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Abstract

This report presents connections between machine learning, mathematical morphology,
and Music Information Research (MIR) for the extraction of musical patterns from symbolic

music representations.

Motivated by the mathematical theory of binary morphology, we

investigated the use of correlation as an analytical method for pattern variations extraction,
and as optimization approaches for motive discovery in music. We introduced a new loss
function — the Correlation Loss — for unsupervised pattern learning, and tested the training
of CNNs using this criterion. We created a new dataset of fugues by J. S. Bach and D.
Shostakovich for use in pattern detection tasks. Despite technical challenges and dataset
limitations, the experiments showed promising directions and suggested potential for pattern
extraction in MIR and beyond. All the code produced during this project can be found at
https://github.com/FRANCHI-Charles/MIDI-pattern-detection.

Keywords: Binary mathematical morphology, Correlation, Neural networks, CNN, BiSE,

Pattern variations, Motive extraction, MIR.

1 Introduction

Repetition of motives across time is an im-
portant criterion to understand music [Cook,
1994]. Patterns help the listener to get the
music structure, creating sensation of rhythm,
metrics and motion. More generally, patterns
presence and/or shape can define a genre, a
style and can be related with musical culture
[Auerbach, 2021|. Thus, identifying motives
in music is a relevant question to analyze and
study music and its cultural and historical
context.

Pattern extraction is an open problem in
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Music Information Research (MIR), and it
is not a well explored topics compared with
other MIR tasks, such as music separation,
transcription, or generation [Collins, 2017]:
the difficulty to generalize the definition of
a pattern and the lack of human annota-
tions make it harder to automatize |[Melko-
nian et al.; 2019]. Despite those difficulties,
attempts to create algorithms to address this
task have been made, mostly using unsuper-
vised methods [Meredith, 2006] [Scerri, 2019).

A common approach to explore this task is
to use symbolic music representation. This
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format have shown strong results [Meredith,
2006] and are explored extensively for their
generalization possibilities.

More recently, a new point of view on the
pattern extraction task appeared with link be-
tween algorithm working with symbolic music
representation and binary mathematical mor-
phology [Lascabettes and Bloch, 2024]: math-
ematical morphology is a powerful tool for im-
age processing (like filtering), and is studied as
a strong theoretical field. Moreover, studies
showed morphological tools could be of great
interest for deep learning networks, mainly
for their theoretical foundation and potential
help in increasing the explicability of networks
[Aouad, 2024].

This work is a tentative of merging the
3 fields of Machine Learning, Mathematical
Morphology and MIR. Aside this research,
we created a first version of an unsupervised
dataset, in the aim of exploring pattern ex-
traction with symbolic music.

In Section 2, we present the context of
this work. Next, in Section 3, we present the
main tools we use and definition of the main
concepts. In Section 4, we review the cur-
rent method for pattern extraction, as well as
links between the three different domains we
explore. Then, in Section 5, we introduce the
dataset we created on which we performed our
experiments, before presenting our main con-
tributions in Sections 6 & 7. Finally, we have
a small discussion on our work in Section 8
and conclude in Section 9.

2 Context of the project

This work have been conducted as a second
year master’s degree internship. It was su-
pervised by Moreno Andreatta, a researcher
in the Structural Music Information Research
team (SMIR)!, from Institut de Recherche
Mathémathiques Avancées (IRMA), as well as
Paul Magron and Florent Jacquemard, two re-
searchers from Institut national de recherche
en sciences et technologies du numérique (IN-
RIA).

The SMIR project aims at applying math-
ematical methods like algebra, geometry or

"http://repmus.ircam.fr/moreno/smir
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topology to music theory, and at using these
tools to solve MIR tasks, but also to approach
in a new way some open mathematical prob-
lems. This team creates a collaboration con-
text between mathematicians, computer sci-
entists, but also musicians and musicologists.

We based our research on the work of Las-
cabettes [2023] and the clear link he made be-
tween mathematical morphology and geomet-
ric algorithm for pattern detection.

Our primary objective was to find possible
research directions between this domain and
machine learning methods.

3 Theoretical background

In this section, we introduce the different
mathematical objects we worked with.

3.1 Convolution

Convolutions are powerful mathematical
tools used in image and signal processing.
More precisely, a convolution is a mathemat-
ical operator between two functions f and g,
often associated to images, and generalizes the
idea of sliding average. In our case, we will
focus on the discrete formulation and use a
similar definition as in Aouad [2024] :

Definition 1 (Convolution)

Let f : Q¢ = R and g : 2y — R be two func-
tions with Qg gy C zZP.

The convolution between f and g, denoted f+g
1s defined by :

Va:le, f*g

Zf:c—t

using the convention f(z—t) = 0 if v—t & Q.

The dimension D is equal to 2 or 3 in
the image processing case, representing the
height, the width and the number of color
channels. The convolution can thus be seen as
a reversed window ¢ that we slide over the rep-
resentative image f, x representing the trans-
lation.


http://repmus.ircam.fr/moreno/smir
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We can also defined the correlation of two
functions with the following definition.

Definition 2 (Correlation)
With the same notations as definition 1, the

correlation between f and g, denoted f * g is
defined by :

Ve e Qp, (fxg)(x

fo+t

teQ,
using the convention f(x+t) =0 if x4+t & Q.

Both definitions are similar up to a flip of
the function g, which can be useful in certain
contexts.

Center element of the kemel is placed overthe o, o)
source pixel. The source pixel is then replaced ©0x0)
with a weighted sum of itself and nearby pixels.

Source pixel

New pixel value (destination pixel)

Figure 1: Correlation over an image for a sin-
gle  with g € R3*3, 2

This tool is the foundation of Convolutional
Neural Networks (CNN), a specific type of
deep neural network often used in image pro-
cessing, where each layer is a convolution with
the output of the previous layer (correspond-
ing to f) and a kernel g € R " with h, the
height and w, the width of the kernel (as illus-
trated in Figure 1). In that case, the parame-
ters learned during the training of the network
are the coefficients of g.

3.2 Binary morphology

Morphology is a mathematical field that
studies non-linear and non-reversible opera-
tors that modify the shape, size and properties
of images and objects. The two major oper-
ations are dilation and erosion, because most
morphological operations are equivalent to a
combination of dilations and erosions.

