A

T DEGLI STUDI

3 UNIVERSIT
== ONVIIN T

ICOCC

SCUOLA DI DOTTORATO
UNIVERSITA DEGLI STUDI
DI PAVIAE

DI MILANO-BICOCCA

Dipartimenti di
MATEMATICA
E APPLICAZIONI

Ph.D. program in MATHEMATICS

Université m } ‘

de Strasbourg

ECOLE DOCTORALE

DE MATHEMATIQUES, SCIENCES DE
L''NFORMATION ET DE L'INGENIEUR
UNIVERSITE DE STRASBOURG

Institut de
RECHERCHE
MATHEMATIQUE AVANCEE

Cycle XXXIV

EXTENDED VUZA CANONS

Surname: LANZAROTTO Name: GRETA

Registration number: 847623

Tutor: Prof. PERNAZZA LUDOVICO

Co-tutor: Prof. ANDREATTA MORENO

Coordinator: Prof. COLLI PIERLUIGI

ACADEMIC YEAR 2020/2021






Contents

[1 Introduction|

[2

Tiling rhythmic canons|

[2.1  Musical and algebraic definition| . . . . . . . . ... ..o
[2.2  The Coven-Meyerowitz Theorem| . . . . . . ... ... . ... ... ....

3 Vuza canons|

[3.5  Operations on aperiodic canons| . . . . . . . . . . . ... ... ... . ...
B.5.1 Duality] . . ... ...
[3.5.2  Ek-stuttering (and multiplexing) and k-zooming| . . . . .. ... ..

3.5.5 Uplitting]. . . . . . . . . .. ..
[3.5.6  Operations on extended Vuza canons| . . . . . . . . . .. ... ...

Algorithms for aperiodic complements|

4.1  'The Coven-Meyerowitz complement{. . . . . . . . ... ... ... .. ...

4.3 The Cutting Sequential Algorithm| . . . . . .. ... ... ... ... ...
[4.3.1 Tiling constraints|. . . . . . . . .. ... Lo

|4.3.2  Aperiodicity constraints| . . . . . .. ... oL
4.3.3 Computational results| . . . . .. ... ... ... ... ... ..
4.4 The SAT Encoding Algorithm|. . . . . . ... ... ... ... ... ....
[4.4.1 Tiling constramnts|. . . . . . . . .. ...
[4.4.2  Aperiodicity constraints| . . . . . ... ..o
4.4.3  Computational results| . . . . . . .. ... ... o000
[4.5  Enumerating aperiodic canons|. . . . . . ... ..o
451 Thecasesn=180and n=2000 . . . . . . . ... ... ... ....

3

15
15
17
22
26
44
44
45
47
47
50
50



CONTENTS

{4.6 Testing necessity of condition (T2)[ . . . . .. ... ... ... ... ..., 96




List of Tables

3.1 All possible A; and A, for some non-Hajos values of n < 168/ . . . . . . . 38
3.2 All possible Ay and Ao for n =180.. . . . . . . . .. ... ... ... ... 39
3.3 All possible V; and Vs for non-Hajos values of n < 180.. . . . . . . . . .. 40
3.4  Number of extended Vuza rhythms for non-Hajos values of n < 216, . . . 41
[3.5 Number of extended Vuza rhythms for non-Hajos values of 240 < n < 280, 42
4.1 Number of tiling complements ot the aperiodic rhythms tested. . . . . . . 74
4.2 Runtimes (in seconds) of the CS Algorithm and the Fill-Out Procedure.. . 76
4.3 Aperiodic tiling complements for periods n € {72,108,120, 144,168} . . . 79
4.4 Aperiodic tiling complements for periods n € {180,420,900}.. . . . . . . . 80
4.5 Number of extended Vuza canons for n = 900, with ns € {2,3,5,6,10,15}| 94
4.6 Number of extended Vuza canons for n = 900, with n3 € {4,9,25}.| . . .. 95
[4.7  Rhythms with superfluous cyclotomic factors checked.| . . . . . . .. . .. 96




LIST OF TABLES



List of Figures

[3.1  Graphic representations of tiling rhythmic canons.| . . . . . ... . . ... 22
B2 n=72. Aoy =18, P8I5.| . . . . . . .. 23
B3 n=108. Aoy =27, P12[5| . . . . . . ... ... 23
B4 n=120. A=30,P8l3.|. . . . ... . . 23
B5 n=120. A=30LP8s|. . . . ... . .. ... 24
B.6 n=144. Acpy =18 @ 16ls . . . . . . ..o 24
B.7 m=144. Agpyy =36l P16ls| . . . . . ..o 24
B8 n=144. Ay AP A3 =36 Pl16lsP A3 . . . . . . . . ... .. 25
|39 n = 144. A] @ AQ @ 2A3 = 36]12 @ 16]16; @ 2Aq| ................ 25
810 n=168. A=42L P8I3.|. . . . . . . . . . 25
B.11 n=168. A=42L, P8I-|. . . . . . . . . 26
312 n=216. B= (U1 ®Vo® K1) (oD V dK)| ... oo . 27
3.13 n=216. B= (U1 VoK) (LD V @K)u(WAKs)| .. ... .. 29
3.14 n=252. B= (U1 ®14Vo ® Ky) u (/o &6V, @ Kg)l ............. 32
310 n=216. A=A @A DL] . ... .o 33
316 n=240. A=A QA DL, . . ... 35
B.17 n=144. A=16l3 P36l Pl . . . . . .. .. .. 36
B.18 n=144. Agy =9 P36l Pl6lsf. . . . . .. . ... 46
[3.19 n = 144. Grid representation.| . . . . . . ... ... L. 46
13.20 n = 360. Grid representation.| . . . . . .. ..o 48
821 n =360. Acpy =90l 40Is. . . . . . . oo 49
822 n=144. Aoy = 18l @2l p16l5.| . . . . . . ..o 49
B23 n=144. Aoy = 18 @36l P 16l5.| . . . . . . . .o 53
824 n=216. Aoy =54l B8I3P24lsf . . . . . . . ..o 53
325 n=360. A=18Ig P40l . . . . . . . .. 54
326 n=144. Agpy =36l @16ls) . . . . . . ... 55
327 n=216. Agpy =54l @ 2405 . . . . . . .o 55
328 n=360. Aqcpy =900, 4005 . . . . . . ... 56
829 n =288 Aoy =36l @32l . . . . ..o o7
830 n=144. Aoy =180 P 16ls . . . . . . . oo 59
B31L mn=216. Aoy =54l @83 . . . . . .o 59
4.1 n =4500. Acpyr = 11250, @00 @ I8O0Lsf . . . . . o o o oo oo 63

7



LIST OF FIGURES

4.2 n = 4500. Boy = 225005 @ 150005 @ 3615 @ 900I5.| . . . . . . . .. .. .. 64
[4.3  Times (in seconds) to find the next solution with CS Algorithm. | . . . . . 75
EI T =T801 . . . . oo 85
45 n=200. Acpy =050 P8lsf. . . . ..o 86
46 n=900. A; P A =451, P20I3.| . ... .. ... 90
47 n=900. A1 P Ay =220[b P36l5.|. . . . ... 91
48 n=900. A1 P A =100I3Pp365.|. . . . .. .. ... 92
4.9 n=900. Acy =225, @ 10013 P 3605, . . . . . . .. ..o 93
110 1 = 1050, Ba = {2,10,21,25,50, 1051 - « « o o o oo 97

4.11 n =6300. R4 = {3,4,9,10,20, 28,100, 140,700} . . ... ... ... ... 98




Chapter 1

Introduction

The link between music and mathematics was discovered in ancient times, a few obser-
vations being traditionally attributed to the genius of Pythagoras. He was allegedly the
first to guess the existence of numerical relationships between pitches, and to build a
musical scale through these. But this relationship was then studied by many scientists,
philosophers, musicians such as Ptolemy, Boethius, Zarlino, Galileo Galilei, Gottfried
Wilhelm Leibniz, Jean-Philippe Rameau, and Leonhard Euler. At first sight two diamet-
ric domains, music and mathematics came out to actually have many things in common.
Many connections have been discovered, some of which albeit having nowadays a long
tradition, are still offering new problems and ideas to researchers, whether they be music
composers or computer scientists. The combined study of the two disciplines can only
benefit both parts of the relationship.

The help of mathematics is fundamental in the study and understanding of music, as
in 1722 the composer Jean-Philippe Rameau wrote:

Despite all the experience I may have gained in music from being associ-
ated with it for so long, I must confess that it was only with the help of
mathematics that my ideas became clearer.

It is equally true that at times, in history, music has anticipated mathematical con-
cepts discovered only later.

In this thesis we deal with Tiling Rhythmic Canons, that are purely rhythmic con-
trapuntal compositions. Canons in music have a very long tradition; a few cases of tiling
rhythmic canons (i.e. canons such that, given a fixed tempo, at every beat exactly one
voice is playing) have also been composed. Only in the last century, stemming from the
analogous problem of factorising finite abelian groups, aperiodic tiling rhythmic canons
have been studied: these are canons that tile a certain interval of time in which each
voice (inner voice) plays at an aperiodic sequence of beats, and the sequence of starting
beats of every voice (outer voice) is also aperiodic. From the musical point of view the
seminal paper was probably the four-parts article written by D.T. Vuza between 1991
and 1993 (|30}, 32} 311, B33]), while the mathematical counterpart of the problem was stud-
ied also before, e.g. by de Bruijn ([10]), Sands ([29)]), etc., and after, e.g. by Coven and
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2 CHAPTER 1. INTRODUCTION

Meyerowitz ([9]), Jedrzejewski (|I8]), Amiot ([I]), Andreatta (|4]), etc. A thorough the-
ory of the conditions of existence and the structure of aperiodic tiling rhythmic canons
has not been established yet; we try to give a contribution to this fascinating field.

In Chapter [2| we present tiling rhythmic canons from a mathematical and algebraic
point of view, focusing in particular on their polynomial representation and reporting
the fundamental results known in the literature.

In Chapter 3|, we deal in particular with aperiodic rhythmic canons, that is canons in
which in both rhythms there is no repeated inner structures: neither the inner nor the
outer rhythm is obtained as a repetition of a shorter rhythm. From a mathematical point
of view, they are the most interesting canons since they constitute a possible approach
to solve the Fuglede conjecture on spectral domains.

If one of the sets, say A, is given, it is well-known that the problem of finding a
complement B has in general no unique solution. It is very easy to find tiling canons in
which at least one of the sets is periodic, i.e. it is built repeating a shorter rhythm.

In Chapter 4] we deal with the design of two algorithms whose purpose is to find the
complementary tiling rhythm of a given aperiodic rhythm in a certain period n.

To enumerate all aperiodic tiling canons one has to overcome two main hurdles: on
one side, the problem lacks the algebraic structure of other ones, such as those involving
ring or group theory; on the other side, the combinatorial size of the domain becomes
Very soon enormous.

The algorithms are implemented through Integer Linear Programming (ILP) model
and SAT Encoding and solve the Aperiodic Tiling Complements Problem presented in
Section [£.3]in a faster time than previously known approaches.

Using a modern SAT solver we have been therefore able to compute the complete
list of aperiodic tiling complements of some classes of Vuza rhythms for periods n =
{180,420,900}, which were up to now computationally unreachable.



Chapter 2

Tiling rhythmic canons

2.1 Musical and algebraic definition

In this chapter, we introduce the main notions about rhythmic canons in mathematics
as presented in [I1I], which we refer for a complete and exhaustive discussion of these
preliminary results.

A canon is a polyphonic musical form, born in the fourteenth century, typical of
classical music. It is a contrapuntal composition, that is, it is formed by the progressive
superposition of several voices, performing the same melodic theme, or variations of it
according to precise tonal rules. Popular culture is rich in them: consider for example
the italian popular nursery song “Fra’ Martino” (originally “Frére Jacques” or, in English,
“Brother John”).

There are two fundamental characteristics:

1. each voice periodically performs the same motif, and
2. these performances are temporally shifted.

In the following we will be interested in the case in which the motif, or pattern, is
purely rhythmic, and we can therefore imagine it performed by a percussive instrument,
disregarding the duration and pitch of the individual notes.

Musically, a rhythmic canon consists in the performance of the same rhythmic motif
by different voices, each with a different starting time. In this work we are interested
in a particular family of rhythmic canons: those in which the voices do not overlap but,
when played simultaneously, give rise to a regular pulsation, that is, in each time beat
there is one and only one active voice. These rhythmic canons are called tiling.

