-increasing since this enables a more intuitive comprehension of the
notion of filtering pitch-class sets over a musical piece depending on their cumulative
duration as presented in Sect. 4.

4 This may appear counter-intuitive as the notion of filtration is usually seen as a
process that consists in removing elements as opposed to adding them. We will
nevertheless keep this property to stick with the standard notation used in simplicial
complex filtration [9].
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Fig. 6. The four superlevel complexes L+
0.66, L

+
0.5, L

+
0.25, and L+

0 , induced by the filtra-
tion of the pcs-complex representation of the first phrase of J.-S. Bach chorale BWV
254. The bottom arrow represents the evolution of the filtration.

As the cumulative duration DS is the only filtration function considered in
this work, we take the liberty to simplify the superlevel complex notation from
L+
c (DS) to L+

c :

L+
c = {σ ∈ K |DS(σ) ≥ c}

Over the filtration of a pcs-complex based on cumulative duration, the
first non-empty nested sub-complex K1 generally consists of one single 0-simplex
(a vertex) labelled by α1

1 which is the most prevalent pitch-class.5 K2 generally
consists of the 0-simplex of K1 plus an additional 0-simplex labelled by the sec-
ond most prevalent pitch-class α1

2. K3 will generally either add a third 0-simplex
labelled by the third most prevalent pitch-class α1

3, or a 1-simplex (edge) labelled
by the most prevalent 2-pitch-class set α2

1 which necessarily is {α1
1,α

1
2}.

Figure 6 illustrates four superlevel complexes resulting from the filtration of
the pcs-complex representing the first phrase of the chorale BWV 254 by J.-S.
Bach. The horizontal bar represents the sequence of nested complexes resulting
from the filtration. The filtration process goes from left to right. The first com-
plex of the sequence is the empty complex K0 which appears in the leftmost
region of the bar (gray). When the filtration level passes below 0.66, a 0-simplex
(K1) labelled by the most prevalent pitch-class (F ) appears. At the end of the

5 It can still happen, especially in short musical sequences, that the highest cumulative
duration is equally attributed to two or more pitch classes. K1 therefore corresponds
to a n-simplex with n > 0.
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Fig. 7. Equivalence up to transposition of two superlevel complexes in the filtration of
J.-S. Bach’s chorales BWV 253 and BWV 255.

filtration (right extremity of the bar) the complete collection of pitch-class sets
that sound during this extract have appeared within the complex.

Filtering pitch-class sets that occur predominantly across a musical sequence
provides a condensed representation of the pitch-class set material used in the
sequence. In Sect. 4, we try to identify and interpret similarities between super-
level complexes resulting from the filtration of different musical pieces.

4 Analyzing Filtrations

4.1 Transpositionally Equivalent Superlevel Complexes

Figure 7 illustrates a superlevel complex that appears during the course of the
filtration of both chorales BWV 253 and BWV 255. For the sake of clarity,
the pcs-complex in the top of the figure has been transposed into a form that
only exhibits pitch-class sets in the key of C major although the corresponding
superlevel complexes in the filtration of BWV 253 and BWV 255 respectively
gather pitch-class sets in the keys of A major and G major (see Table 1).

This common trait in the filtration of the two pcs-complexes can be inter-
preted in the following way: the collection of all pitch-class sets that are heard
more than 10% of the time in the chorale BWV 253 is equivalent (up to a trans-
position) to the collection of all pitch-class sets that are heard more than 14%
of the time in the chorale BWV 255.

Intuitively, a similar superlevel complex illustrates the fact that a collection of
pitch-class sets, that all occur predominantly in one sequence, is equivalent up to
transposition to a collection of pitch-class sets that all occur predominantly in
one other sequence. This property that shows a similarity between both harmonic
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contents, is not surprising for pieces in the same style. However, the size of
the superlevel complexes and the level of the filtration at which they appear
enable to measure in an original way this harmonic similarity. Similar superlevel
complexes appearing at low level of the filtration are indeed especially striking
as they demonstrate a strong similarity in the hierarchy linking the pitch-class
sets appearing along the two sequences.

The pitch-class sets in Table 1 confirm a strong presence of tonality which is
characteristic of the repertory of J.-S. Bach. Observing pitch-class sets that label
superlevel complexes can also provide interesting information regarding the way
the principle of tonality is implemented within the piece.

Table 1. A collection of pitch-class sets in three forms equivalent up to transposition.
The pitch-class sets in the first column label the complex illustrated on Fig. 7. The
pitch-class sets in the next two columns label superlevel complexes appearing respec-
tively in filtration of pieces BWV 253 and BWV 255. Subsets of pitch-class sets are
omitted to lighten notations.

BWV 253 (T9) BWV 255 (T7)

{0, 4, 7} {1, 4, 9} {2, 7, 11}
{0, 5, 9} {2, 6, 9} {0, 4, 7}
{2, 7, 11} {4, 8, 11} {2, 6, 9}
{5, 7} {2, 4} {0, 2}
{2, 5} {2, 11} {0, 9}

Figure 8 illustrates the appearance of almost the same complex than the one
in Fig. 7, {{C,E,G}, {C,F,A}, {D,F,G,B}}, in a low level of filtration of three
movements of quartets by J. Haydn. The corresponding collection of pitch-class
sets consists of three essential degrees of a major tonality (I, IV and V 7) and
provides a sign of a strong tonal context within these pieces. Next appearing
simplices in the filtration are (after the same transposition) {{D,A}, {D,F,A}}
for Haydn Op. 33 No. 3-iii, {{G,A}, {C,G,A}} for Haydn Op. 17 No. 1-i and
{{G,A}, {C,G,A}, {C,B}, {C,G,B}} for Haydn Op. 17 No. 6-i.