Binary morphology focus on object trans-
formations, that is to say operations on set
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of points. Dilation and erosion for binary
morphology can be defined as follows [Lasca-
bettes, 2023]:

Definition 3 (Dilation)

Let D be an integer.

Let I c RP, S C RP be two sets.

The dilation of I by S, denoted 6s(I) is de-
fined by :

ds(I) ={z+slzel,seS}

S is called the structuring element, and
ds(I) the dilated object.

Definition 4 (Erosion)

Let D be an integer.

Let I C RP, S C RP be two sets.

The erosion of I by S, denoted es(I) is de-
fined by :

65([) =

with S+t = {s+t|s € S}.
S is called the structuring element, and
es(I) the eroded object.

{teRPIS+tC I}

Structuring element

Object to erode Zoom x5
0
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Figure 2: An example of erosion and dilation.

The dilation is as an augmentation of the
object I by the object S, while the erosion
can be seen as the set of points where we can
place the structuring element S such as it fits
in .

These operators have several strong properties

https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daefbelbc41l
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and lead to important tools in image process-
ing [Heijmans and Ronse, 1990] [Najman and
Talbot, 2013].

Similar definition for binary image I €
{0, 1}"*%i can be introduced [Aouad, 2024],
and an important link between convolution
and binary morphology operator is pointed
out in Section 4.2.

3.3 Symbolic music representa-
tion

In this section, we introduce basic notions
about symbolic music.

Most MIR tasks are primary based on pro-
cessing the audio signal, as machine learning
methods such as deep neural network can ef-
fectively process such representations. How-
ever, major breakthrough in the specific case
of pattern detection were often made on sym-
bolic music data, like geometric (point-set)

approach or sequence of notes [Ren et al.,
2020]

With symbolic data, music can be seen as
a superposition of notes over time. A note is
an event that represents a sound which has
several properties. Important ones are:

e Onset : starting time when the note is
played.

e Duration : the length of the note.

e Pitch : how low or high the sound will
be heard.

e Velocity : the strength of the note, how
loud it will be.

e Timbre : the texture of the sound, which
includes properties such as the type of
instrument or the technique used to play
the notes.

A common format for symbolic music is
MIDI files. MIDI contains information of notes,
instrument, sound deformation, sound speed
(tempo) and more. It is a common format
to record digital instruments and to create
ground truth or precise notations regarding
audio. For the sake of ground truth represen-
tation, MIDI files are often quantized, i.e. the
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onset and offset times of notes are rectified to
match a maximum beat division. Quantized
MIDI can be created algorithmically to cor-
respond to sheet music, or done greedily on
recordings.

Sheet music is another common represen-
tation of music, where notes are represented
using symbols of time division, and are writ-
ten in such a way that we easily get time dura-
tion of the music. There is no universal com-
puter format for this traditional representa-
tion, because companies have their own stan-
dards. For these reasons, even if this format
can offer ground truth, data is less accessible
and more difficult to process than MIDI files.

In pattern discovery, two simpler represen-
tations are commonly used : string or geo-
metric representation |Janssen et al., 2014].
We focus on the geometric approach for their
recent new perspectives given by Lascabettes
[2023].

In the geometric approach, also called
point-set representation, a piece of music is
represented as a set of notes, and each note
is a point in a multidimensional space. Each
note dimension corresponds to a property (i.e.
onset, duration, pitch). This format creates
a more flexible representation for polyphony?®
and pattern variations [Meredith et al., 2002].
For simplicity, we often focus on only two or
three features : onset, pitch, and sometimes
duration. Here, we will only look at onset and
pitch.

Figure 3: An example of geometric represen-
tation with J. S. Bach BWV 850.

The binary images representation is de-
rived from this point-set representation: given
a music piece, we define a minimum duration
to quantized the music with, and represent the

3Music where several notes could be played simultaneously.
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music as a tensor where each dimension rep-
resents a note feature. Every values of the
tensor is 1 if it exists a note with the corre-
sponding coordinates, 0 else. This represen-
tation will have several advantages regarding
convolution and morphological operators.

Figure 4: An example of matrix representa-
tion with the first notes of J. S. Bach BWV
850.

3.4 Patterns and pattern extrac-
tion

We use the definitions given for the Music
Information Research Evaluation eXchange
(MIREX) competition [Collins, 2017], because
it is nowadays the definition and benchmark
used to evaluate several MIR task and pre-
cisely patterns extraction.

According to Collins [2017], “a pattern is
defined as a set of ontime-pitch pairs that oc-
curs at least twice (i.e., is repeated at least
once) in a piece of music”. Even if other type
of patterns can be obtained using other notes
features [Lartillot and Toiviainen, 2007|, they
decided to focus on onset-pitch for the sake of
simplicity.

In their definition, they also authorize pat-
tern variations, i.e. the repetition is inexact to
a certain (undefined) extent, including differ-
ent distance between notes, shifted pitch or
others.

Given a piece of music or a corpus of mu-
sical pieces, pattern extraction consists in ex-
tracting a reference pattern as a set of onset-
pitch notes, and its repetitions as other onset-
pitch notes sets, equivalent to the reference set
up to translation and optionally some vari-
ations. It is important to notice these two
tasks - to find a reference pattern, or to find
the corresponding repetition given the refer-
ence - are often referred to as Musical Pattern
Discovery and Musical Pattern Matching re-
spectively [Janssen et al., 2014].

In Musical Pattern Matching, we some-
times do not focus on finding all the notes of
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the repeated patterns, but only the patterns
onsets, i.e. the starting points of the occur-
rence of the patterns (thus, we do not aim at
detecting the difference between two repeti-
tions).

Pattern extraction can be conducted on a
single musical piece, or on a whole music cor-
pus. In the last case, there is no need for a
motive to be repeated inside a single music.
This task can be relevant for style or genre
analysis.

In our study, we will work on single musi-
cal pieces.

4 State of the art

In this section, we briefly present recent re-
search on pattern detection and connection
between morphology and Machine Learning
methods.

4.1 Pattern extraction
4.1.1 Pattern detection common issues

Before presenting some state of the art
method, it is fundamental to understand cur-
rent main challenges in pattern detection re-
search.