Since we are considering the pattern from an exclusively rhythmic point of view, and
each beat occurs only in the presence of a note, we consider a musical writing without
rests, obtained by incorporating each rest in the note that precedes it. We therefore
arrive at a first mathematical definition.

Definition 1 (rhythm). A rhythm is a subset of a cyclic group R < Z,. The order n of
the group is the period of the rhythm.
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To complete the model of a tiling rhythmic canon it remains to express mathemati-
cally the complementarity of the voices, that is the simultaneous occurring of the following
facts:

1. voices do not overlap, and
2. the execution of the canon gives rise to a regular pulse.

Let R be the rhythm of the canon and n its period. Since each voice of the canon
performs R translated over time, the i-th voice will perform R + [b;],. Assuming for
the sake of simplicity that the first voice begins its performance at time by = 0, we can
express mathematically the different entries with the following sets of remainder classes

modulo n:
Ay =R
A =R+ [b1]n
Ak =R+ [bk]m

and all of these are subsets of Z,. The two previous conditions of complementarity are
expressed mathematically in the following way:

1. A;nAj = & forevery i # j, 4,7 =0,...,k and
2. AOUAlu--~UAk=Zn.

Example 1. We observe that not all rhythms can verify these conditions: it is not always
possible to find an appropriate set of entries B = {bi}le C Zy. An example of this is
the samba rhythm S = {0,2,5,7,9,12,14} mod 16, as can be seen directly: let Ag = S
be the first voice. Since the second voice, A; = S + [b1]16, must not intersect Ay, we
necessarily have by = +1. Given these two voices of 7 elements each, only 2 elements
remain in Zg, insufficient for a third voice.

We are lead to give the following definition.

Definition 2 (direct sum). Let (G, +) be an abelian group, let A, B < G. Let us define
the application

c:AxB—G
(a,b) > a+b

We call A+ B = Im(o). If it is injective we say that A and B are in direct sum, or,
equivalently, that Imo < G is the direct sum of A and B and we write

A® B = Im(o).

Given an element c € A@® B, the unique a € A and b € B such that ¢ = a + b will be the
projections of ¢ on A and B respectively. If G = A@® B, we say that G is factored as a
direct sum of A and B, and we call G = A@® B factorisation of G.
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Clearly, if A and B are in direct sum, then ¢ : A x B — A @® B is bijective, so
[A® B| = |]|B].

We conventionally denote the elements of the cyclic group Z, with the integers
{0,1,...,n—1}, i.e. with the least non-negative representatives of the remainder classes
modulo n: {[0]n, [1]n,--.,[n — 1]n}-

The direct sum of sets, a priori, has no algebraic structure; however, if subsets A and
B are also subgroups of G, the direct sum of A and B thought as sets (see Definition
coincides with the usual direct sum between subgroups. We can therefore speak of direct
sum without risk of ambiguity. We now have all the tools necessary to define a tiling
rhythmic canon.

Definition 3 (tiling rhythmic canon). We have a tiling rhythmic canon of period n with
motif (or inner rhythm) A and set of entries (or outer rhythm) B when A, B are subsets
of Z, and A® B = 7Z,,.

We can now already give a necessary condition for a rhythm to be an inner rhythm
of a tiling canon: if A@® B is a factorisation of Z,, then |A||B| = n.

We observe that the commutativity of the addition in the cyclic group Z,, makes the
definition of rhythmic canon symmetrical in the inner and outer rhythms. What is the
inner rhythm and what the outer rhythm depends solely on the order of writing, and in
fact it is defined as:

Definition 4 (dual canon). Given a tiling canon Z,, = A@® B, the canon Z = B@® A is
called dual canon, or obtained from it by duality.

2.2 The Coven-Meyerowitz Theorem

The inner rhythm of a canon is traditionally represented by the tile of its least non-
negative representatives, as we have seen in Section We have also assumed that each
tile contains at least the element 0. Given these two assumptions, we can naturally transit
from a set representation to a polynomial representation using the following definition.

Definition 5 (characteristic polynomial). The characteristic polynomial of A < Z,, is
A(z) = Z x®.
acA

Definition [5] provides a one-to-one correspondence between the subsets of Z,, and the
set of polynomials with coefficients 0 or 1:

{A < Zn} < {0,1}[z]
A— A(x)

n—1
. _ n—1 %
{ai La; = 1}i:0 <« Z a;xT .
1=0
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Then the rhythms of a canon can be represented by the respective characteristic polyno-
mials.

For a rhythmic pattern to tile, E. Coven and A. Meyerowitz (see [9]) discovered two
conditions that are sufficient, and in certain circumstances even necessary. We discuss
their findings in full in this section utilizing the polynomial representation of rhythmic
canons.

Definition 6 (R4, Sa). Let A ¢ Z,, and ®, the d-th cyclotomic polynomial. We define:
1. Ry ={deN*:®4(x) | A(z)} and
2. Sq4={de Ry :d=p“ pprime,a e N*}.

Since cyclotomic polynomials will play a fundamental role in this discussion, let us
recall the main properties which will be used in the sequel without mention.

Proposition 1. Let p be a prime and n = p{'ps?---pSn, with p; prime Yi = 1,...,n,
then:

1. ®p(x) =14z +2>+ - +aPL;

a]—1 an—1

2. @p(z) = Bpyop, (aPr P )
3. if n > 1 is odd, then ®op(x) = @, (—2x);

O, (z) <= pln

4. D, (aP) = {

)
O, (2)Ppr(z) <= pim;

0 == n=1
«

5 @,(1) = p <<= n=p

1 otherwise;

6. let m be a positive integer and let k = max{d | m : (d,n) = 1}, then, taking m = hk,
we have:
(I)n(xm) = 1_[ q)dn(x)'
djm,h|d

In particular, if (m,n) = 1 we have: ®y(a™) = [ 4,, Pan(@).

Actually, Definition [6] can be given also for A < Z; let us simplify the exposition
of Coven and Meyerowitz slightly, since for any other polynomial congruent with A(z)
mod (z™ — 1), the subset of the divisors of n in R4, which are the indices of the relative
cyclotomic factors, does not change and Sy is always composed of divisors of n.

Example 2. For example with A = {0, 25, 28, 35,40, 55, 65, 68, 80, 95, 108, 120, 125, 135,
148,155, 160, 165, 188,195} we obtain R4 = {2,8,25,50,200} and S4 = {2,8,25}. The
presence of all the ®4, with d | n, in A(x)B(z) implies that
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e 5S4 U Sp is the set of all prime powers dividing n, and
e R4 U Rp is the set of all divisors of n (excluding 1).
We can now state the Coven-Meyerowitz theorem.

Theorem 1 (Coven, Meyerowitz). Let us consider the following conditions on A (and
on its characteristic polynomial A(x)).

(T1): A1) = [Tpnes, P
(T2): If pi*,...,p%m € S are powers of distinct primes, then p{*---p%m € Ry.
Then,

1. if A satisfies (T1) and (T2), then A tiles;

2. if A tiles, then A satisfies (T1);

3. if A tiles and |A| has at most two prime factors, then A satisfies (T2).

Remark 1. In their paper [9] Coven and Meyerowitz give condition (T1) in the following
form:

A1) = ] ®pe(1).

prESA

If p is prime, by Proposition 1| @, (1) = p Va > 1, therefore the two forms are equivalent.

We now report some lemmas, as presented in [9] and proved in detail in [II], which
we will use in the proof of Theorem [I, but also to prove some results in Chapter [3} the
polynomial approach, in fact, provides a few new important properties.

Lemma 1. Let A(x), B(z) € N[z] and n € N*. Then

n—1
A(z)B(z) = 2 ¥ mod (z" —1) (T0)
k=0

if and only if

1. A(z), B(x) € {0,1} [z], so they are the characteristic polynomials of rhythms, resp.,
A and B, and

2. A@B ={ri,...,mp} € Z, withr; # r; mod n for alli,j€{1,...,n} with i # j.
Proof.

== : Let A and B be the sets of exponents that appear, respectively, in A(z) and B(z),

then
A(z)B(x) = Z ngx® Z nya’ = Z npxk

acA beB ke A+B



8 CHAPTER 2. TILING RHYTHMIC CANONS

where ng = >}, .y anp. For every k € A+ B we consider ke {0,...,n— 1} such
that k = k£ mod n, then, reducing A(x)B(z) modulo z" — 1, we have:

Z gt =1+ z 422+ 2"
keA+B

therefore, necessarily,

(a) ng =1 for each ke A+ B,
(b) n=|A+B|=|A+ B|.

Therefore

1. by (a), A(z) and B(z) are polynomials with coefficients in {0, 1} and the sets
A and B are in direct sum, and

2. by (b), A® B is a complete set of representatives modulo n.

<= : We have
(A® B)(z) = A(z)B(z) = {r1,...,mp}(x) = 2™ + 2" + .- + 2™

The classes [r1]n,- .., [rn]n are all distinct, therefore there exist ko,...,k,—1 € Z
such that:

0= Tio —kon

1= i1 —kln

n—1=mr;, |, —kp_in

and therefore

n—1
A(z)B(z) = gFon 4 glrkin g gn=lfhaoin — Z ¥ mod (z" —1).
k=0

O]

Lemma 2. Let n € N* and let A(z) and B(x) be the characteristic polynomials of
rhythms, resp., A and B. The following statements are equivalent:

1. A(z)B(z) = Y72 2F mod (2™ —1);

2. (a) n=A()B(1) and
(b) for everyt | m, witht > 1, we have that ®(z) | A(x)B(x).

Proof.
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1 = 2: Condition 1 implies that there exists a polynomial ¢(x) € Z[x] such that

n—1
A(x)B(x) = ) 2" + g(a)(2" — 1)
k=0
Then
(a) A(1)B(1) =n and
(b) since " —1 = (x — 1) > 7_ Oa: = ®1(z) [ [¢|n P+(z), we have that

t>1

A(z)B(xz) = (1 + q(z)(x — 1) 2

and therefore, for every ¢ | n such that t > 1, we have that ®;(z) | A(z)B(x).

2 = 1: Condition 2 implies that A(z)B(z) = q(z ) D Oxk Moreover, A(1)B(1) = n, so
q(1) = 1. Then, setting g(x) = >/*, a;x’, we have that

(z)
wo-(500) (59
(5) () e

n—1
=q(1) Z ¥ mod (z" —1)
k=0
n—1
= Z ¥ mod (2" — 1),
k=0

since o' Y p_g 2F = 070 2% mod (2" — 1).

Remark 2. By Lemmall] A@® B = Z, if and only if

n—1
A(z)B(z) = Z ¥ mod (2" —1).
k=0

Moreover, we infer that, for any ¢ | n, with t > 1,
Oy(z) | A(x) or Oy(z) | B(x)
using Lemma [2 and the fact that the cyclotomic polynomials are irreducible in Z[z].

Now we can prove part [T] of Theorem [I]
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Proof of Theorem[]|[1 : Let us define a polynomial B(z) as
B(z) = H o (xt(qﬁ)) ,
qPesS
where S = {qﬁ e lcm(SA)}\SA and ¢ (qﬁ) = max{d : d | lem(S4) and gcd(d, ¢?) =
1}. By Proposition |1, we have that
D5 (g:t(q’g)) =, (xt(qg)qﬁ_l> € {0, 1}[x].

Hence B(z) € N[z].
Let s € N*\{1} satisfy s | A(1)B(1) and consider its prime factorisation s =
pit -+ pp¥. We have 2 possibilities:

1. pite SaVi=1,...,k; by (T2), ®4(z) | A(x);

2. pi* ¢ 84 for some i =1, k; @y (wt(p?i>> | B(z), s/p{ is a factor of ¢ (pf"),
and, by Proposition P, (z) | P o <J;t(p?i)>_

Then, by Lemma [2] condition (T0) of Lemma [1] holds, that is

n—1
A(z)B(x) = Z 2% mod (2" —1);
k=0

therefore B(z) is the polynomial associated with the set B of its exponents, and A® B
is a complete set of representatives modulo A(1)B(1); in particular, A tiles. O

Part (2) of Theorem [I| follows from the following lemma.

