
The Mystery of Anatol Vieru’s Periodic
Sequences Unveiled

Luisa Fiorot , Alberto Tonolo , and Riccardo Gilblas(B)

Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova,
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Abstract. In [10], Anatol Vieru proposed a compositional technique
based on an algorithmic manipulation of periodic sequences in Z12. This
technique was translated in mathematical terms in ([3,4,8]). Two math-
ematical problems arose starting from the so called Vieru’s sequence
V : period of primitives and proliferation of values. In this paper we
announce, providing only the sketch of the proofs, the solution of these
questions in a purely algebraic way.

Introduction

In the Book of Modes [10], the romanian composer Anatol Vieru collects periodic
sequences by iteratively applying a finite sum operator starting from the constant
sequence (6) on Z12, corresponding to the triton interval. Then he decodes from
each sequence a musical aspect, giving rise to a composition: Zone d’Oubli.

This was the starting point for a prolific math-music research area ([1–4,8]).
Vieru highlighted two remarkable phenomena about the particular sequence (so
called Vieru’s sequence):

V = (2, 1, 2, 4, 8, 1, 8, 4) ∈ Z12

originated from the initial sequence (2, 1) corresponding to Messiaen’s second
mode of limited transpositions. Vieru repeatedly applied to V the operator Σ8

(see Eq. 1). He noticed that in the obtained sequences the period tends to increase
and it is always a power of 2. Moreover the values 4 and 8 tend to proliferate
among the coefficients of the sequences (recovering in some cases more than
99% of the coefficients [4]). In [4] the authors faced the problem using the Fit-
ting Lemma and explicit computations, providing the main reference for this
work, but leaving open the two problems. In a recent article submitted to a
mathematical journal, we completely solved these questions. The main new idea
consists in linking periodic sequences to binomial coefficients, which have been
studied using Kummer’s Theorem [7] and the generalisation of Lucas’ Theorem
([5,6]). In this paper, we announce these results providing only a sketch of the
proofs.
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1 Anatol Vieru’s Periodic Sequence: A New
Formalization

Let us recall some definitions.
A sequence f ∈ ZN

m := (Z/mZ)N is called periodic if there exists j ≥ 1 such
that θj(f) = f where θ is the shift operator defined by

θ(f)(n) := f(n+ 1) ∀n ∈ N.

The minimal j ≥ 1 satisfying this condition is called the period of f and
it is denoted it by τ(f) (we use the notation (a0, . . . , an−1) for a sequence of
period n). The set Pm :=

⋃
j≥1 ker(θ

j − id) of all periodic sequences over Zm is
a Zm-module with point-wise sum and multiplication.

Let us consider on Pm the operators ∆ := θ − id (discrete derivation) and
Σc for c ∈ Zm (discrete integration) defined as

Σcf(n) :=

{
c if n = 0
f(n − 1) + Σcf(n − 1) if n > 0.

(1)

We will write Σ instead of Σ0 to keep the notation clean. We denote by (c) the
constant sequence (i.e., periodic sequence of period 1) having all entries equal to
c ∈ Zm. Hence Σcf = Σf + (c) and ∆(Σcf) = f for every f ∈ Pm and c ∈ Zm.
Observe that in particular Σc(f1 + f2) = Σf1 +Σcf2 for any f1, f2 ∈ Pm and so
Σs

c (f1 + f2) = Σsf1 + Σs
cf2 for any s ≥ 1.

Given the constant sequence f = (c) with c %= 0, we have: Σf(0) =
0,Σf(1) = c and iterating Σf(n) = nc so Σf = (0, c, 2c, . . . , (m − 1)c) has
period m. More generally one has:

Lemma 1. If (c) is a constant sequence in Pm, then Σs(c)(n) ≡m c
(n
s

)
.

The period never decreases when applying Σ. Indeed the following holds:

Lemma 2. Given f ∈ Pm of period τ , let us denote by tr(f) :=
∑τ−1

i=0 f(i). For
each c ∈ Zm the period of Σcf is hτ where h is the minimum positive integer
such that h · tr(f) ≡ 0 mod m.