This experiment shows that looking at the superlevel complexes of the fil-
tration of a musical piece can provide elements, in addition with pitch-class sets
distributions, to study the prevalence of some underlying tonality.

4.2 Discussion on Filtration Features

Measuring the similarity between two filtrations is not straightforward and can
be performed in different ways. We propose some filtration features that can be
used as a distance measure to compare musical pieces.

The filtration of a pcs-complex KS can first be described by some features
unrelated to the values of its pitch-class sets:
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Fig. 8. Equivalence up to transposition of three superlevel complexes in the filtration
of three movements of Haydn quartets.

– the level from which the filtration provides a non-empty complex. This level
corresponds to the cumulative duration of the most prevalent pitch-class set
(DS(α1

1)), which is likely to be a single pitch-class.
– the maximum level at which the filtration of KS includes a 2-simplex which

represents a minor or major triad. This feature indicates how present is the
most frequent triad.

A more extensive study could focus on step sizes between successive levels
during a filtration process. For example, the difference of levels between the two
first non-empty complexes gives an idea of how much more prevalent is the most
prevalent pitch-class set over the remaining pitch-class sets. This measure closely
relies to the notion of centricity which indicates how much a selected pitch-class
(more generally a pitch-class set) is prevalent over all the others. Filtration of
pcs-complexes therefore provides a collection of original tools to study centricity
in musical sequences.

4.3 Persistence of Musical Properties

Experiments described in Sect. 4.1 could be extended to track music similarity
between two musical sequences for example by measuring the lowest filtration
level exhibiting two superlevel complexes that are equivalent up to transposition.

The way tonality is implemented in a musical piece could also be studied
by measuring the lowest level at which the filtration of its pcs-complex includes
pitch-class sets that all belong to one usual tonality.
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Large intervals between filtration levels, wherever they occur during the fil-
tration, highlight a collection of pitch-class sets that is strongly more frequent
than the rest and can also reach to original approaches for music analysis.

4.4 Relations to Persistent Homology

Looking at the “life duration” of a musical property during the course of a fil-
tration process relates to the notion of “persistence” in persistent homology.
In persistent homology, persistence relates to the life-cycle of a homology class
over a filtration [10]. These homology classes are associated with topological fea-
tures of the filtered complex, such as connected components, circular holes or
cavities. Their persistence during the filtration process is represented by persis-
tent diagrams which can be compared by using the bottleneck distance. Different
experiments following this approach have proven to be promising for musical
classification [2,3,13]. However, the difficulty to bring a musical interpretation
of the life cycle of homotopy classes remains an obstacle to the full understanding
of music-analytical techniques based on persistent homology.

Extending analysis approaches inspired by persistent homology would
undoubtedly benefit from a number of tools and methods that have been elab-
orated in this field of mathematics and, more specifically, in the community of
Topological Data Analysis (TDA).

5 Code Implementation and Visualization

The code developed for this research has been written in Python3 and is freely
available online.6 3D representations of pcs-complexes have been produced with
a dedicated tool accessible through any internet browser.7 Musical sequences are
uploaded in this tool as MIDI files. The browser displays a 3D representation
of the pcs-complex gathering every set of pitch classes that happen to sound
simultaneously at some point of the sequence. The analysis can be reduced to
any time window within the sequence thanks to the double horizontal cursor.
A vertical cursor enables the user to select a filtration level that determines the
displayed simplices. The values taken by the cursor run from 0 to 1 to stick with
the definition of the normalized cumulative duration of pitch-class sets.

6 Conclusion

This work presents some experiments on filtration of pcs-complexes as a struc-
tural way to retrieve music information. We suggested some preliminary features
to describe and compare filtrations. Future works include measuring the ability
of these features to reveal musical similarities between different pieces, and more
generally to provide some insights on the musical style of the represented piece.
6 https://gitlab.com/lbigo/pitchsalami.
7 http://lbigo.gitlab.io/ChordComplexViz.



Filtration of Pitch-Class Sets Complexes 225

Future works also include a more systematic and in-depth study of the persis-
tence of transposition relation between two filtered complexes, as the persistence
of other musical relations such as inversion, diatonic transposition and, more
generally, transformational operators.

Filtrations of pcs-complexes could also benefit from being reduced to selected
temporal windows within a musical piece in order to exhibit changes of strategies
in the use of pitch-class sets during the piece. Such approaches could undoubtedly
benefit from multi-timescale visualization techniques that have been elaborated
for various tasks including key detection [19] or set-class analysis [16].

Future experiments will also include the possibility to filter a pcs-complex
reduced to a particular type of pitch-class set. For example, keeping only major
and minor triads (and their subsets of pitch-classes) in a pitch-class slicing might
more easily produce common superlevel complexes over the filtration of tonal
musical sequences.

Acknowledgments. We would like to thank friends and colleagues for fruitful discus-
sions and careful proofreading including Mattia Bergomi, Paul Ladyman, members of
the spatial computing project and the Algomus team. We also thank Antoine Lafrance
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