Lemma 3. Let A(x),B(x) € {0,1}[z], n = A(1)B(1), and S = {r7 : vV | n}. If
Vt € N*\{1} such that t | n we have that ®,(z) | A(z)B(x), then

1 AQ) = Tlyes, (1) and B = Tyses, B (1);
2. 58=854uSB.

Proof. Since for every ¢t | n, with ¢ > 1, we have that ®;(z) | A(x)B(x), then S <
®,5(1). Thus

Sa v Sp. Clearly A(1) = [[acs, Ppe(1) and B(1) =[] ses,
n=AB1) = [] @) [] ®0) =[] 2m(1) =n.
preSH qPeSp rvesS

The last equality follows from Proposition [I Hence,
L A(N)BQ) = [ecs, Ppo(1) [ [ 5es, Pgs(1), which implies that

A = ] @pe() and B = ] ®4s(1);

preSa qPeSp
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2. [lpees, Pro(1) [ psesy Pqs(1) = []0es Prr(1) and therefore Sy U Sp = S and
SA M SB = @
O
We can now complete the

Proof of Theorem [1][3 Since A tiles, by Lemmal [T} there exists B < Z,, such that A and
B verify condition (T0) in Lemma[I} therefore, by Remark 2, A(z) and B(z) verify the
hypotheses of Lemma [3| In particular A verifies (T1) condition. O

Example 3. We observe that the converse of Theorem does not hold, that is, con-
dition (T1) is not sufficient for A to tile. For example, let us consider the rhythm

A=1{0,1,3,4,6,7}.
A clearly does not tile and its characteristic polynomial is
Al)=1+z+a2>+ 27+ 25+ 27 = 1+ 2)(1 + 2% + 25) = () Dy ().

S = {2,3%}, then A verifies condition (T1):

A1) =6=2-3=[]»

PES A

For the proof of the third part of the Coven-Meyerowitz theorem, see [9].
The tiling property is invariant under affine transformations.

Lemma 4. Let A c N be finite. For everyt e Z and k € N we have:
A tiles <= kA +t tiles.

Proof. Because of the translation invariance of the tiling property, it is sufficient to show
that
A tiles <= kA tiles.

= Since A tiles, there exists C' € Z such that A@® C = Z is a tiling. We therefore
have kA @ kC = kZ, and consequently the tiling

Z=40,....k—1}®kZ=1{0,....k—1}®kADKC = kA® ({0,...k — 1} @ kC).

<= Since kA tiles, there exists C' c Z such that kA® C = Z. Setting Cy = {ce C :
¢ =0 mod k}; we have that
kEA® Cy = kZ.
c It is clear;

2 For every kz € kZ < Z, kz = ka + ¢, consequently ¢ € Cy.
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Then A® Cy/k = Z is a tiling.

O]

The next two lemmas establish that also conditions (T'1) and (T2) are invariant with
respect to affine transformations.

Lemma 5. Let A = N be finite and n € N, let us set A’ = A +n. We have that:
1. A(z) satisfies (T1) if and only if A'(x) satisfies (T1),
2. A(z) satisfies (T2) if and only if A'(x) satisfies (T2).

Proof. Tt suffices to observe that |A| = |A| and A'(z) = 2" A(x), therefore for every
cyclotomic polynomial ®4(z) we have that ®4(z) | A(z) < P4(z) | A'(2). O

Lemma 6. Let Ac N and k € N. Let us set A = kA, we have:
1. A satisfies (T1) < A satisfies (T1),
2. A satisfies (T2) < A satisfies (T2).
Proof. Let us start with one remark. Let £ = p prime, then we are going to prove that
Si= {pt:p*e S} u{q® € Sy q prime # p}.
A(x) = A(2*), therefore:
Rj=pRau{ne Ra:pin}.
In particular S; = {r” € R : r prime} and
1. " epRy «— r=pand " le Ry
2.r"e{neRy:ptn} < r +#pandr? € Ry hence the thesis.
Using the previous remark we prove separately the two statements of our theorem.
1. We divide the proof of this first statement into cases:

(a) If kK = p prime, the thesis follows from the remark.

(b) If k = p®, by iterating the remark we have that
Si= {p*"7:p* e Satu {qﬁ € S4 : ¢ prime # p},

and the thesis follows, as in the previous case.
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(c) Let k = pi*p%™ we prove that
n
Si= U{p?Jr% :p¥e Satu{q’® e Sa:qprime # p;Vi}.
i=1
In fact just consider
n
Sq = U{pll €S} ui{q’ e Sa:qprime # p;Vi}.

i=1

and iterate the previous remark, since at each step the multiplication by the
first p; modifies the set obtained in the previous step only the exponent of p;,
increasing it by 1. Again the thesis follows.

2. Let us consider the case k = p prime and define

;. Jpon ifp|n
n = .
n ifptn
We have:
neRA < n/ERpA.
Let p{'p3? - - - pi* € N be powers of distinct primes. By remark we have:
p?i € SA = (p?i)’ € SpA.
a, a2

Then, since (p{*p5? - - - p*) = (P7*)'(P52)" - - - (p*)" we have the thesis. The general
case follows by iterating the previous case for each first p | k.

O

We now lay the foundations for the next chapter, introducing the definition of periodic
sets.

Definition 7 (periodic set). Let (G, +) be an abelian group, 0 € G the identity. A set
A c G is periodic if and only if there exists an element g € G, g # 0, such that g+ A = A.
In this case, A is also called periodic module g € G.

Definition 8 (basic form). The basic form of A c 7Z, is the smallest (for reverse lexico-
graphic order) circular permutation of the set of consecutive intervals in A,

A(A) = (az —ar, a3 —a,...,0 — g—1,01 — ak)

where 0 < a1 < ag < ...ap < n are the elements of A, considered as numbers in [0, n—1].
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Chapter 3

Vuza canons

3.1 Aperiodic factorisations

The definition of a tiling rhythmic canon as a factorization of a finite cyclic group with two
of its subsets was given in Chapter [2] Effectively, the study of these musical structures
comes under the broader subject of factorisations of an abelian group with n subsets.
As pointed out in [II], “when the Hungarian mathematician G. Hajos inquired in 1950
([15]) if we can derive that A or B must be periodic given a factorisation G = A@® B of
an abelian group with two of its subsets, this topic was brought to the attention of the
mathematical community. He answered the question in the negative in the same article.

Without being aware of Hajos” work, Nicolaas Goovert de Bruijn, a Dutch mathe-
matician, posed himself the identical question in 1950 and conjectured a positive solution
(see [10]). Despite this first mistake, de Bruijn was later among the scholars who made a
decisive contribution to the characterisation of the groups for which the answer to Hajos’
question is positive.

Several examples of groups for which the answer is affirmative had been indeed ex-
hibited since 1941 in other contexts and up to 1957 others appeared, in articles by Hajos
([14], [15], [16]), Reédei (J26], [27]), de Bruijn ([8], [10]), and Sands ([28], [29]), and the
aforementioned Hajos’ result on the groups for which it is negative was generalised, ar-
riving at a complete characterisation in both cases.

Subsequently, after a long hiatus, between 1991 and 1993 a long paper in four parts
by the Romanian mathematician Dan Tudor Vuza (see [30], [31], [32], and [33]) was
published, dedicated to the formalisation of a particular class of rhythmic canons: the
RCCMCs (Regular Complementary Canons of Mazimal Category). The nature of Vuza’s
work is exceptional since he, completely ignoring the results of Hajos, Rédei, de Bruijn,
and Sands, proves many of the theorems contained in the cited articles.”

We will take a quick look at the findings immediately. Let us begin with some
definitions.

Definition 9 (k-factorisation). Let G be an abelian group. A k-factorisation of G is a
direct sum factorisation of G with k subsets of G. A k-factorisation G = A1@A>®- - - DAy

15
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is said to be periodic if there is an index i € {1,2,...,k} such that A; is periodic. A
non-periodic k-factorisation is called aperiodic.

Definition 10 (k-Hajos group). Let G be an abelian group. G is k-Hajos if all its
k-factorisations are periodic. G is non k-Hajos if it is not a k-Hajos group, that is, if
aperiodic k-factorisations of G exist. For k = 2, we will simply call them Hajds and
non-Hajos groups.

Definition 11 (aperiodic canon). An aperiodic canon is an aperiodic 2-factorisation of
a cyclic group. The order of the cyclic group is the period of the canon.

We observe that the aperiodic canons exist only for non-Hajos cyclic groups. We also
note that an aperiodic canon is a rhythmic canon Z, = A @ B in which both the inner
rhythm A and the outer rhythm B are aperiodic.

The following proposition establishes a polynomial criterion for the periodicity of a
given rhythm (see [I1]).

Proposition 2. A set A c Z,, is periodic modulo k | n, if and only if

" —

1
| AG),

If we indicate the set {d € N | d | n} by div (n), Proposition |2| can be restated as:

Proposition 3. A set A c Zy is aperiodic if and only if for all k | n, k # N, we have

n

-1
1 [ A),

that is, if and only if for all k € div(n)\{n} there exists d € div(n)\div(k) such that
Dy(x) | A(z).

Proof. By definition, A c Z,, is periodic modulo k if and only if K+ A = A, and we have
the following chain of double implications:

k+ A=A <« zFA(z) = A(z) mod (z" —1)
= (wk - 1) A(z) =0 mod (z" —1)
— " —1| (Z‘k—1>A($)

" —1

( A(z)

O

Theorem 2 (Tijdeman). If A®B = Z,, is a thythmic canon, then also kKA®B = Z,Yk €
N* such that (k,|A|) = 1.

For the proof, we need the following.
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Lemma 7. Let A,B < N be finite subsets, and A(x), B(x) be the associated polyno-
mials, n = A(1)B (1), and p be a prime such that p t A(1). If A(x)B(z) = Ap(z)
mod (z" — 1), then

A(zP)B(z) = Ap(xz) mod (2" —1).

Proof. We consider the congruences:

A(2") B(z) = (A() Bz) mod p
— (A()""" A(2)B(z) mod p
= (A(2))"" An(2) mod (2" —1,p)
= (A(1)" ' Au(a) mod (2" —1,p)

Now let r(x) = ?:_01 r;z" be be the remainder of the division of A (2P) B(x) by ™ — 1;
for what has been said r(x) = A,(x) mod p, i.e. 7, = 1 mod p, and being r (1) =
A(1)B(1) =n we have r; = 1 for each ¢ = 0,...,n — 1, that is the thesis. O

Proof of Theorem[3 By hypothesis, A(z)B(z) = A,(z) mod (2™ —1). First of all we
observe that for every h € N, (hA) (z) = A (z"), in particular (hA) (1) = A(1). Consid-
ering the factorisation of k, k = p{'p3?...p%m, for each i = 1,...,m, (p;,|4]) = 1. We
can therefore iterate the application of Lemma [7] and we obtain

(kA) (z)B(z) = Ap(x) mod (2" —1),

that is (kA) ® B = Zy,. O

3.2 Vuza canons

An exhaustive construction method for aperiodic tiling rhythmic canons is not known to
date; the first method to find some of them was provided by the following result (see [15]
by Hajos, Theorem 1 in [I0] by de Bruijn, and Proposition 2.2 in [30] by Vuza).

Theorem 3 (Hajos, de Bruijn, Vuza). Let n = pinipangns € N such that
1. p1,n1,p2,n2,n3 > 1 and
2. ged (ping, pang) = 1.

Then Z,, admits an aperiodic tiling rhythmic canon.

We give the proof of this theorem showing how to construct an aperiodic tiling rhyth-
mic canon only for particular choices of factors A and B of Z,,, which will be useful in
the sequel, using the elegant factorisation suggested by Franck Jedrzejewski ([18]).
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Theorem 4 (Hajos, de Bruijn, Vuza, Jedrzejewski). In the hypotheses of Theorem@
an example of tiling canon of Z, with two aperiodic subsets is given by the following
construction. Indicating with Iy, the set {0,1,... &k — 1}, let us call:

Ay = nzpinily, Ay = nzpanally,
U1 = ngpiningly, Us = ngpangonilly,,
Vi = ngnaly, Vo = ngnily,
K, = {0} Ky ={1,2,...,n3 —1}.
Then taking
A=A A

B=U®Ve@K)u U@V @ K>)

we have the aperiodic rhythmic canon Z, = A® B.
Proof. First we list the general results that we will apply.