The first problem is the lack of a formal
definition of a pattern and its repetitions. As
presented in Section 3.4, we define a pattern
as a repetition of notes across times, but this
definition is not totally consistent with a musi-
cal point of view: notions of notes proximity,
pattern lengths, degree of variations or even
musical "textures" and "shapes" are not de-
termined, and create a huge gap between the
listener level and the algorithm level [Tomase-
vi¢ et al., 2023|. This lack of concise and accu-
rate definition makes it difficult to establish a
ground truth against which evaluating pattern
recognition algorithms.

The second problem is connected to the first
one and is the lack of human annotations.
Aside the difficulty to define what a pattern
is, creating labels on a music piece is a bigger
challenge. To this day, there exist only two
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datasets with expert annotations: the JKU-
PDD database [Collins, 2013] and the MTC-
ANN dataset [van Kranenburg et al., 2016].
The JKU-PDD database is a set of 5 classical
musical pieces in audio and MIDI format, both
monophonic and polyphonic, with human an-
notations of 3 to 11 patterns per music. The
small size of the dataset and the weakness of
the annotation make the dataset not suitable
for an evaluation task.

The MTC-ANN dataset is a corpus of 360
monophonic melodies of Dutch Folk Song with
human annotations of patterns that occurs
through all the corpus. This bigger dataset
deal with the case of inter-music patterns,
which is not the topic we focus on.

Moreover, researchers have discussed and crit-
icized these two datasets’ annotations, hav-
ing strong disagreement on them [Ren et al.,
2017].  Consequently, using those datasets
may not be relevant.

Finally, other challenges have been pointed
out, like the strong influence of the metrics
used to measure similarity between patterns

during the extraction or evaluation process
[Rolland and Ganascia, 2002].

4.1.2 Geometric algorithm

Geometric or point-set algorithms refer to
pattern extraction algorithms based on the ge-
ometric representation of music. This repre-
sentation is detailed in Section 3.3.

The first trail with this representation is
Meredith et al. [2002]. In this paper, the
authors introduced the STA algorithm: given
a set of points S, SIA tests all possible
translation vectors* v = x5 — 21 between two
points (z1,72) € S?, and regroup the points
x € S such that the translation of z by
v yields to an existing point in the set:
{reS|JyeS,y=z+v}. In the end, we
obtain a big quantity of subsets, each one cor-
responding to a specific translation.

SIA lays the foundations of several algo-
rithms to improve its results. In fact, SIA
has several problems that make the musical
interpretation barely relevant. For instance,
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STA detects too many patterns, like noise co-
incidence. It also regroups all distant pat-
terns as one single scattered motive, which is
not relevant with temporal proximity in music
[Collins et al., 2010].

In the same paper, the authors develop the
SIATEC algorithm, a post process to SIA that
also finds the corresponding exact repetition
of a pattern: given a subset P C S, the al-
gorithm searches for patterns P’ such that we
can find a translation v = x5 — 21 so P’ is the
translation of P by v.

STA answers the Musical Pattern Discovery
task, while STATEC answer the Musical Pat-
tern Matching task. From these algorithms,
the same authors and others developped more
complex algorithms to find more interesting
patterns, based on musical or compression cri-
teria [Meredith, 2006] [Ren et al., 2020]. Most
of these algorithms are still considered as the
state of the art of pattern extraction [Collins,
2017].

Recently, it has been shown that SIA and
algorithms derivative can be expressed with
morphological operators |Lascabettes, 2023].
From this observation, the authors built new
technics and theorems to find more musical
patterns in a more efficient way. This trail
encourages to continue in this domain to find
new applications and tools for pattern extrac-
tion.

With these new morphological tools, Quae-
taert [2025] find a new way to discover pattern
variation regarding Musical Pattern Match-
ing, with erosion operators and duplicated
data operation. Regarding classical music,
this is one of the most promising results for
pattern variation nowadays.

4.1.3 Other approaches for pattern de-
tection

Other approaches exist for Musical Pat-
tern Discovery, based on analytical meth-
ods [Lartillot, 2014], greedy approaches [Nieto
and Farbood, 2014], clustering [Velarde and
Meredith, 2014|, or machine learning [Pesek
et al., 2017] [Wang et al., 2015].

4Without computing both a vector v and its opposite —uv.
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To the best of our knowledge, only one deep
learning based method was proposed [Scerri,
2019], based on using an LSTM on the MTC-
ANN dataset, and demonstrating promising
results. However, it is not suitable for pro-
cessing one single musical piece at a time.

The limited use of deep learning can be
explained by the issues presented in Section
4.1.1.  Since there is no properly labeled
dataset, supervised methods cannot be ap-
plied. Moreover, the difficulty in extracting a
good definition, for instance, makes it harder
to design effective unsupervised criteria.

4.2 Binary morphology, convolu-
tion & machine learning

4.2.1 Links between morphology and
convolution

An important result that helps us finding
new research directions is a property that
connects morphological operators and thresh-
olded convolution [Mazille, 1989]:

Property 1

Let D be an integer.

Let I ¢ RP, S C RP be two sets of points.
Then :

es(l) = (L x1s = |S])
Ss(I) = (1 % 1s > 1)

Figure 5: Example of an erosion as a correla-
tion.

This property shows that we can interpret
erosions as thresholded correlations, and di-
lations as thresholded convolutions (see Fig-
ure 5). Since the major operators of morphol-
ogy can be framed as combinations of dila-
tions and erosions, a large part of mathemati-
cal morphology can be expressed using thresh-
olded convolutions, enabling us to reformu-
late many theorems and properties in terms
of thresholded convolution.
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®We present a simplified definition, see Aouad [2024].
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4.2.2 Morphology and Machine Learn-
ing

Mathematical morphology has been ex-
plored for a long time in the context of ma-
chine learning [Ritter and Sussner, 1996].
Motivations to implement morphological op-
erators for Machine Learning and Neural Net-
work are of two kinds: first, Morphological op-
erators have been studied extensively and can
bring a strong theory and potential explicabil-
ity to neural networks ; second, composition
of mathematical operators have a strong ap-
proximation power as shown by the following
result |Giardina and Dougherty, 1988|:

Theorem 1
Let f : P(R") — P(R™) be any increasing,
translation invariant mapping. Then:

VA CR", f(A) =

U es(4)

SeKer f

with Ker f the kernel of f.

This theorem shows that increasing trans-
lation invariant functions can be expressed as
a union of erosion, making the erosion equiv-
alent to the perceptron for Deep learning.