We say that a periodic sequence f ∈ Pm is nilpotent (resp. idempotent)
if there exists n ≥ 1 such that ∆nf = 0 (resp. ∆nf = f). These two kinds
of sequences are called resp. reducible and reproducible sequences in [2]. The
nilpotency (resp. idempotency) index of f is the minimal n satisfying the previ-
ous condition. We denote by N∆

m and I∆
m the Zm-submodules of nilpotent resp.

idempotent sequences.
Example 1. 1. Consider the sequence f = (0, 1, 2, 3) ∈ P4. We have:

∆f = θf − f = (1, 2, 3, 0) − (0, 1, 2, 3) = (1)
∆(1) = θ(1) − (1) = (1) − (1) = (0).

Hence f is nilpotent with nilpotency index 2.
2. The sequence g = (2, 1) ∈ P3 is idempotent of idempotency index 1, since:

∆g = θg − g = (1, 2) − (2, 1) = (2, 1) = g.
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2 Decomposing Pm

We use three decompositions: the decomposition into primes, the decomposition
in nilpotent and idempotent parts and lastly the decomposition of nilpotent
sequences using constants.

2.1 Decomposition with Primes

Given m ∈ N, m ≥ 2 with prime factorization m =
∏t

i=1 p
#i
i , the group isomor-

phism Z/mZ →
⊕t

i=1 Z/p
#i
i Z gives rise to an isomorphism of abelian groups

(see [2, Th. 5])

Pm −→
t⊕

i=1

P
p

!i
i

f (−→(fpi)1≤i≤t

where fpi is the projection of f in P
p

!i
i

and we will call it the pi-part of f . Its
inverse is given by the Chinese remainder theorem.

Lemma 3. ([2, Prop. 6, Prop. 13]) Following the previous notation, f is nilpo-
tent (resp. idempotent) if and only if its pi-part fpi is nilpotent (resp. idempotent)
for any 1 ≤ i ≤ t. The nilpotency (resp. idempotency) index coincides with the
maximum of the nilpotency (resp. idempotency) indices of fpi and the period
τ(f) = lcm{τ(fpi)}1≤i≤t.

Example 2. Since Z/12Z * Z/3Z⊕ Z/4Z, we obtain P12 * P3 ⊕ P4 and Vieru’s
sequence V = (2, 1, 2, 4, 8, 1, 8, 4) decomposes as:

V3 = (2, 1) ∈ P3, V2 = (2, 1, 2, 0, 0, 1, 0, 0) ∈ P4.

2.2 Decomposition in Nilpotent and Idempotent Part

Let us recall [4, Prop. 1] that, by the Fitting Lemma, Pm = I∆
m ⊕ N∆

m . The
primes decomposition and Lemma 3 imply the following isomorphisms:

Pm =
t⊕

i=1

I∆
p

!i
i

⊕ N∆
p

!i
i

I∆
m =

t⊕

i=1

I∆
p

!i
i

N∆
m =

t⊕

i=1

N∆
p

!i
i

.

Thus we can always reduce to study sequences on Zp! .

Lemma 4. If f ∈ Pp! , then:

1. [4, Th. 3] f ∈ N∆
p! if and only if τ(f) = pt for t ∈ N;

2. if f ∈ N∆
p! with period pt and nilpotency index η, then η ≤ &pt.
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2.3 Decomposition of Nilpotent Sequences Using Constants

The nilpotent sequences decompose in sums of primitives of constant sequences:

Lemma 5. A nilpotent sequence f ∈ N∆
m of nilpotency index η can be written

in a unique way as
f = c0 + Σ1c1 + · · ·+ Ση−1cη−1

for suitable constants c0, . . . , cη−1 ∈ Zm.

Applying the previous decompositions to Vieru’s sequence

V = (2, 1, 2, 4, 8, 1, 8, 4) ∈ P12

we find the 2-part V2 = (2, 1, 2, 0, 0, 1, 0, 0) ∈ P4 and the 3-part V3 = (2, 1) ∈ P3.
In this case V2 is nilpotent of index 5 while V3 is idempotent with index 1.

Therefore the nilpotent and idempotent components are:

Ṽ2 = (6, 9, 6, 0, 0, 9, 0, 0) ≡ (−3) · V2 mod 12, Ṽ3 = (8, 4) ≡ 4 · V3 mod 12.