1. Yk | n, [} is a complete set of representatives of Z,,/kZ,, that is

Ly, =1 ® kZp,
(which, in fact, is the trivial canon).
2. VkeZ* it Z, = S@®T, then kZ,, = kS ® kT.
3. IfZ, = S®T then Z, = kS@®T for every k such that (k,|S|) = 1.

The first two results are trivial, the third is Theorem [2]
So let n = p1paningng as in the statement. We look for a factorisation Z,, = A® B
with A and B aperiodic. Let us start with the trivial canon:

Ly =1}, @ kZy,.
First of all, applying [3] we have the following factorisations of Zy:
1:Zy, =1, ®ni1Zy,
= ponally, ® N1y,
2: Ly, =1, ®noZy
= p1n1ly, ® noZy,
Then, applying [1] and [2] alternately, we have the following factorisations of ngZ,:
1: n3Z, = n3panal,, @ nsniZy,
= ngpanally, @ nznily, @ ngnipi1Z,
= ngpanally, @ nanily, ® ngnipily, @ ngnipineln;
2 1 n3Zy, = n3p1nil,, ® nsnoely,
= ngp1nily, @ nynaly, @ ngnopeZy,
= nzp1nil,, @ ngnaly, © nynopall,, @ nznopongZy,.

Then the two factorisations become:
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1. ngZy, = A® (U @ Va), and
2. n3Zp =A® Uz ® V).
Going back to the initial factorisation, we obtain
Ly =1y ®n3ly = n3ly w{l,...,n3 — 1} ®nsZ,

where U indicates the disjoint union; we use the first and the second factorisations for
the first and the second instance of n3Z,, respectively, that is:

:A®((U1@V2)u{l,...,ng—l}(—B(Ug(—B‘/i)).
Then taking
B = (U1®‘/2)|—|{17an3_1}®(U2®V1)7

we have the canon Z,, = A® B.
We still need to prove that A and B are aperiodic. Let us start with A:

$n3p2n2n1 _ 1 xn3p1n1n2 _ 1

A(w) = By (@97272) A, (29) =

ghspen2 1 gnspini ]

We use Proposition |3} we fix any h € div (n)\ {n} and look for a d € div (n) \div (k) such
that ®4(x) t A(x).
We have the following cases:

1. ngpana J( h and Dz pons (SU) TA(x)%
2. napini th and ®pypin, () 1 A2).

There are no other possibilities, in fact, if absurdly we had nspang | h and ngpin; | h,
then h = angpang = Bnsping and therefore apang = Bping. Since (ping, peng) = 1, it
would follow that o = p1ny and 8 = pans and therefore h = n, which is absurd.

Let us move on to B:

B($) = (Ul (‘BV2) (.T) + (3; 4 72 4ot xngil)(UQ @Vl)(x)
= Ay, (M)A, (x%) + 2 Ay 1 (2)A, (27372) A, <xﬁ>

P ] g™ — 1 N ( )x"3p2"2 -1 2"-1
=S TAp,—1\T
xnant — 1 :E% 1 3 rnanz — 1 xﬁ -1

As we did for A, given any h € div (n)\ {n}, we look for a d € div (n)\div(h) such that
®,4(x) 1 B(z). Let us consider the cases:

1. ngpanang th and (I)n3p2n2n1 (:B) JfB(:L‘) since q>n3p2n2n1 (l') | % but <I>n3p2n2n1 (1') )f

xP2 —1
z™3P2n2 1 g"—1 |
2By 1 (1) Gz ~ s
xPl —1
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2. ngpining f h and Ppupinin, () | B(x) (symmetrically to the previous case).

There are no other possibilities, in fact, if absurdly we had ngpanon; | h and ngpining | h,
then h = angpangony = Bngpinine and therefore apy = Bp1. Since (p1,p2) = 1, it would
follow a = p; and B = po and so h = n, which is absurd.

O

Remark 3. From now on, given p1, ni, p2, ne, and ns, we will denote by A, As, Uy,
Us, Vi, and V3 the sets so called in Example [4]

We therefore know that there exist aperiodic tiling rhythmic canons of period n =
pinipenens, as in the hypothesis of Vuza’s Theorem [3] The following result explicitly
establishes which are the periods not included in the previous theorem.

Theorem 5 (Fidanza). Let

o V= {neN:n=pnipyngns with (pini,pen2) =1 and p1,p2,n1,n2,n3 > 1}, the
set of natural numbers which satisfy the hypotheses of Vuza’s theorem, and

o H = {p“,po‘q,p2q2,pqr,p2qr,pqrs :aeN, p,q,r, s distinct pr’imes},
then N* =V U H.

Proof. We set V' = N*\V and H' = N*\H: it is sufficient to prove the two inclusions
H < V' and HE < V.

YV < H' : There are p1, pa, n1,ne € N* Vo € V with (p1n1,paeng) = 1 and pinipane | z, and
this property is not verified by the elements of H of type p® and p%q, with p,q
primes and « € N. Moreover, there are pi,ps,ni,ng,n3 € N* Vo € V such that
pinipanens | z, and this property is not verified by the remaining elements of H,
which are those of type p?¢?, pqr, p*qr and pgrs, with p, ¢, r, s primes.

H V@ Let x = p{ps>.. ppt e HC, with p1,pa, ..., pp distinct primes. We consider the
different cases, according to the number A > 1 of the primes that divide x.
h=1:x=pf" €M so this case is impossible.
h=2: We have a; > 3 and as > 2 (or vice versa), so it is sufficient to consider
-2
(p1n1, pana, n3) = (P%,szap(fl )
h =3 : Up to a permutation of the factors, we have two cases:
x a1 =2, ag = 2and ag > 1, so it is sufficient to consider (p1n1, pang, n3) =
(p3, 52, p5?);
* a1 =3, ag = 1 and ag > 1, so it is sufficient to consider (p1n1, pang, n3) =
-2
(p%,p?p??’,p‘fl )
h=4: We have a1 + as + ag + a4 = 5 and we assume a7 = 2, so it is enough to
consider (pin1, pana, n3) = (p7",p3°p5°, py*).
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h >4 : Just consider (pin1,pang, ng) = (P71 P32, p5°pi*, ps°).

O

We observe that all the examples of rhythmic canons encountered so far are not
aperiodic, since their period is too small: the minimum period necessary for an aperiodic
tiling rhythmic canon is 72, for which (p1,n1,p2, ne,n3) = (2,2, 3,3, 2).

Example 4. Theorem [4 gives the following factorisation of Zry:

A = ngpinil,, ® nzpanally,
~18{0,1} ®8{0,1,2}
— {0,8,16, 18, 26, 34}

B=(Ui@V)u{l,....ns—1}) @ (U@ W)
= (ngpininaly, @ nanily, ) u{l,...,ng — 1} @ ngnall,, @ nznipenaZy,
= 4{0,1} @ 24Zs L {1} ®6 {0, 1,2} @ 36Z1o
— {0,4,24,28,48,52} L {1} @ {0, 6,12, 36, 42, 48}
= {0,1,4,7,13,24, 28,37, 43, 48,49, 52} .

We observe that the aperiodic factorisation constructed in Theorem [ is symmetric with
respect to p1ni and ponsg, therefore as outer rhythm we can also consider

B = UeVi)uil,...,ns— 11 @ (U, ®Va)
= ngnallp, @ nsnipaneZy L {l,...,n3 — 1} @ nanil, nznopiniZy,
—6{0,1,2) @ 36Zm L {1} ®4{0,1} ® 24Z1s
— {0,6,12,36,42,48} L {1} @ {0, 4, 24, 28, 48, 52}
— {0,1,5,6,12, 25, 29, 36, 42, 48, 49, 53} .

“Z7o = A@® B’ is in fact the factorisation shown by Laszlo Fuchs in Abelian Groups,
and taken up by the Parisian mathematician Francois Le Lionnais, who inserts 72 in Les
Nombres Remarquables precisely because le groupe cyclique & soixante-douze éléments
se décompose sous la forme S + T non-périodiques".

The aperiodic canons with periods 72, 108, 120, 144, and 168 have been completely
enumerated by Vuza [30], Fripertinger [12], Amiot [2], Kolountzakis and Matolcsi [21].

Many other ways of constructing aperiodic tiling canons are possible, see for example
de Bruijn ([10]), Vuza ([30]), Fidanza (|I1]), and Jedrzejewski ([18]). These methods fall
into a category treated by F. Jedrzejewski (Theorem 14 in [19]).
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In the next section, after briefly showing the two best known graphic representations
used for tiling rhythmic canons, we introduce a new diagram representing the lattice of
the cyclotomic factor indices of the characteristic polynomials of the canon.

3.3 Lattice representations

There are several ways to represent graphically a rhythmic canon. The main ones are
the circular representation and the grid representation.

Figure shows the circular representation (also called Krenek diagram) of Z,
with n points equidistant along a circumference, starting from the pole and proceeding
clockwise. A rhythmic pattern is represented by the polygon in such circumference whose
vertices are the elements of the pattern, in our case, {0,1,5}. The other voices are added
by rotating the pattern as indicated by the elements of the outer rhythm.

In Figure the inner voice is represented with a sequence of black boxes in a row
of length n. The outer voice is represented by the starting black box in each row. This
is the grid representation, also called TUBS (Time Unit Box System).

Let us now introduce a new type of representation of canons: a lattice representation
through a Hasse diagram. In our context, we will call lattice representation of a rhythm
the graphical representation of the divisors of the period of the canon, which can be
considered a poset under the divisibility relation. For this poset, any edge in the diagram
is such that the number below divides the number immediately above. In this diagram,
we highlight the vertices representing the indices of the cyclotomic polynomials dividing
the characteristic polynomial of the rhythm and the edges connecting them.

The lattice representation of a rhythm can tell us a lot about its structure. As a
notable example, one can easily see that a rhythm is periodic if and only if its lattice
representation contains a whole hyperplane (parallel to all axes but one) passing through
the point corresponding to n. This is a very simple geometric (graphical) criterion that
will prove valuable later. We have chosen to represent with the Hasse diagrams the
rhythms of the aperiodic tiling rhythmic canons enumerated with periods < 168 whose
sets R4 do not include the index n.

Figure 3.1: Graphic representations of tiling rhythmic canons.

0
8 1
01 2 3 4 5 6 7 8
7\ ¥ 2
6 3
S 4
(a) Krenek (b) TUBS
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Figure 3.2: n = 72. Agpy = 181 @ 8l5.

Sa = {2,9}. #B = 252.

Figure 3.4: n = 120. A = 301, @ 8l3.

Sa = {3,4}. #B = 18.
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Figure 3.5: n = 120. A = 30I; & 8.

Sa ={4,5}. #B = 20.

Figure 3.6: n = 144. Acyr = 18I, @ 161s.

Sa = {3,4}. #B = 36.

Figure 3.7: n = 144. Acp = 3613 @ 1613.

Sa = {3,8}. #B = 8640.
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Figure 3.8: n =144. A1 ® As ® Az = 36, @ 1613 P As.

Sa = {2,3,8}.

Sa ={3,4,8}.

Figure 3.10: n = 168. A = 42l @ 8l.

Sa = {3,4}. #B = 54.
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Figure 3.11: n = 168. A = 42[, @ 8I;.

Sa ={4,7}. #B = 42.

3.4 Extended Vuza canons

We now give a first result that refines Jedrzejewski’s one, lifting the hypothesis that
p1 and po are prime and proving that B is aperiodic if n3 satisfies a simple arithmetic
constraint (see [23]).

Theorem 6. Let n = pinipansng € N such that:
1. p1,N1,p2,N2,N3 > 17'

2. ged (pin1, panz) = 1;
3. if ng is not prime, there is no prime q such that q | ng, but q } pinipane.

Let H be the subgroup H = n3lly nipon, 0f Zn and let K be a complete set of cosets
representatives for Z, modulo H such that K is the disjoint union K = K1 u Ko. Then
the pair (A, B) defined by

A=A A
B=U10VWoK)u(Us®V:®Ky)

s an aperiodic tiling rhythmic canon of Z,,.

Proof. The proof that A @ B = Z, and that the set A is aperiodic is the same as in
Vuza (Proposition 2.2 in [30]). We are left to prove that B is aperiodic. Consider the
characteristic polynomial B(x):

gnapim 1 gn 1 gnavanz ] gn 1

B(x) = Ki(z) +

xn3nt — 1 ghapininz _

KQ(J))

xn3n2 — 1 gpnap2neni

Given any h € div (n)\ {n}, we look for a d € div (n)\div (h) such that ®4(z) t B(x).
Let us consider the following cases:
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Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =
541, @ 2415 and B = (1081 @ 1815 @ {21,43,122,167}) u ( @ {0,106}).