Traditional morphological methods focus on
Grey-scale morphology, whereas we focus on
binary morphology. A review of the evolu-
tion of morphological neural network for Grey-
scale images can be found in Aouad [2024].

Only the recent thesis of Aouad [2024] ex-
plores binary morphology for neural networks.
Based on the property 1, they design the
Binary Morphological Neural Network (Bi-
MoNN), a specific type of CNN based on the

Binary Structuring Element (BiSE) neuron®:

Definition 5 (BiSE neuron)

Let & be a sigmoidal function.

Let W : Rlwxwe _y Rhoxwo gnd B: R — R be
reparameterization functions.

Let p € R, w € R=>Xwe 3 c R be some pa-
rameters.

Let I € [0, 1)"*%i be an almost binary images,
that is to say :
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3t €[0,0.5), Vo € I, z € [0,0.5 — t[U]0.5 + ¢, 1].

The BiSE neuron with parameters p,w, [ is
defined by:

BiSE.p,(1) = &[ p (I * W(w) — B(8))]
applying &, p and B(B) element-wise.

The BiSE neuron is similar to a convolu-
tion where learnable weights correspond to the
structuring element. However:

1. It systemized the use of a sigmoidal
function as activation function.

2. The reparameterization W and B are set
to force the parameters to satisfy certain
properties (e.g. positiveness of the bias,
rectified weights)

3. The parameter p increases the values of
w to reach the limits of the sigmoidal
function.

4. Under some conditions on the param-
eters if the training succeed, the BiSE
neuron can be strictly equivalent to an
erosion or a dilation.

In practice, a combinations of a few num-
ber of BiSE neurons can successfully learn a
composition of erosion/dilation on a set of
images®, and BiMoNN yields promising per-
formance on a disease detection task [Aouad,
2024].

We are interested in this type of architec-
ture because, as current geometric approaches
are nearly all equivalent to morphological op-
erators with a specific structuring element, we
assume we can obtain interesting results by
learning the structuring elements statistically.
Furthermore, this architecture deals with bi-
nary images, which is convenient in our sce-
nario.

5 Fugues dataset

In this Section, we present the dataset we
created and used in our work.
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J. S. Bach is a well-studied German com-
poser of the baroque period. He composed
more than a thousand music pieces through all
his career, among which several fugues. The
fugue is a specific compositional technique
where a theme, named subject, is repeated all
along the piece, respecting several rules - for
instance, the piece always starts with the sub-
ject, making it identifiable. The subject is also
transposed” to a specific degree (the dominant
of the main scale), which is called the response
(or answer), and is repeated after the subject.
The response could have some variations as
well as the pitch-translation, and part of the
subject with potential modification can be re-
peated inside the piece.

The easily identifiable pattern and the
known presence of variations make this mu-
sical structure suitable for both Musical Pat-
tern Discovery and Musical Pattern Matching
tasks.

As there is no dataset of ground truth MIDI
files of fugues, we built one from different MIDI
files available under Creative Commons BY-
NC license from two sources : The Tobi’s score
archive® and The Shostakovich Opus 87 Page®.
The Tobi’s score archive gathers MIDI files and
other music format of J. S. Bach’s and W. A.
Mozart’s work with quantized recordings not
perfectly line up on the ground truth sheet
music. Among other, it provides "The Well
tempered Clavier", "Preludes and Fugues",
"Fantasia and Fugues", and "Fugues", BWV
846-909, 944-9621°, for a total of 83 fugues.
The Shostakovich Opus 87 Page regroup man-
ual MIDI encoding by José Oscar de Almeida
Marques of Shostakovich Opus 87 work. D.
Shostakovitch is a composer of the twentieth
century who composed a series of 24 Preludes
and Fugues (Opus 87) following the model of
Bach’s Well Tempered Clavier.

We look more specifically into the content
of 111 MIDI files. 64 files of Bach were longer
pieces, and we had to remove the non-fugue
part by hand. 5 files were of poor quality and

5From our own tests, we can confirm the reproducibility of the results.

"Translated in pitch

8https://tobis-notenarchiv.de/wp/en/startseite-english/

9https://unicamp.br/~ jmarques/mus/opus87/
0]dentification number of Bach work.
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were therefore excluded.

Then, we had to compute a geometric repre-
sentation from these files. To do so, we quan-
tized each file to some precision using fractions
notation and round notes to their nearest di-
vision. We obtained a list of onset-pitch pairs
for all the pieces. As the MIDI files where cor-
rectly quantized, this basic method succeeded
for most of the files. However, with greater di-
vision as preprocessing, we were able to look
into the potential issues of this trivial quanti-
zation. Some MIDI files were actually not pre-
cise enough regarding the ground truth sheet
musics. We solved these issues by preprocess-
ing the files with Musescore quantization, a
license-free music editor, and deleting by hand
the extra tempo indicators on most of the files.

Finally, we looked into basic information
of the dataset, like maximum duration, min-
imum and maximum pitches, or number of
notes distribution. As this dataset will be
used to train machine learning models, the
size of the data will have an impact on train-
ing, especially as all the data must have the
same shape as binary image. For this reason,
we decided to remove some specific pieces'!
because they were too long or to wide in
height.

As a result, there are two versions of our
dataset: a normal version containing all 106
pieces with no constraint on their lengths, and
a reduced version containing 96 pieces with
shorter /same length.

6 Correlation for patterns
and variation

In this section, we present our contribution
for correlation to detect patterns variations for
the Musical Pattern Matching task.

6.1 Relaxed Erosion

As seen in Section 4.2, a morphological ero-
sion is similar to a correlation with a max-
imum threshold. Based on this observation,
we decided to study the effect of the threshold
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UFrom Opus 87: 4, 10, 12, 15, 20, 21, 23, 24. For Bach
2https://www.dezrann.net/explore/bach-fugues

on the retrieved pattern’s onsets. In particu-
lar, to allow a threshold to be less than the
total size of the pattern is equivalent to allow
occurrences of partial patterns.

To do so, we define the Correlation Map
as follows:

Definition 6 (Correlation Map)

Let D be an integer.