Vieru repeatedly used the operator Σ8 applied to V = Ṽ2 + Ṽ3 in order to
generate new periodic sequences. Since Σ8Ṽ3 = Ṽ3, we get

Σs
8V = ΣsṼ2 + Σs

8Ṽ3 = ΣsṼ2 + Ṽ3. (2)

Thus we are reduced to study the operator Σ applied to the nilpotent sequence
V2 in P4. In particular the period of Σs

8V in P12 coincides with the period of
ΣsV2 in P4. Since Σ8Ṽ3 = Ṽ3 = (8, 4), the proliferation of the values 8, 4 in Σs

8V
in P12 is equivalent to the proliferation of the value 0 in ΣsV2 in P4.

Finally, the last decomposition provided by Lemma 5 gives V2 = (2)+Σ(3)+
Σ2(2) + Σ3(3) + Σ4(2).

3 Unveiling the Period and the Proliferation of Values

3.1 Period of the Primitives of Vieru’s Sequence

The study of the period is based on the following lemma:

Lemma 6. For every s ∈ N, the sequence Σs(2) ∈ P4 has period 2ks while
Σs(3) ∈ P4 has period 2ks+1 where ks := ,log2(s)- + 1 is the number of figures
in the representation of s in base 2.

Proof. We prove the statement for the primitives of (3) proceeding by induction
on the primitive index s. As observed before Lemma 1, the period of Σ(3) is
4 = 2k1+1. Suppose the statement true for s, let us prove it for s+ 1.

– If ks+1 = ks, it is possible to show that tr(Σs(3)) = 0 using Kummer’s
Theorem [7]. By Lemma 2 one obtains

τ(Σs+1(3)) = τ(Σs(3)) = 2ks = 2ks+1 .
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– If ks+1 = ks + 1, again by Kummer’s Theorem one gets tr(Σs(3)) = 2. By
Lemma 2 one obtains

τ(Σs+1(3)) = 2 · τ(Σs(3)) = 2 · 2ks = 2ks+1 = 2ks+1 .

Reducing (2) ∈ P4 to (1) ∈ P2 via the isomorphism 2Z/4Z ∼−→ Z/2Z the
previous argument proves the statement.

The following result solves completely the problem of the period of Vieru’s
sequence V = (2, 1, 2, 4, 8, 1, 8, 4).

Theorem 1. The period of ΣsV is 2ks+3+1 (with ks+3 is the number of figures
of s+3 in base 2). Notice that the period changes whenever s = 2r −3 for r ≥ 2.

Proof. As previously observed, the period of ΣsV coincides with the period of
ΣsV2. The period of the sequences

ΣsV2 = Σs(2) + Σs+1(3) + Σs+2(2) + Σs+3(3) + Σs+4(2)

clearly divides the least common multiple of the periods of its summands, which
coincides with the period of Σs+3(3). Using the previous theorem and Lemma 2,
an accurate analysis permits to prove that they are in fact equal.

3.2 Proliferation of Values

Let us study the proliferation of 0 in ΣsV2 with s ≥ 1. This will allow us to
evaluate the number of 4, 8 in the primitives of Vieru’s sequence V . Rather than
the absolute value of occurrences inside the period, it is much more interesting
to study the ratio with respect to the period. In [4], the authors explicitly com-
puted the first 61 primitives of V and they remarked that “at level 61 of period
128, more than 90% of the elements belong to the set {4, 8}. This percentage
dramatically decreases in the following level which is the last one having period
equal to 128”. The level 61 above corresponds to s = 59 and it has period 128
by Theorem 1, as confirmed by the computation in [4].

Lemma 7. Let us denote by z(s) the number of zeros in the sequence Σs−3V2

inside its period. Then for every r ≥ 3 the following inequalities hold:

z(2r − 1) < z(2r − 2) = 2r+1 − 8.

More precisely, one has:

Σ2r−5V2 = (0, . . . , 0︸ ︷︷ ︸
2r−5

, 2, 3, 1, 0, 0, 0, . . . , 0︸ ︷︷ ︸
2r−1−4

, 2, 2, 0, 0, 0, . . . , 0︸ ︷︷ ︸
2r−1−5

, 2, 1, 3, 0, 0).

Proof. The proof is based on Kummer’s Theorem [7] and on the generalization
of Lucas’ Theorem proved by Davis and Webb in [5, Th. 1]. The second state-
ment is proved by a component-wise analysis. In the under-braced positions all
summands of V2 are equal to zero by Kummer’s Theorem. The remaining 14
coefficients can be explicitly computed using Davis and Webb result.
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The following result solves completely the problem of the proliferation of
{4, 8} in Vieru’s sequence V = (2, 1, 2, 4, 8, 1, 8, 4).