1. if ngpangny { h, then @poponon, () 1 B(z) since

" —1
Drspanan; (2) | Zrapinine — |

but
gnapmz 1 gn

Prapanan, (T) £ Ky (z).

xnh3n2 — 1 gphap2neni _ ]
In particular, ®,,pon0n, () ¥ Ko(z) by Lemma 4 of Rédei’s paper ([27]).
2. if ngpining f b, then @y nin, (z) | B(z) (symmetrically to the previous case).

There are no other possibilities: in fact, if we had ngponsny | h and ngpining | h, then
h = anspangni = Bnspining and therefore apy = Bp;. Since ged (p1,p2) = 1, it would
follow that o = p; and 8 = po and so h = n, which is a contradiction. ]

Example 5. Consider n = 216; let p1 = 3, n1 = 3, po = 2, no = 2, and ng = 6. Theorem
[6] ensures that, defining

A = 541, @ 2415
B = (1081, ® 1813 @ {21, 43,122, 167}) L (7213 @ 121, ® {0,106}) ,

A@® B = Zs16 and (A, B) is an aperiodic tiling rhythmic canon.

In a generalisation of Theorem [6] rhythm B is the disjoint union of three sets, one
being periodic both modulo n/p; and modulo n/ps.

Theorem 7. Let n = pynipanang € N such that:
1. p1,N1,pP2,N2, N3 > 17
2. ged (piny, pang) = 1;

3. if ng is not prime, there is no prime q such that q | ns, but q } pinipans.
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Let H be the subgroup H = n3lp, nypony 0f Zn, K be a complete set of cosets representatives
for Z,, modulo H such that K is the disjoint union K = Ky 1 Ko 1 K3 with Ky, Ko #
and W = ngningly,,,. Then the pair (A, B) defined by

A=A @A

B=U@Ve@K)uU®dVi® K) u(WeKs)
s an aperiodic tiling rhythmic canon of Z,,.

Proof. The only case we need to consider is K3 # ¢J (notice that this is possible only if
n3 > 2). Moreover, the case where ng is prime is very simple and we will omit its proof.
We already know, from Theorem [3] that A is aperiodic; B is aperiodic too, since

B(z) = Uy (2)Va(x)K1(x) + Us(x)Vi(2) Ko () + W(x)K3(x)

and the cyclotomic polynomials ®,,p,non, and ®pup 0,0, divide exactly 2 of the sum-
mands on the right hand side.
We now prove that A@® B = Z,: to this aim we make use of the following facts,
proven by F. Jedrzejewski (Theorem 14 in [19]):
AT+ U +Vo=A1+U; + Uy
Ao+ Uy + V4 = Ay + Uy + U,

By an easy check , we see that
Ui + Uz = ngning (p1ly, + pally, ) = ngninaZy,p, = W,
and |Up||Us| = pop1 = |W|. This means that
U,eUs; =W.
We obtain that
A+B=(A1+A)+((Ui+Va+ K)u U+ Vi + Ko) u (W + K3))
= (A1+A+U1+Vo+ Ky)uw (A + As+Us+ Vi + Ko) L
U (A 4+ A+ W + K3)
(A1 + A+ U1+ U+ K1) u (A1 + Ay + Uy + Uy + Ko) U
LJ (A1+A2+U1+U2+K3)
=A1+A2+U1+U2+(K1I_IK2I_IK3)
=A1+ U + Ay +Us + K.

Again, an easy computation shows that
(Al + Ul) + (A2 + UQ) = n3p1nlﬂpzn2 + n3p2n2]1p1n1 = n3]1p1n1p2n2 =H

and so
A+B=H+ K =17,.

Moreover, since |A||B| = n = |H||K|, the sum A + B is direct. O
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Figure 3.13: n =216. B= (U1 ® Vo ® K1) u ( @ Ko) u (V@ Ks).

Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =
541, @ 2415 and B = (1081, @ 1815 @ {21,43}) L ( @ {0,106}) w ( @ {122,167}).

Example 6. Let us go back to n = 216 with the same choices of p1, ni, p2, no, and ns.
By Theorem (7} we find a new aperiodic tiling rhythmic canon (A, B) defining

A = 541, @ 2415
B = (1081, ® 1815 @ {21, 43}) L (72I5 ® 121, @ {0, 106}) L (3615 ® {122, 167})..

The second generalisation of Theorem [6] widens the definitions of sets A;, Ao, V1, and
V5. We precede it with a useful lemma.

Lemma 8. Suppose that a subset S S Z,, is periodic of period m | n, i.e. S+m =5,
and fori=0,....,k—11let S; ={a€ S:a=1i mod k} where k is a divisor of m. Then
for each i also the sets S; are periodic of period m.

Proof. It is sufficient to observe that since m is a multiple of k£ the remainder classes
modulo k are invariant by the translation by m, hence also S; + m = S;. O

Theorem 8. Let n = pynipansng € N such that:
1. p1,n1,p2,n2,n3 > 1;
2. ged (pin, pang) = 1;
3. if n3 1s not prime, there is no prime q such that q | n3, but q f pinipans.

Let H be the subgroup H = n3ll, nipony Of Zp, and K = Ky u Ky (with K1, Ko # ) be
a complete set of cosets representatives for Z, modulo H. Take
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o Ay as a complete aperiodic set of coset representatives for Zip,n, modulo nalp, ;

o Ay as a complete aperiodic set of coset representatives for Zy,n, modulo nily, ;

. 1711, . .,f/'lj as complete aperiodic sets of coset representatives for Zp,n, modulo
pQH’ru ;

° ‘721,...,172}’ as complete aperiodic sets of coset representatives for Zp n, modulo
lenZ'

Set Kj = K u--- U K{ and Ky = K} w1 KB, where K3 = {kﬁf*l“,...,kif} are
non-empty subsets of K, for « = 1,2. Then the pair (A, B) defined by

A = ngpim A @ ngpana Ay
B = ((Ul (—Bngnlffg@{k},...,k?}) Li-ee
ce L <U1 ®nznVy @ {kllj*ﬁl, e ,k'lKl‘}» m
L ((Ug(—Bngngf/ll@{k;,...,k;’”}) L
cee (Ug@ﬂgngf/lh@ {k?h’1+1, .. .,k‘QKz‘}))

1s an aperiodic tiling rhythmic canon of Z,,.

Proof. We have

nagpini Ay + Uy = ngping (zzh @nQ]Ip2> = nap1nillp,n, = A1 + Uy

n3p2n2A2 + Uy = nzpano (AQ &) nl]Im) = ngpgng]lplnl = Ay + Us;

Ay + ngny Vo = ngny (pﬂ[m + ‘72> = ngnilyn, = Ay + Va;

Ay + ngnaVy = ngngy <p2ﬂn1 + Vl) = nznally,n, = A2 + V1.

For the sake of simplicity, we now give the proof in the case j = 1 and h = 1. The general
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case is completely analogous. We compute
A+ B =
= (ngplnlfll + ngpgngfig) + ((Ul + n3n1‘72 + K1> LJ <U2 + TL37’L2‘71 + KQ))

<n3p1n1fil + ngpongAg + Uy + nsn Va + K1> L

L (ngplnlfll + ngpana A + Us + n3naVi + Kg)
= (Al + ngpona Ay + Uy + nsn Va + Kl) U <’I’L3p1n1/~11 + Ay + Uy + n3naVi + Kg)
= (A1 + napang Ay + Uy + Vo + K1> L (ngplnlfll + Ay +Us+ V4 + KQ)

= (Al + n3p2n2A2 +U; +U; + Kl) Ll (ngplnlzzh + A+ Uy + Uy + KQ)

=A1+A2+U1+U2+(K1I_IK2)
=A1+U1+A+Us + K
— 7.

A cardinality argument similar to that used in Theorem [7] shows that the sum is
direct.

The proof that A is aperiodic follows from Vuza’s argument (Proposition 2.2 in [30]),
as above. Assume now that B is periodic of period a: we can assume without loss of
generality that a = n/p where p is a prime number. Hypothesis [3[ now implies that a
is a multiple of ng: but then by Lemma [§ also the sets B; = B n ({i} + n3Z,) must
be periodic of period a. However, the sets B; are simply translates of U; @ nsniVa by
elements of K7 or of Us @ngngf/l by elements of Ko (remember that also the elements of
Uy and Uz are multiple of ng): on their turn, U; ® 71377,1‘72 and Uy @ ngngffl are indeed
periodic resp. of period n/p; and n/p2, but since p; and pe are coprime no common
period smaller than n is possible. A contradiction follows since we assumed both K7 and
K5 to be non-empty. O

Example 7. This time we choose n = 252; let p1 = 2, ny = 7, p2 = 3, no = 3, and
ns = 2. We can take e.g.

Ay =1{0,2,7} Ay =1{0,1,3,4,9,12,13}
Vi = {0,10,17} Vo =1, ={0,1}
Ky = {0} Ky = {1}

obtaining a new canon (A, B) where

A =284, ®18A,
= {0,56,196} @ {0, 18,54, 72,162, 216, 234}

B - <U1®14‘72®K1> L (Ug@Gfﬁ@Kg)
— ({0,84,168) @ {0, 14} @ {0}) L ({0,126} ® {0, 60,102} ® {1}).
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Figure 3.14: n = 252. B = (U; ® 14V ® K;) U ( D K>).

(a) Uy @ 14V, = 8413 @ 14{0, 1} (b)

Lattice representation of an aperiodic tiling rhythmic canon with period n = 252, where A =
{0,56,196} @ {0, 18,54, 72,162, 216,234} and B = (8413 @ {0, 14}) u ( @ {1}).

Definition 12 (Vuza canon). We call Vuza canons all the canons obtained using the
constructions described in Theorems [3] [6] [7, [8

It is possible to stretch this type of constructions even further. With the following
theorem, we improve the result of Jedrzejewski (Theorem 21 in [19]).

Theorem 9. Let n = pynipansng € N such that:
1. p1,n1,p2,mn2,n3 > 1;
2. ged (p1n, panz) = 1;
3. there is mo prime q such that q | n3, but ¢ } pinipans.

Let H be the subgroup H = n3ly 1, pony Of Zy. Suppose that L and K are proper subsets
of Zp, such that L® K = Zyp, and K = K1 u Ky, with K1,Ky # . Then the pair
(A, B) defined by

A=A10A,dL
B=(U®VvLeK)uU:eVI®K>)

1 an aperiodic tiling rhythmic canon of Z, .
Proof.

A+B=(A1+As+ L)+ (U1 + Vo + K1) u (U + V1 + K3))
=(A1+A+L+U1+Vo+ K1) uw (A +As+ L+ U+ Vi + K»)
=(A14+ A2+ L+U1+ U+ K1) u (A + Ao+ L+ U+ Uy + Ko)
=A1+ A2+ L+U + U+ (K1 u Ko)
=A1+U1 +A;+Us + L+ K.
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Figure 3.15: n =216. A= A, ® A> P L.

(a) U1 (—D V2 = 108H2 (—D 18H5

Lattice representation of an aperiodic tiling rhythmic canon with period n = 216, where A =
541, @ 2413 @12 and B = (10812 @ 18I @ {2}) w ( @ {0,4}).

The sum is direct because the computation of the cardinality leads to
| A1||A2|[U7||Us]|L ® K| = n.

Aperiodicity of A is immediate from Lemma [§ since A; + Aj is aperiodic and B is
the union of the subsets B; contained in different remainder classes modulo ng3, some of
which have a period coprime with the period of the other ones (exactly as in the previous
theorem). O

Example 8. Choosing again n = 216 and the same values for p1, ni, p2, no, and ns as
in Example [6] we set L = {0,1}, K1 = {2}, and K, = {0,4}. By Theorem 9] we get that

A=54l, @245 ® L
B = (1081, @ 1813 @® K1) L (7213 ® 12, @ K)

define an aperiodic tiling rhytmic canon.

To prove our next result we take advantage of the equivalent polynomial formulation
of tilings and of the Coven-Meyerowitz conditions (]9]).