Let I Cc RP, S C RP be two sets of points.
The Correlation Map is the function
corrg(I) : RP — [0,1] such that:

(1; % 1g)(x)

Vo € RP| corrg(I)(x) = 5]

In fact, an erosion corresponds to the
points of the correlation map where the value
is 1:

es(I) = {x € R | corrg(I)(x) = 1}

So the Correlation Map relaxes the erosion
and creates a more continuous heatmap with
high points where a great part of the pattern
S is located.

Further theoretical investigation may help
to understand the meaning of mean-hot area,
like stretched patterns, patterns superposition
or variations.

6.2 Test on Bach Fugues

In order to first evaluate this method, we
decided to test the Correlation function on
the J. S. Bach fugues, as presented in Section
5. We tested several pieces of the Well Tem-
pered Clavier, using the annotations from Gi-
raud et al. [2015] to extract the subject, freely
available on Dezrann'?, and compared our re-
sults with the ones of Quaetaert [2025].

6.2.1 Method

For our first test, we directly looked at the
values of the thresholded correlation. Actu-
ally, it means we focused on cropped patterns,
because a threshold of ¢ means we only have
100 x t % of the original pattern’s notes.

Cropped patterns is a specific kind of vari-
ation. However, as a pattern’s variation often

: BWV 909 and 944.
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does not concern the entire pattern, detecting
the onset of cropped pattern’s should coincide
with some pattern’s other type of variation,
like non-uniform translations.

Correlation with

Dilatation by '

and intersection with

Figure 6: The detection method. On top, the
music piece as a point-set, and as binary im-
age (black dots image above it). In the mid-
dle, the correlation map. At the bottom, the
threshold map.

The method is illustrated in Figure 6.

For every pieces, we extracted the subject
with the known annotations as a binary im-
age convolution kernel and applied the Corre-
lation Map operator on the whole music with
the subject. From the obtained heat-map, we
extracted the points/onsets with correlation
greater than a defined threshold 0 < ¢ < 1 and
found the corresponding notes in the original
music by applying the dilation of the onsets
by the pattern [Lascabettes, 2023, and inter-
sected it with the original image (to only have
existing notes).

6.2.2 Results

We tested our method on several pieces,
including BWV 846, BWV 847, BWV 850,
BWYV 861 and BWV 900. Figures 7a & 7b
present the results on two pieces: BWV 850
and BWV 861.

The different tests we have conducted
show promising results. In all cases, with a
threshold around 0.4-0.5 (around 5 notes per
pattern), we discover at least as much patterns
onsets as Quaetaert [2025]. The extra onsets
are consistent with the annotation of Giraud
et al. [2015], so we do not obtain clear irrele-
vant instances. However, even if the retrieved
points are consistent regarding the extracted
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notes, it does not mean the pattern’s onsets
are well retrieved: for instance, it may appear
1 full pattern with variations made with 2 on-
sets with a threshold of 0.5 (meaning we have
100% of the notes at the end). In that case
we do not know at the moment how to select
the true pattern onsets among the 2 ones or a
combination of both.

Taee

(a) BWV 850. The subject is composed of
12 notes.

rrrrrrrrrr

(b) BWV 861. The subject is composed of
10 notes.

Figure 7: Thresholded correlation with differ-
ent thresholds. The light-blue points are the
remaining points.

As expected, the selection of the thresh-
old is crucial to obtain good results, and it is
not constant from one piece to another. For
instance, with a threshold of 0.3, we still ob-
tain notes that might be interesting for BWV
850, whereas it is only noise on BWV 861 ;
on the other hand, the first detected varia-
tion/cropped pattern occurs with a threshold
of 0.8 for BWV 850, whereas we obtain the
first ones (the answer of the fugues) with 0.9
on BWV 861. On the tested instances, a con-
sistent threshold seems stable around 0.4-0.5
to find pattern variations, but we do not ex-
clude this result to be a coincidence. A more
general result might be obtained by express-
ing the threshold in terms of the pattern size,
but as music is an art, exception will always
occur.
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7 Correlation as an unsu-
pervised criterion

In this section, we present a new loss func-
tion based on the correlation, as well as first
results on a basic optimization problem and
a first attempt to train a CNN for Musical
Pattern Discovery.

7.1 Correlation Loss function

From the Correlation Map and the exper-
iments made for variation detection, we as-
sumed representative patterns should have a
great correlation on the corresponding piece.
For this reason, we tried to design an unsu-
pervised criterion with correlation.

To do so, we adapt our Correlation Map to
generalize it for a non binary kernel S:

Definition 7 (Correlation Map)

Let D be an integer.

Let I C RP be a set of point.

Let S : RP — R, be a weighted object such
that ||S|| = [ S(x)dx < +oo.

In this more general context, the Correla-
tion Map is the function corrg(I) : RP — [0, 1]
such that:

Vz € RP, corrg(I)(z) = %

This definition allows a smoother version
for optimization work.
We can discretize S as a convolution’s kernel
S € [0,1]"*ws and thus ||S|| = Y. g5, for
use in CNN.

With this more general definition, we define
a loss function we called Correlation Loss to
maximize the sum of the correlation between
an image and a convolution kernel:

Definition 8 (Correlation Loss)

Let P : [0,1] — [0,1] be an increasing differ-
entiable function.

Let D be an integer.

Let I C RP be a set of points.

Let S € [0,1]"*%s be a weighted object ex-
pressed as a kernel.
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The Correlation Loss, noted CorrLossp(1,S)
18 defined by:

—|—}| S Plcorrs(1)(x))

zel

CorrLossp(1,S) =

Minimizing the Correlation Loss regarding
S is equivalent to maximizing the sum of the
correlation heat-map.

In practice, P is a polynomial function
P(z) = 2", n € N which reduces the impact
of small values and highlights points of .S with
nearly 1 value.

In this context, minimizing the Correlation
Loss with respect to S yields several already
known global minima: the trivial pattern with
only one note (see Figure 8b) is a global min-
imum, because all notes of I have a perfect
correlation, so CorrLossp(1,S) = —1, which
is minimal®3.

In fact, the amplitude of this single note
can be anything in [0, 1], and this note can
be anywhere in the kernel. Thus, there is an
infinite amount of trivial global minima.

This result means that without regulariza-
tion on the size of S, we will probably not
obtain any non-trivial patterns.

Furthermore, we will see in Section 7.2 the
Correlation Loss without regularization has a
great probability to learn patterns that only
correspond to regular rhythm.