Theorem 2. The ratio between the number of {4, 8} in the primitives of
Σ2r−5

8 V (with r ≥ 3) and their period is 2r+1−8
2r+1 , which tends to 1 for r → ∞.

More precisely, Σ2r−5
8 V is equal to:

(8, 4, 8, 4, . . . , 8︸ ︷︷ ︸
2r−5

, 10, 11, 1, 8, 4, 8, 4, 8, 4, . . . , 4︸ ︷︷ ︸
2r−1−4

, 2, 10, 8, 4, 8, 4, 8, 4, . . . , 8︸ ︷︷ ︸
2r−1−5

, 10, 5, 7, 8, 4).

Proof. Since the number of {4, 8} in Σ2r−5
8 V coincides with the number of zeros

in Σ2r−5V2, the first part of the statement follows from the previous lemma and
Theorem 1. The explicit form for Σ2r−5

8 V follows from the previous lemma and
Eq. (2), where

Σ2r−5 Ṽ2 ≡ (−3) · Σ2r−5V2 mod 12.

Remark 1. It is nice to compare the formula of Theorem 2 for r = 3, 4, 6 with
the explicit computation of the corresponding levels 5, 13, 61 provided in [4, App.
A].

4 Recursive Formulas for the Number of {4, 8} in Σs−3
8 V

In the last days we proved a recursive formula for the number z(s) of zeroes
in the (s − 3)-primitive of V2 in P4. The number z(s) coincides also with the
number of {4, 8} in Σs−3

8 V in P12. We chose this shift by −3 in order to have
all sequences of the same period 2r+2 when 2r ≤ s < 2r+1. In this interval of
primitives, one can compute the percentage of {4, 8} as z(s)/2r+2.

We need first to introduce a tuple dr of integers. Denote by wt(&) the Ham-
ming weight of &, i.e. the number of 1’s in the binary expansion of &. Then we
set

dr(m) = 2wt(2r+2r−1−1−m)+1.

We will be mainly interested in the values of dr(m) when 2r + 2r−2 + 3 ≤ m <
2r + 2r−1 − 1. For brevity we write

dr := (dr(m))2r+2r−2+3≤m<2r+2r−1−1.

For dr the following equalities hold:

d5 = (4, 8, 4, 4) and dr+1 = (2 × dr, 4, 2r−1, 2r−2, 2r−2, dr) ∀r ≥ 5.

We can now enunciate the recursive formula. Define:

ui := 2r−i i = 1, 2, 3

t := s − u1 2r ≤ s < 2r+1

(c1, c2, c3, c4) := 2r−3(12, 8, 10, 11)

(c′
1, c

′
2, c

′
3, c

′
4) := 2r−3(12, 10, 11, 12).
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The initial condition for the recursive formula is the 25-tuple (z(s))s for 25 ≤
s < 26:

(32, 48, 64, 88, 64, 80, 88, 92, 64, 80, 88, 104, 92, 104, 108, 94,
78, 88, 96, 108, 96, 104, 108, 110, 102, 108, 112, 118, 114, 118, 120, 64).

In this interval, the period of the sequences Σs−3
8 V is constantly equal to 128.

For 2r ≤ s < 2r+1 with r ≥ 6, the 2r-tuple (z(s))s concides with:

( 2z(t), . . . , 2z(t)
︸ ︷︷ ︸

2r−2−1

, z(t − u3) + c1, . . . , z(t − u3) + c4︸ ︷︷ ︸
4

, 2z(t) − dr(s), . . . , 2z(t) − dr(s)︸ ︷︷ ︸
2r−2−4

,

z(t − u2) + c′
1, . . . , z(t − u2) + c′

4︸ ︷︷ ︸
4

, z(t − u1) + 2r+1, . . . , z(t − u1) + 2r+1

︸ ︷︷ ︸
2r−1−4

, 2z(t − u1)︸ ︷︷ ︸
1

).

Let us recall that t = s − 2r−1 and so in the tuple above the first coefficient
is computed using s = 2r, the second one using s = 2r + 1, the last one using
s = 2r+1 − 1.
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