Definition 13 (extension). Let A be a subset of Z,, and let S4 = {pa,qﬁ, . ,7“7}. We
call the extension of A any rhythm A whose characteristic polynomial is

A(z) = ®pa (:L‘ﬁ> D5 <;L“1ﬂ’“q> R i (l‘#> ,
where k), kg, ..., k, are divisors of n such that p | ky,q f kq,...,7 [ k.

Note that by definition clearly S4 = Sy.

Proposition 4. Let A® B = Z,, and let B satisfy condition (T2). Then A® B = Zy,
too.
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Proof. Since p® is a prime power, then
Do (xT) € {0,1} [z],
and so A(x) € N[z]. Moreover,
e A(1)B(1) =n and
o Oy(x) | A(z)B(x) for all d | n, with d > 1.

By Lemma [2] this means that
o n—1
A(z)B(x) = Z ¥ mod (2" —1),
k=0

that is, condition (TO) in Lemma (1| holds. Therefore A(z) € {0,1}[x] and A® B = Z,,
that is, A tiles with B. ]

Combining Theorem [9] and Proposition [4, we are able to find new Vuza canons where
L is not a subset of Z,.

Theorem 10. Let n = pynipanong € N such that:
1. p1,n1,p2,n2,n3 > 1;
2. ged (p1na, panz) = 1;
3. there is no prime q such that q | n3, but q f pinipans .

Let H be the subgroup H = ngly n,pon, Of Zn. Suppose that L and K are proper subsets
of Ly, such that L® K = Zp, and K = K; u Ko, with K1,Ky # (. Let L be an
extension of L; then the pair (A, B) defined by

A=A40A@L
B=U10VmoK)u (U ®V:®Ky)

s an aperiodic tiling rhythmic canon of Z,,.

Proof. Since, by definition, A; and Ao coincide with their own extensions, the extension
of Ay ® A ® L is A. By Theorem [0} A1 ® Ay @ L ® B = Z,, therefore Proposition [4]
implies that A@® B = Z,.

We already know from Theorem [0 that B is aperiodic. To show that A is aperiodic,
consider L(x). By hypothesis St does not contain any maximal prime power dividing
n, as Sa, and Sa,. As a consequence, S4 = S, US4, U St does not contain any such
prime power, either. By Proposition [3| A cannot be periodic. O

Definition 14 (extended Vuza canon). We call extended Vuza canons all the canons
obtained using the constructions of Theorems [9] and possibly combined with those of

Theorems [3] [6] [7] and [8]
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Figure 3.16: n =240. A=A, ® A, ® L.

(a) Uy @ Vo = 1201, @ 1215

Lattice representation of an aperiodic tiling rhythmic canon with period n = 240, where A =

Example 9. We show now an extended Vuza canon with period n = 240 (p; = 5,n; =
3,p2 = 2,n9 = 2,n3 = 4). Set L = I; then L = 15I,. Choosing K1 = {2} and K5 = {0},
we obtain the canon
A=A ®A 0L
= 60l @ 1613 P 151,
B=U1®V2@K)u (U20V1®K>)
= (1200 ® 12I5 @ {2}) L (4815 @ 8l @ {0}) .

It is worth noting that it would not be possible to obtain such a canon without applying
Theorem

Example 10. Given L® K = I, @ 2, = Z4, an extended Vuza canon with period
n = 144 is
A=A 0A:60L
= 1613 @ 361 P I.
B=U®V2®K))u U0V ® K>)
= (4813 ® 8l @ {0}) u (T2 ® 1213 @ {2}) .

The lattice representation of A is in Figure [3.1

It is now natural to pose the following question: how many extended Vuza canons
are there given the five parameters py,ni, p2, n2, ng and the factorisation Z,, = L @ K?
The first step consists in determining how many partitions of Z,,, allow to disjointly

distribute the ng remainder classes in the factors (Ul @ n3n1‘72j>, (Ug + ngngf/lh> and

W, paying attention to assign at least one class to the first two factors (otherwise the
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Figure 3.17: n = 144. A = 16l5 @ 361> B I5.

Sa ={2,3,8}.

canon would become periodic). By Theorem [8) we need also to consider all the different
V7 and VJ* which provide a (extended) Vuza canon. We want to determine in how many
ways we can choose aperiodic subsets of distinct elements modulo py in Zj,,, (resp. in
Zipany ) Up to translation. By convention, we fix the first element as 0, and for every other
remainder class modulo p; we have no possibilities. We have to disregard the periodic
ones and finally we discard all the p; — 1 possible translations. Then,

#i - L 3(2) (0 )

bz ulp2
= 15 (2) (1)
vlp1

When there is no factor L in the inner rhythm A, we consider

t11  ti2  t13

to1  too  to3
T —

tm1  tm2 tm3
as the matrix in which every row t;,with ¢ = 1,...,m, represents a possible partition

of the remainder classes modulo ng, and the single entry in every row is the number of
remainder classes modulo n3 assigned to the ¢-th factor

UL ® ngnlffgj, Us + ngnngh, or W.

In this case, the number of possible outer rhythms B is as follows:

#K n N\ ta n N\ a2 n i3 ns
-8 5 () (o) (i) (2
n n3 - p1 RN ) n3 - P1 - P2 t;

1<i<m
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Example 11. Let us show how many aperiodic rhythms B there exist given n1 = 2,ngy =
3,m3 = 5,p1 = 2,p2 = 3. The possible vectors ¢ for Z,,, are 10:
T ={[1,4,0],[4,1,0],
[2,3,0],[3,2,0],
[1,2,2],[2,1,2],[2,2,1],
[1,1,3],[1,3,1],[3,1, 3]}.

The total number of possible aperiodic rhythms B is given by:

ti1 ti2 ti3
e () (2 (27 )
801<i<10 5-2 5-3 5-2-3 t;

45360 + 77760 + 85536 + 72576
= 281232.

Example 12. Given, instead, n; = 2,ny = 3,n3 = 4,p1 = 2,p2 = 3, we calculate how
many aperiodic rthythms B there exist in Zj44. The possible vectors ¢ for Z,,, are 6:
T ={[1,3,0],[3,1,0],
[2,2,0],[1,1,2],
[1,2,1],[2,1,1]}.

The total number of possible extended Vuza aperiodic rhythms B is given by:

4B = L 3 <144 1)”(144 1>ti2<144>“3 <4>
144 4= 08 12 24 t;

= 864 + 1944 + 1944 + 648 + 1296 + 1944
= 8640.

We include a table showing the number of Vuza canons and extended Vuza canons
for all the periods n with values between 72 and 280.

Theorem 11. Let A® B = Z,, be a Vuza canon. Then A and B satisfy condition (T2).
Proof.

B is (T2): Let Ay = ngpanoll,, and Ay = nzpinil,,. Then, as in the proof of Theorem |4, we
consider A = A1 @ As. Since

:Lvn3p2n2nl — 1 1:"3101”1”2 — 1

A(ﬂf) = pn3pan2 — | pnapini — |
= H g, (z) H D, (2),
d1|nzpanang da|nzpining
difnzpans dafnzpini

it follows that Vd; with prime powers factorisation d; = p{"---pi* such that
D4, (z) | A(x), there is a prime power pi* | ning such that P e | A(z). Simi-
larly for do. Then B(z) satisfies condition (T2).
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Table 3.1: All possible A; and A, for some non-Hajos values of n < 168.

CHAPTER 3. VUZA CANONS

[ n [ p1 ni P2 n2 ng | L | #K | #A | nazpiniA; | nzpanaAs |
8l
72 3 3 2 2 2 {0} 0 3 181y 8{0, 2, 4}
8{0,1,5}
1215
108 3 3 2 2 3 {0} 0 3 271, 12{0, 2, 4}
12{0, 1, 5}
8T
8{0,2,3,4,6}
8{0,1,3,4,7}
8{0,3,4,6, 7}
8{0,1,2, 4,8}
8{0, 2, 4,6, 8}
8{0,1,4,7,8}
3 5 2 2 2 {0} 0 16 301, g%g’?’g’;’gi
8{0,2, 3, 6,9}
8{0,1,3,7,9}
8{0,3,6,7,9}
120 8{0,1,2,8,9}
8{0,2,6,8,9}
8{0,3,4,7,11}
8{0,2,4,8,11}
813
8{0, 2, 4}
8{0, 1, 5}
8{0, 4, 5}
5 3 2 2 2 {0} 0 8 301, 80.2.7}
8{0,5, 7}
8{0, 1, 8}
8{0, 4, 8}
16103
3 3 2 2 4 {éoi} g 3 361, 16{0, 2, 4}
0 16{0, 1, 5}
1615
144 3 3 2) 4 2 {0} 0 6 }2%% 2,3,5) 16{0, 2, 4}
92hh 16{0, 1, 5}
1615
3 3 4 2 2 (0} 0 6 }g%% o 1640, 2, 4}
9 16{0, 1, 5}
8l3
8{0, 2, 4}
8{0,1,5}
8{0,4,5}
8{0,2,7}
8{0,5,7}
8{0, 1, 8}
8{0, 4, 8}
168 7 3 2 2 2 {0} 0 16 421, 8{0.7.8)
8{0, 2,10}
8{0, 5,10}
8{0, 8, 10}
8{0,1,11}
8{0,4, 11}
8{0,7,11}
8{0, 5,13}
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Table 3.2: All possible A; and Ay for n = 180.

[n [r ni p2 ng ng | L | #K | #A | nzpinid;

[

ngpang As

3 3 2 5 2 {0} 0

9

1815
18{0,1, 3,4, 7}
18{0,1, 2,4, 8}

2013
20{0, 2,
20{0, 1,

= N
S
[~

3 3 5 2 2 {0} 0

18I,
18{0, 3}

2013
2010,
2010,

- N
(S
aen)

180

16

4515

1215
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,
12{0,

W00 TITTODOWT~TDE DR

Jun
N
~
f=}

QN = o N R =N =W N

= O OO OO OO~

I o o S S S e S e ey " e

o)

451,

451,

20{0, 1, 5}

A is (T2) : By definition,

Ra, = {f € N*: f | ngpananq and f t ngpana},
Ra, = {g € N*: g | ngpining and g ngpini},

and

Sa, = {p* € Ra, : p prime, o € N*, p® | ngpanoni, and p® { nzpansa},

Sa, = {qﬁ € Ry, : q prime, 5 € N*,q'B | ngp1ning, and qﬂ J(ngplnl} .

Let us start with Sy4,: since (pang,ny) = 1,

39

Sa, = {p® € Ra, : p | napana, p® { napana} U {p~ € Ry, : p | n3ny, p { napans}

= {p® € Ra, : p® | n3n1,p® { n3pans}
= {p® € Ra, : p® | n3ny,p® { n3}.

Similarly,

Sa, = 1{¢° € Ra, : ¢° | n3n2,¢” f n3}.