To address these problems, we added a reg-
ularization term to the loss to constrain the
pattern size.

In this smooth context, using the sum of
all coefficients of S as a measure of size is not
meaningful, since S would have the same size
whether all its coefficients are small but non-
zero, or if there is a single large coefficient
s € 5, s> 0 while the remaining coefficients
are zero.

We then focus on the large elements of the
kernel, that is to say coefficients greater than
0.5, denoted Sp5 € Rfs*s:

Ya € [[1, hs]], Vb € [[st]]v
S, if S, b > 0.5
SO.5 ab — { b ’

0 else

13As the maximum value of I is 1, corrg(Z)(z) < 1 and CorrLossp(I,S) > —1
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By doing so, we avoid reducing the coeffi-
cient amplitude uniformly and promote max-
imizing a few coefficients among others.

We then define the Regularized Correlation
Loss:

Definition 9 (Regularized Correlation Loss)

Let P : [0,1] — [0,1] be an increasing differ-
entiable function.

Let 8 € Ry and m € Ry be hyper-parameters.
Let D be an integer.

Let I C RP be an object.

Let S € [0,1]"*%s be a weighted object ex-
pressed as a kernel.

The L1-Correlation Loss, noted
L1-CorrLosspgm (1, S) is defined by:

L1-CorrLosspg (1, S) = CorrLossp (1, S)
+ 811505l —mi

The L2-Correlation Loss, noted

L2-CorrLosspgm (1, S) is defined by:

L2-CorrLosspgm(I, S) = CorrLossp (I, S)
+ B (105l = m)?

We made some comments on the definitions
of these loss functions:

e In these new definitions, m acts like a
center-point of the number of high coef-
ficients. A large S force the number of
high coefficients in the kernel to be as
close as possible to m, while a small
do not penalize the size so much.

e The difference between the L1 and L2
regularizations is in the smoothness of
the regularization: the L1 regularization
will have a more uniform penalization
of the size whereas the L2 regulariza-
tion will penalize more a strong devia-
tion while not focusing on small errors.

e In practice, we obtained a batch version
for several musical piece with distinct
kernel S of this loss looking for corre-
lation image by image and summing the
losses. We also added scales on the dif-
ferent terms of the loss to have classical
values for 5 (between 0 and 1).

4 Because a convolution is not convex in general.
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The derivative of this loss has not been theo-
retically studied for now: the optimization is
performed in practice using a classical back-
propagation process as for a neural network.
Finally, for the extraction of several patterns
on a same music piece, we believe another reg-
ularization can be done to ensure the differ-
ence of the extracted patterns by penalizing
the similarity between 2 patterns. We did not
test this regularization yet.

7.2 Tuning the loss on a basic
optimization problem

We studied a first simple optimization
problem to explore potential good hyper-
parameters, to rectify issues, and to have a
first insight on the performance of the loss.

The problem is: given a binary image I,
we search S € [0,1]"*%s the optimal kernel
that maximizes the correlation:

S = argmin L{1,2}-CorrLossp 4, (1, 5)
S ? )

To do so, we performed small test on J. S.
Bach Fugues, as presented in Section 5. As
this problem is non-convex'*, we cannot solve
this problem formally. Consequently, we used
a gradient descent approach and look for local
minima.

In practice, we searched for S = o(p x W)
and optimize W € R"*%s and p € R, with o
the sigmoid function o(x) = H% The pa-
rameter p acts as a boost to reach the sigmoid
limits.

We tested it on several pieces from BWV
846 to BWV 908, with several quantization
(with a minimum duration corresponding to

8™ or 16" note) and tried to find the best
hyper-parameters.



10

15

20

25

30

(a) Equal division (b)  Trivial pattern
(8<0.1) (8> 10)

(¢) Common pattern (d) Common pattern
with 1< 8 < 10 with 0.1 < 8 <1

Figure 8: Different S by tuning the Correla-
tion Loss.

We originally started without regulariza-
tion, expected the optimization to naturally
gives the trivial pattern (Figure 8b). As
shown in Figure 8a, we quickly noticed the
opposite effect was happening: the model op-
timization leads to regular spaced points. It
can be interpreted as a sequence of regular
notes with pitch variations on the minimum
rhythm division (Tatum). It is a consistent
result as rhythm is an important aspect of mu-
sic ; however, it is not an interesting musical
pattern.

We suggest that the reason of the large size
of the kernel could be due to the difficulty to
privilege a specific point in the kernel during
gradient descent.

We decided to add a regularization (Defini-
tion 9) to decrease the pattern size. We tested
the L1 regularization with m = 0 first. With
this setup, we found more interesting results.
By setting a f whose value is too large, we
sometimes obtained the trivial pattern (Fig-
ure 8b), which is the expected behavior. In
this scenario, increasing  gave a smooth de-
crease of the number of notes in the pattern,
without strong gaps.

To tune the size of S in a more flexible way,
we start looking at the m hyper-parameter
and test the L2 regularization. From now, we
easily find more pattern-like results, as show
in Figure 8c. As we could imagine, we did
not obtain one single pattern with maximum
correlation, however part of this pattern often
occurs. Other interesting results include mud-
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dled pattern with several sub-patterns, or su-
perposed variations of a pattern which occur
in the piece, as in Figure 8d - we never have
two notes at one in height of distance like in
this pattern, but the global shape of the pat-
tern is relevant several times in the musical
piece.

However, even with a big 3, a small change
of £1 on m does not necessarily change the
number of points in the final pattern in a no-
ticeable way.

We can make several additional comments.
The interaction between § and the smooth
function P is sensitive. A change in the expo-
nent of P may conduct to a reevaluation of
the range of values of 5.

Also, 8 does not seem to be highly corre-
lated with the input, but may vary a bit. An
adaptive 3 could lead to better results.

Regarding the training, the loss value is
nearly stable before finding a local minimum
hole and having a quick decrease before stop-
ping.

The training step on the loss is pretty low,
meaning small gradient may provoke vanish-
ing gradient in a more complex scenario.

Finally, we also scaled the different terms
of the regularization to have a consistent and
easily tunable hyperparameter  in our im-
plementation (the values in Figure 8 take into
account this scaling).

In the end, we had a good view on the im-
pact of the hyperparameters, and decided to
test the loss function in a deep learning setup.