Then, consider any product of powers of distinct primes p{* - - - p}2

pit, .. Py € Sa, and q*fl,...,qg” € Sa,. We have

an B

Pt g I n

M, n, M+N

1 MaNg

)

(€94

@

.- -qﬁ", with
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Table 3.3: All possible V; and V, for non-Hajos values of n < 180.

n [ P1 ni P2 na ng [ L [ #K [ #B [ Ui @ngniVa [ Uy @ ngna2Vi ]
72 | 3 3 2 2 2 | {0y ] 0 ] 6 [ 36l @ 63 [ 24I3 @ 4l |
108 [ 3 3 2 2 3 [ {0y [ o [ 252 [ B4l @93 [ 36l35 @ 6l |
4013 @ 4l
3 5 2 2 2 {0} 0 20 60l @ 103 4015 @ 4{0, 3}
120 60l @ 615
5 3 2 2 2 {0} 0 18 602 @ 6{0, 2, 3,4, 6} 2415 @ 4l
60I2 @ 6{0,1,3,4,7}
3 3 2 2 4 {({)?1} g 86640 721> @ 1213 4813 @ 8l
7215 @ 613
7215 @ 640, 2, 4}
3 3 2 4 2 {0} 0 60 7215 @ 6{0, 1, 5} 4813 @ 8l
721> @ 6{0,4,5}
144 721> @ 6{0,2, 7}
4813 @ 41,4
4813 @ 4{0, 2, 3, 5}
4813 @ 4{0, 1, 3, 6}
3 3 4 2 2 {0} 0 36 3614 @ 63 4815 & 4{0. 3. 5. 6}
4813 @ 4{0, 1,2, 7}
4813 @ 4{0,2, 5,7}
5613 @ 4l
3 7 2 2 2 {0} 0 42 84l @ 1413 5613 @ 4{0, 3}
5613 @ 4{0, 5}
84l @ 617
84I, @ 6{0, 2, 3,4, 5, 6, 8}
26 841, @ 6{0, 1, 3,4, 5, 6,9}
841, @ 6{0, 3,4, 5,6, 8,9}
7 3 2 2 2 {0} 0 54 84l @ 6{0,1,2,4,5,6,10} | 2417 @ 4l
84I, @ 6{0, 2,4, 5,6, 8, 10}
84I, @ 6{0,1,4,5,6,9, 10}
84I, @ 6{0, 2, 3,5,6,8, 11}
841, @ 6{0,1,3,5,6,9,11}
9013 @ 613
901 @ 6{0, 2,4}
90I, @ 6{0, 1, 5}
3 3 2 5 2 {0} 0 120 38%; ggég: 3 ?i 60I3 @ 1015
90l @ 6{0, 5, 7}
90l @ 6{0, 1, 8}
90l @ 6{0, 4, 8}
6013 @ 4I5
6013 @ 4{0, 2, 3,4, 6}
60I3 @ 4{0, 1, 3,4, 7}
60I3 @ 4{0, 3,4,6, 7}
6013 @ 4{0, 1,2, 4, 8}
603 @ 4{0, 2,4, 6, 8}
. 603 @ 4{0,1,4,7,8}
G 3 N 60I3 @ 4{0,4,6,7,8}
3 3 5 2 2 {0} 0 96 3615 @ 613 6015 @ 4{0, 1,2, 3. 9}
60I3 @ 4{0, 2, 3,6, 9}
60I3 @ 4{0,1,3,7,9}
60I3 @ 4{0, 3,6,7,9}
60I3 @ 4{0, 1,2,8,9}
60I3 @ 4{0, 2,6, 8,9}
6013 @ 4{0, 3,4,7,11}
6013 @ 4{0,2,4,8,11}
60I3 & 61
3 5 2 2 3 {0} 0 1800 90l @ 1513 6015 & 6{0, 3}
90l & 95
5 3 2 2 3 {0} 0 2052 90l @ 910, 2, 3,4, 6} 3615 @ 6l
90l @ 9{0,1,3,4,7}
3 3 2 2 5 {0} 0 281232 | 90l @ 1513 6013 @ 101y
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Table 3.4: Number of extended Vuza rhythms for non-Hajos values of n < 216.

n

py | no | n3 L ‘#K #A #B

Bl [pd] B [ @ [ B |
2\«»!1\3\0\0\6!0\010\ o

Pl | ™1

’108‘2‘2‘3‘3‘3‘{0}’1‘3‘0‘0‘ 180 ’ 0 ‘72 o‘ 0 ‘

2 2|3 |52 {0} 1 | 16 0 0 20 0 0 0 0
120

2|2 |5 ]3] 2 {0} 1 8 0 0 18 0 0 0 0

2|2 |3 ]3]4 {0} 1 3 0 0 2808 1944 3888 0 0

2 2|3 |3]| 4] {01} 2 0 312 0 0 0 0 0 6

22|33 4] {0,9 2 0 0 12 0 0 0 0 6
144

22 |3|3]| 4] {02} 4 0 156 0 0 0 0 0 12

2|4 |3]3]2 {0} 1 6 0 0 12 0 0 48 0

4| 2]3|3]|2 {0} 1 6 0 0 6 0 0 30 0

2 2|3 | 7] 2 {0} 1 104 o 0 14 0 0 28 0
168

2| 2|7 ]3] 2 {0} 1 | 16 0 0 6 0 0 48 0

2|5 3| 3] 2 {0} 1 9 0 0 15 0 0 105 0

5 2|3 3] 2 {0} 1 6 0 0 6 0 0 90 0
180 3|5 | 2] 2|3 {0} 1 | 16 0 0 500 0 200 1100 0

53 |2|2]3 {0} 1 8 0 0 252 0 72 1728 0

22 |3]3]s5s {0} 1 3 0 0 45360 77760 | 158112 0 0
‘200‘2‘2‘5‘5‘2‘ {0} ’1‘125‘ 0 ‘0‘ 10 ’ 0 ‘ 0 ‘ 50 ‘ 0

2|4 |3|3]3 {0} 1 6 0 0 | 180 + 540 | 72 + 216 0 12672 0

22 |3|3]| 6] {03} 8 0 156 0 0 0 0 0 180 + 540 + 72 + 216

2|2 |3]3]| 6| {0,1} 2 0 324 0 0 0 0 0 180 + 72

2|2 |3|3]|6 {0} 1 3 0 0 754272 | 2449440 | 5832000 0 0
216 | 2 | 2 | 3| 3| 6 |{0,1,2}| 3 0 |34992| o 0 0 0 0 6

22 |3|3]| 6 |{0,24]| 9 0 [10935| o0 0 0 0 0 6 + 12

223|092 {0} 1 | 729 0 0 6 + 12 0 0 54 0

22 |9 3]2 {0} 1| 27 0 0 6 0 0 162 0

4| 2]3|3]|3 {0} 1 6 0 0 252 0 72 5940 0

In each column only the rhythms that can be generated by the corresponding theorem, but not by
previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the
choice of parameters in the previous line. When there is no column (e.g., #A for Theorem @ all the
possible rhythms already appear in previous columns.
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Table 3.5: Number of extended Vuza rhythms for non-Hajos values of 240 < n < 280.

n | p1|mn1|pa|no ‘ ng ‘ L ‘ #K #A #B
B DT H T BT H]

24|35 ]2 {0} 1 32 0 0 20 0 0 20 + 160 0

2| 2|35 ]| 4] {06} | 4 0 0 588 0 0 0 0 20 + 20

22|35 | 4] {02 | 4 0 7252 | 0 0 0 0 0 20 + 20

22|35 | 4,15 | 2 0 0 64 0 0 0 0 20

22|35 ]| 4] {,3 | 2 0 1176 | 0 0 0 0 0 20

2| 2|35 ]| 4,1} 2 0 |14504| o 0 0 0 0 20

22|35 ] a {0} 1 16 0 0 13000 9000 18000 94000 0

2|2 |5 ]3] 4 {0} 1 8 0 0 6264 3240 5184 197856 0
240

2 2|5 | 3| 4] {,1}]| 2 0 4016 | © 0 0 0 0 18

2 2|5 |38 4] {,5| 2 0 0 112 0 0 0 0 18

2| 2|5 | 3| 4]f,15 | 2 0 0 32 0 0 0 0 18

2| 2|5 | 38| 4] {,2 | 4 0 2008 | © 0 0 0 0 12 4 24

2| 2|5 | 3] 4]f,10}| 4 0 0 56 0 0 0 0 12 + 24

2| 4|5 |3] 2 {0} 1 16 0 0 12 0 0 24 + 576 0

a2 |35 2 {0} 1 32 0 0 10 0 0 290 0

a|2|5|3]2 {0} 1 16 0 0 6 0 0 102 0

2| 7|3 3] 2 {0} 1 27 0 0 21 0 0 315 0

712 |3|3]2 {0} 1 9 0 0 6 0 0 618 0
252 3| 7| 2| 2|3 {0} 1 | 104 0 0 980 0 392 5096 0

713 |2|2]3 {0} 1 16 0 0 324 0 72 21312 0

2|2 |3|3]|7 {0} 1 3 0 0 | 12830400 | 71383680 | 206126208 0 0

2 2|3 |11] 2 {0} 1 | 5368 0 0 22 0 0 88 0
264

2| 2 |11] 3] 2 {0} 1 40 0 0 6 0 0 552 0

3|3 |2|5]3 {0} 1 9 0 0 1125 0 450 48825 0
270

3|3 |5|2]3 {0} 1 6 0 0 288 0 72 48600 0

2 2|5 | 7] 2 {0} 1 | 2232 0 0 14 0 0 112 0
280

22|75 ]2 {0} 1 | 480 0 0 10 0 0 170 0

In each column only the rhythms that can be generated by the corresponding theorem, but not by
previous ones are counted. Grey numbers correspond to rhythms that can be generated also by the
choice of parameters in the previous line. When there is no column (e.g., #A for Theorem @ all the
possible rhythms already appear in previous columns.
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and since (n1,n2) = 1 and pJ { nz and qu { ng, we can conclude

(&) (e3Y3 /81 n
Ry Syt C]ﬁ | ninans.

Moreover, since
(0] (e} 1
P pSM fngpang and ¢t - g2 f ngping

it follows that

an B aj B

PP i A ngpang and g pTigt - g fngpina.
This means that
Pt piiart gl € Ra, 0 Ra,.
Considering, instead, any product of prime powers p{*---piH (resp. qlﬁ o qﬁ")
belonging exclusively to Sa, (resp. S4,), we obtain:

Pt pit [ mang  (resp. Q?l -y | nang),

and therefore
ang B1

Pt piM e Ra, (vesp. gy’ -+ gt € Ray).

In both cases, those products are elements of R4, U R4,, and so A(z) satisfies (T2)
condition.

O

Example 13. Let us consider the following Vuza canon with period n = 9000:

N

_ ‘ ; 1p5 _ ' b5
L b T b
1! 1 9“@"‘
PE G G !
.Aﬁlrrﬁﬂiﬂja “I"ﬁﬂimﬁ
b 2 SR

Eia = Eidis =i
LA T Tl [
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25
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':\-’-sg.:ag ;
N\

PR

A=A1® A

SA:A1®A2 = {47 9, 25}
Ra,nRa, = {36, 100, 180, 300, 900}

3.5 Operations on aperiodic canons

In this section we describe some known techniques for the construction of tiling rhythmic
canons starting from aperiodic tiling rhythmic canons. We report, as it is known in the
literature, that these operations preserve condition (T2) in the following sense.

Let us say that the canon A ® B = Z, verifies condition (T2) if at least one of the
rhythms A and B verifies it.

We illustrate the central role of the Vuza canons in this type of constructions and
finally, we introduce new operations on tiling rhythmic canons based on their cyclotomic
factorisation.

Given a rhythmic canon, there are many ways to generate new canons, used (and
often devised) by the composers themselves. Let us see the mathematical interpretation
of such manipulations.

3.5.1 Duality

We observed in Chapter [2] that the commutative property of the addition in the cyclic
group Z, makes the definition of rhythmic canon symmetrical in the inner and outer
rhythms. Then, the simplest transformation we can apply to a canon is the interchange
between inner and outer rhythm.

Definition 15 (duality). Given a tiling rhythmic canon Z, = A @® B, the canon Z,, =
B @ A is said to be obtained from the first by duality.
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3.5.2 k-stuttering (and multiplexing) and k-zooming

Zooming and stuttering are two dual transformations: starting from a canon A®B = Z,,
one gets a new canon obtained by replacing each note or rest in the inner voice A by k
repetitions of itself, and by stretching by factor k£ the entries of the outer voice B.

Definition 16 (k-stuttering). Let A® B = Z,,. The k-stuttering of A is
Stut(A, k) = kA®{0,1,...,k— 1} € Zy 4.
Definition 17 (k-zooming). Let A® B = Z,. The k-zooming of B is kB € Zp.
Theorem 12 (Amiot). A® B = Z,, if and only if Stut(A, k) ® kB = Zjy,.
The multiplexing transformation is a simple extension of stuttering:
Definition 18 (multiplexing). Let A; ® B = Zj,, for i = 0,...,k — 1, be k canons with
the same outer rhythm. The multiplexing of Ag, A1, ..., Ap_1 is

k—1
MPlex (Ao, Ay, ..., Ag—1) = | (i + kAy).
i=0

Theorem 13 (Amiot). A; ® B =Z, for alli=0,...,k—1 if and only if
MPlex (Ao, A1,y ..., Ag—1) ®kB = Zgy,.

We observe trivially that the rhythms of a canon always verify condition (T1) (by the
Coven-Meyerowitz Theorem [1); consequently, in particular, condition (T1) is invariant
under multiplexing and zooming.

Proposition 5. The multiplexing transformation preserves condition (T2).

These operations also preserve the aperiodicity of each voice, and hence turn a (ex-
tended) Vuza canon into a larger (extended) Vuza canon.

Note that the dual transformation, that is the multiplexing of the outer voice, is also
possible.