7.3 A first CNN attempt

In this section, we present an experiment
where we train a CNN to extract patterns us-
ing the Correlation loss.

7.3.1 Experiments

Based on the work presented in Section 7.2,
we tried to learn a CNN that extracts a rel-
evant pattern on the Bach and Shostakovich
Fugues, presented in Section 5.
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The architecture consist of a CNN with
batch-norm regularization and ReLU activa-
tion function, with a final Dense Layer, that
amount to about 100,000 parameters. The
detailed architecture can be found in Ap-
pendix B.

The input is a 2 dimensional binary im-
age that represents a fugue, and the output
is a smooth pattern S expressed as a kernel
of size (hs,ws) with values in [0,1]. We ap-
ply the Correlation Loss between S and the
input and minimize it using gradient descent
with ADAM optimizer method [Kingma and
Ba, 2014|. We used a learning rate scheduler,
where the learning rate decreases by 10 if the
loss on the validation set does not yield a new
minimum after 5 epochs. Training stops when
a reduced learning rate also does not yield a
lower validation loss.

We trained on the Fugues Dataset (Section
5) and used a data augmentation method: for
every musical piece, we applied a horizontal
flip in order to reverse the note pitches. In
this way, we doubled the size of the dataset
without introducing a strong bias. This aug-
mentation is relatively consistent for music.
Doing it on the all piece imply reversing the
music scale and going outside common major
and minor scales.

Other augmentations could be implemented
in future works, like time translation or pitch
transposition.

All the pieces have been standardized to
tensors using an 8" note quantization, with
the maximum time length as number of rows
and the maximum pitch amplitude as number
of columns. In this way, we were able to batch
the inputs and did not need to deal with size
variation for our network.

We divided the dataset as 72% for train-
ing, 18% for validation, and 10% for testing.

We implemented our model with PyTorch!®
in Python language and ran our training on a
local cluster'®. Different hyperparameters and
small modification on the architecture have
been tested.

5https://pytorch.org/
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7.3.2 Results

We now present some preliminary results of
our first trainings. We tried different hyper-
parameters configuration, and all of the train-
ing last at maximum 10 minutes.

’ip"‘ﬁ‘

) None or too small g
(not constant)

(a) First training (con-
stant output)

(¢) Rhythm variations (d) Pitch variations
(constant output) (constant output)

Figure 9: Different Results of the first CNN
trainings.

The first experiment we ran already gave
an interesting outcome. The model was able
to learn a pattern from the dataset, however
it was a constant sequence of equally spaced
notes of same pitch for all input (Figure 9a).
The model was able to learn using the loss
- attesting it can be actually relevant -, and
the model learned a musical pattern and not
a random pattern, even if it did not bring
new knowledge about the music. This showed
promising possibilities.

Regarding the constant output, we tried
using a batch size of 1 instead of a mini-batch
optimization of several pieces so we performed
a more noisy optimization and could help to
go through more unexpected minimum. At
the end, it was still constant ; however, we
obtained more refined patterns, like irregu-
lar rhythm or small pitch variation of 1 or 2
pitches (Figure 9¢ & 9d).

Next, we assumed that a constant output
may happen because of biases. We ran several
other experiments removing partial and finally
all biases. We tested it with the same other
hyper-parameters, without more success.

Finally, since we previously observed that
the loss is rather (-sensitive in Section 7.2,
we tested different values for . A small

16Details of the software used can be found in Appendix C.
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gives non constant but noisy maps (Figure
9b), while big # can lead to the trivial pat-
tern (as in Figure 8b). With the current
other hyper-parameters, there was no other
outcome that the first experiment scenario or
the noisy maps by tuning .

The issue of constant output could come
from a loss drawback: even by consider-
ing a more general pattern than the trivial
one, given a pattern S and a subpart of it
S" € S, we observe that: CorrLossp(I,S) >
CorrLossp(1,5”). That is to say, using this
loss does not encourage to learn a pattern that
maximize the size when a pattern is found.
By fixing a specific size with the regulariza-
tion, it may be easier for the model to learn
a mean pattern resulting of the intersection
of better patterns across the entire corpus in-
stead of distinct patterns for each music piece.
We will investigate more in this direction in
future works.

We assume other several issues could be ad-
dressed to improve the results:

e The smooth function P could have a
great impact on the results, a grid search
along with 3 could help to find better
results.

e The parameters initialization may not
be optimal.

e As we used ReLLU, some parts of the net-
work could be deactivated if all values
are negative before activation.

e The constant issue looks like an under-
fitting scenario, thus we may have too
many regularization (the batch-norms),
or not enough parameters.

e The ADAM optimizer used some mo-
mentum that may not be optimal in
our setup: when tuning the loss, the
momentum inertia sometimes seems to
block the progression, so more stochas-
tic descent could help.

8 Discussion & future work

In this section, we review our different con-
tributions and point out some drawbacks. We
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also present some possible trails for future re-
search directions.

First, at this point, the original MIDI files
are not fully reliable for the Fugues dataset,
as it is not ground truth annotations and the
quantization is not perfect. Moreover, our
own additional quantization leads to approxi-
mation errors that may cause issues when used
in more exacting tasks. We should do more
data augmentation and find better sources to
improve it.

Regarding Correlation for pattern varia-
tions detection, we only look at preliminary
results and a lot of work should be done to im-
prove and look deeper into the method. Cor-
relation is a known powerful tool, and there
must be state of the art methods in other do-
mains that may inspire us to improve our re-
sults. Also, the link between fuzzy morphol-
ogy |Bloch and Maitre, 1995] and correlation
should be explored.

Moreover, we want to outline that we only
did visual tests to compare our discovery with
the work of Quaetaert [2025] or to compare
with the annotations on Giraud et al. [2015],
because the algorithm were not easily avail-
able in the first case, and because the data
where difficult to extract in the second case.
Since we consider music represented as binary
images, visual data analysis is relevant be-
cause the data is readable and easily inter-
pretable. However, statistical tests should be
done to ensure the reliability of the results.

We also did not conduct tests on a large
amount of samples (only about 10 fugues),
which is not enough to draw strong conclu-
sions.

This first insight encouraged us to look
deeper into the correlation map to extract
more information. Future works may focus on
retrieving the remaining notes that are varied
in the pattern occurrence, on better extract-
ing the exact pattern’s onsets and on finding
better method to get the variations from the
Correlation map. It could include analytical
and greedy methods as well as machine learn-
ing approaches like deep learning.
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Next, the Correlation loss function should
be improved. The loss is still sensitive to a
lot of phenomena and we cannot extract them
all. Even with the added regularization terms
to reduce the impact of input and kernel size,
other terms and scaling may be included to
improve it.

As pointed out in Section 7.3.2, the mo-
tive size is not taken into account in an opti-
mal way for now, and it may have a crucial
impact during the optimization process.

Also, we trained on one example at a time
to tune the hyper-parameters. This example
could include noises and errors due to quanti-
zation. It may lead to learning error and may
impact our deduction on the loss behavior.

Finally, we do not have an expert point of
view on the results on the obtained patterns.
Even if they are consistent with our own musi-
cal knowledge, we cannot attest the musicality
relevance.

For the pattern extraction with CNN, sev-
eral trails should be studied, as the impact
of the optimizer or the activation functions.
The optimal hyper-parameters and optimiza-
tion are not known, and we should explore
deeper their impact on training.

In future works, we will explore these dif-
ferent scenarios with the aim to find more in-
teresting patterns. We also plan to use the
BiSE neurons (Section 4.2) instead of the nor-
mal convolution to see if we get better results,
even if the risk of vanishing gradient increases
with the use of sigmoid activation functions
instead of ReL.U.

Finally, in a more general way, we want
to explore more the correlation tool as well
as their connection with mathematical mor-
phology, using known results of convolution
and erosion. We think the Correlation Map
obtained by applying a pattern on a musical
piece can provide new musical knowledge, and
both statistical and analytical method should
be considered. We also want to explore more
the possibility to use the correlation as an un-
supervised criterion, by improving the Corre-
lation loss or designing new losses.
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9 Conclusion

Through this project, we reviewed and de-
signed new connections between Binary Mor-
phology, Machine Learning and Music. We
found several results that may have an impor-
tant impact for future work in this interdis-
ciplinary domain, and explored a new way to
deal with patterns using the correlation.

The Correlation Loss function we have de-
signed offers a new point of view on the inter-
action between Machine Learning and Sym-
bolic music. We also think this new function
could be generalized to other domain, like in
image processing.

Future work will help to improve this trail to
use unsupervised criteria for Musical Pattern
Extraction and Musical Pattern Matching.

Generally, we think our work could be ex-
trapolated to other pattern detection tasks
and more general point-set scenario, and we
hope to establish new connections in the fu-
ture.
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Appendix A Abbreviations and notations

BiMoNN : Binary Morphological Neural Network. See Section 4.2.
BiSE : Binary Structuring Element (neuron). See Section 4.2.

CNN : Convolutional Neural Network. A specific type of Deep Neural Network where each layer use a
convolution, and the parameters learn are the weights of the kernel. See Section 3.1.

MIR : Music Information Research. The interdisciplinary science of retrieving information from music
like at different levels, like style, genre, notes onsets, patterns, ...

MIREX : Music Information Retrieval Evaluation eXchange. A competition and benchmark for several
MIR tasks. https://www.music-ir.org/mirex/wiki/MIREX_HOME

ReLU : Rectified Linear Unit. A specific type of activation function.

In all the paper, D is an integer.

f * g : the convolution of f by g. See Definition 1.

f x g : the correlation of f by g. See Definition 2.

0s(X) : the dilation of X by S. See Definition 3.

€s(X) : the erosion of X by S. See Definition 4.

corrg(X) : the correlation map of X by S. See Definition 6 & 7.
CorrLossp(I,S) : the Correlation loss between I and S. See Definition 8.

L1-CorrLossp g m (I, S) and L2-CorrLosspg (I, S) : regularized Correlation loss. See Definition 9.

1
1+e—*

P(A) : the set of subset of A: {X | X C A}.
1x : RP — {0,1} : function such that 1x(z) =1 if € X, 0 else.

o : the sigmoidal function : o(z) =

X5 : the function X with a 0.5 threshold on the values. See Section 7.
|S] : the size of an object S (area, volume or hyper-volume).
15| : the size of a weighted object S, ||S|| = [3p S(x)dz. If S € R"*¥s is a kernel, ||S|| = Y cq S

[a,b] : the set of integers between a and b, boundaries included.
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Appendix B Architecture of the CNNs

We present here the detailed architecture use for the experiments described in Section 7.3.1.

The network is built as follow:
1. A convolution layer with a kernel of size (9,13) and 3 output channels.
2. A maximum pooling layer with a window of size (6, 1).
3. A ReLU activation function.
4. A batch-norm regularization.
5. A convolution layer with a kernel of size (9,13) and 6 output channels.
6. A maximum pooling layer with a window of size (6,1).
7. A ReLU activation function.
8. A batch-norm regularization.
9. A convolution layer with a kernel of size (9, 13) and 12 output channels.
10. A maximum pooling layer with a window of size (6, 1).
11. A ReLU activation function.
12. A batch-norm regularization.
13. A convolution layer with a kernel of size (9,13) and 24 output channels.
14. A maximum pooling layer with a window of size (6,4) and a dilation of (1, 13).
15. A ReLU activation function.
16. A batch-norm regularization.
17. A Dense Layer with as output shape the desire kernel size (hg, w;).

18. A learning parameter p with which we multiply the output.

1

19. A sigmoid function o(z) = .

In all convolution layer, we use a padding such that we have the same image dimension in
input and output except the number of channels.

The convolution kernel size corresponds to a view of 1 complete music beat on a full music
scale. The maximum pooling window’s size corresponds to a reduction in time of 3/4 of beat.
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Appendix C Experiments software
For the pattern variation detection presented in Section 6:

e Python 3.12.2
Mido 1.3.3

Numpy 1.26.4

Pretty midi 0.2.10

Tensorboard 2.19.0

PyTorch 2.3.1

Torchvision 0.18.1a0

For unsupervised correlation experiments presented in Section 7:

Python 3.10.12

Amdsmi 24.7.1+dabdcf6

Numpy 1.21.5

PyTorch 2.7.14+rocm6.3

Torchaudio 2.7.1-Frocm6.3

Torchvision 0.22.1+rocm6.3
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