Example 14. Let us consider the canons with period 72

A® B = (181, ® 813) @ ((36I @ 613) L (2413 ® 41, @ {1})) =
={0,8,16,18,26,34} @ {0, 1,5,6, 12,25, 29, 36,42, 48,49, 53},

whose grid representation is in Figure [3.19a] and

A'@®B = (181, ®8{0,2,4}) @ (361 ® 6I3) L (2415 @ 41, ® {1})) =
= {0,16,18,32,34,50} @ {0, 1,5, 6,12, 25, 29, 36, 42, 48, 49, 53} ,
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Figure 3.18: n = 144. Acy = 9l @ 361, @ 161s.

Lattice representation of the multiplexing and the 2-zooming in Example

Figure 3.19: n = 144. Grid representation.

(a) {0,8,16,18,26,34} @ {0,1,5, 6,12, 25,29, 36, 42, 48, 49, 53}

(b) {0,16,18,32,34,50} @ {0, 1,5,6, 12, 25, 29, 36, 42, 48, 49, 53}

(c) {0,1,16,32,33, 36,37, 52, 65, 68,69, 101} @ {0, 2,10, 12, 24, 50, 58, 72, 84, 96, 98, 106}

whose grid representation is in Figure [3.19b} The multiplexing of A and A’ and the
2-zooming of B produce the following Vuza canon with period 144:

({0} +24) U ({1} +24")) ©2B
= {0,1,16,32, 33, 36, 37, 52, 65, 68, 69, 101} @ {0, 2, 10, 12, 24, 50, 58, 72, 84, 96, 98, 106}

whose lattice representation is in Figure The segment whose prime power is not a
multiple of £ = 2 extends until it touches the final hyperplane of multiples of 16. The
axis of indices of cyclotomic polynomials extending from one power of k = 2 instead is
translated to include cyclotomic polynomials with indices {8, 24,72} and the edge from
2 to 18 is inserted.
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3.5.3 Affine transformation
Recall Tijdeman’s theorem:

Theorem 14 (Tijdeman). If A® B = Z,, is a rhythmic canon, then also kA® B = Zj,
for every positive integer k such that (k,|A]) = 1.

As we have seen above, by Lemma [0}, the sets Rp4 and Sk4 are exactly the same as

R4 and S4: hence (T2) and aperiodicity are true for kA whenever they are true for A.

3.5.4 k-concatenation

Definition 19 (k-concatenation). The k-concatenation of the rhythm A € Z,, is the
rhythm:
Conc(A, k) = (A®{0,n,2n,...,(k—1)n}) € Zgy,.

It is easy to see the following consequence of our previous definition:
Theorem 15 (Amiot). A® B = Z,, if and only if Conc(A, k) ® B = Zjy,.
Proof. For every z € Z and for every r = s + tk, with 0 < s < k, we have

z=a+b+rn < z=(a+sn)+b+t(kn).

Proposition 6. Concatenation preserves condition (T2).

Proof. We observe that

{0,n,2n,...,(k—1)n} () = (nli)(z) = I (") = = H Dy(x),
d|kn,dfn

then R, = {d | kn|d fn} and Sy, = {p® | kn | p® } n,p prime}. For each set of
powers of distinct primes p{!,...,p%m € Sy, pTt - - P2 € Ry, i.e. nl verifies condition
(T2). Since (A®{0,n,2n,...,(k—1)n}) (x) = A(z)I; (z™) and cyclotomic polynomials
are irreducible, we have that Ragni, = Ra U Ryr,. We see that A @ nly also verifies
condition (T2): if p*,...,p%m € Sagnr, are powers of distinct primes, there are three
possibilities:

L pi e Sa¥i = 1,....m = T[], pj" € Ra because, by hypothesis, A verifies

(2

condition (T2), then [ [, p;" € Ragnr, -
2. plie Sy Vi=1,...,m = [[i, pj" € Ry, because, as we have seen, nlj, verifies

condition (T2), then [ 2, pi" € Ragni, -

3. pj" e SaVi=1,...,h and p?j € Sy, Vj = h+1,...,m, then Vi,j we have that
pi | N, p?j | EN and p?j } N, therefore, since we are dealing with powers of
distinct primes, [[72, = p;* | kN and } N, that is [ [\, p;" € Ruka  Ragni, -
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Figure 3.20: n = 360. Grid representation.

(a) {0,8,16,18,26,34} ® {0, 1,5, 6,12, 25,29, 36, 42, 48, 49, 53}

(b) {0,16,18,32,34,50} ® {0, 1,5,6, 12, 25,29, 36, 42, 48, 49, 53}

(c) {0,8,16,54,62,70} @ {0, 1,5,6, 12,25, 29, 36, 42, 48, 49, 53}

(d) {0,2, 18,40, 56,58} @ {0,1,5,6, 12, 25,29, 36, 42, 48, 49, 53}

(e) {0,2,10,18,56,64} @ {0,1,5,6, 12, 25,29, 36, 42, 48, 49, 53}

(f) Multiplexing and zooming of 5 canons of period n = 72.
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Figure 3.21: n = 360. Aoy = 901 @ 4013.

Lattice representation of the multiplexing and the 5-zooming in Figure

Figure 3.22: n = 144. Acy = 181, @ 721, @ 1615.

Lattice representation of the concatenation in Example

O]

Concatenation replaces the rhythm by several copies of itself. It is therefore obvious
that the resulting rhythm is periodic.

Example 15. Let us go back to Example and consider the inner rhythm A =
{0,8,16,18,26,34}. The 2-concatenation of A c Zrs is

A®{0,72} = {0,8, 16,18, 26, 34, 72, 80, 88, 90, 98, 106} .

The lattice representation of the canon Conc(A,2) @ B = Zj44 is given in Figure
We see that the new canon Conc(A4,2) @ B = Zj44 is periodic modulo 72: all the indices
of the maximal hyperplane 16-48-144 are in Roone(a,2)-

Let us remark that a Vuza canon is precisely a canon that cannot be produced by
concatenation of some smaller canon. In particular,

Proposition 7 (Amiot). Fvery tiling rhythmic canon can be produced by concatenation
and duality from either the trivial canon {0} @ {0} = {0} or a Vuza canon.
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3.5.5 Uplifting

Proposition 8 (Amiot). If A tiles Z,, then A tiles any larger cyclic overgroup Zgy;
moreover, translating any element of A by any multiple of n provides a motif that also
tiles Zi, .

Proof. If

A®B ={ao,...,ap—1} ®{bo,...,bg—1} = Zp,
letfl—{ao—kk:gn S ap—1 + ke 1n}CZ;mandB—{b + kn}, with k = 0,...,k — 1.
Then A @ B = Zj, since the mapping A@® B 3 (a,b) — a + b is still 1nJect1ve and
|A||B| = EN. O

Example 16. Once again, let us look at the effects of this transformation to our canon
of reference in Example [I4] Starting with the canon

A® B =1{0,8,16,18,26,34} ® {0, 1, 5,6, 12, 25,29, 36, 42, 48, 49, 53} ,
one can produce
{0,16,18,26,34,80 =8+ 72} @ (B u B +1-72) = Zj44

Let us now see how Vuza canons become fundamental for the study of rhythmic
canons.

Theorem 16 (Amiot). Every rhythmic canon can be reduced to trivial canon {0}@{0} =
{0} or a Vuza canon.

Corollary 1. If a rhythmic canon does not satisfy the condition (T2) it is possible to
collapse it to a Vuza canon that does not satisfy the condition (T2).

The problem of the need for condition (T2) is reduced to the investigation of the
canons of Vuza.

3.5.6 Operations on extended Vuza canons

The following operations naturally follow from the definition of extended Vuza canon.
Recall that an extended Vuza canon is characterised by the following sets: Ai, Ao, V4,
Va. Whenever we replace the sets A;, As, Vi, Vo with A}, A}, V{ and VJ, we get new
extended Vuza canons, as proved in Theorems [7}, [8] [9] and [I0}

Starting from a Vuza canon, or an extended Vuza canon, it is possible to consider
different choices of the parameters p1,ni, p2, ne, and ng and of the sets Al, AQ, Vl, Vg,
W, L, and K on the basis of the theorem seen in the previous section to produce new
extended Vuza canons.

In this section we see, starting from a Vuza canon (or extended Vuza canon) the
lattices of the new canon change according to the different choice of parameters and
characteristic sets. Let us see the classical example of Z7o. When 77 is a multiple of nq
we can recognise some precise changes in the lattices of the canons. We are dealing with
extended Vuza canons, so we consider the following hypothesis. Let n = pynipanong € N
such that:
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L. p1,m1,p2,n2,n3 > 1;
2. ged (ping, pang) = 1;
3. if n3 is not prime, there is no prime ¢ such that ¢ | ng, but q / pinipans.

Let H be the subgroup H = n3l, 5, pon, of Zy with n = pinipanong, K be a complete
set of cosets representatives for 7Z, modulo H such that K is the disjoint union K =
K u Ky u K3 with K, Ky # &, and W = n3n1n2Hp1p2. Take

e Ay as a complete aperiodic set of coset representatives for Zipon, modulo nally,;

e A, as a complete aperiodic set of coset representatives for Zip1n, modulo nil, ;

° f/ll, .. .,f/'lj as complete aperiodic sets of coset representatives for Zj,,, modulo
pQ]Inl;

. 1721’ . .,VQh as complete aperiodic sets of coset representatives for Zj, ,, modulo
plﬂn2~

Let A@® B be a (extended) Vuza canon, with

A = nzpim Ay ® ngpans As @ L
B = ((Ul@ng,nlf/;@{k},...,kﬁl}) e
U (Uleangnlf/g@{kllf—1+1,...,k'1K1'}))u
L (<U2®n3n2‘711@{k‘%,...,k;ﬂl}> L

cee (Uz ®nana Vi @ {k;nhiﬁl’ e ’k|2K2|}))

b (ngnanally, p, @ K3)

n;-operation (i =1,2)

Definition 20 (nj-operation). Let A@® B = Z, be a (extended) Vuza canon and let
1 = Onq1, with 8 € N*  such that pi1, 71, pe, n2, and ng satisfy conditions and
The 71-operation on A@ B = 7Z,, produces the new (extended) Vuza canon:

Opern, (A® B) = A™ @ B™ = Zy,,
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with
A™ = ngpifig A) ® ngpang A @ T
B™ = (U @ngru V3 @ {kl,... Kl }) Lo
L <U{_“ @ nsin Vi @ {k’f”“, . k|1K1|})> L
o (3 @ngna ™ @ {k, ) L
L (Ug'“ @ ngna V™ @ {k?h—l“, . k‘f“"}))
L (naningly, p, ® K3),
where

a _

[ ) U1 I = n3p1n1n2ﬂp2;
n _

o Uy = ngponanily,;

e AY' is a complete aperiodic set of coset representatives for Z,, 7, modulo 711, ;

. Vll’"l, ..., V"™ are complete aperiodic sets of coset representatives for Z,z, mod-
ulo pollp,;

The definition is completely symmetric for the ns-operation.

We notice that R4 < Ry, since, by construction (see Theorem , the elements of
R4 are the divisors of ngpinins which do not divide ngpini together with the divisors
of ngpanany which do not divide ngpang, while the elements of R4n, are the divisors of
Onspinins which do not divide Onsgpin; together with the divisors of Onspanoni which do
not divide ngpang. Also note that Sa & Sa, , which implies that |A™| = 0| A]. Instead,
Spm 1s quite different from Sp and Sp & Sp, : the powers of primes dividing ¢ and
greater than n3 in Sp are multiplied by 6. As a consequence, |B™| = |B|.

In this regard, it is interesting to observe what happens to the lattices of the cyclo-
tomic polynomials of A@® B = Z,, and An, ® B, = Zg,. Comparing them, the effect
of the ni-operation is the following: the edge resulting from the difference between the
convex hull of n3pansl,, and the convex hull of the cyclotomic indices of Ay appears to
be expanded by factor 6 along the axes of the powers of the primes that divide 6; as
for the first factor of A, on the other hand, there is an expansion by factor 6 of both
the edge obtained as the difference between the convex hull of n3pin1l,, and the convex
hull of the cyclotomic indices of A;, and the convex hull A; itself. Figures
and show three examples referring to a generic extended Vuza canon of period 72
(we have only one possible lattice of cyclotomic polynomials for extended Vuza canons
of period n = 72) to which we applied the n;-operation, for ¢ = 1,2: in the first two
figures, 6 is a prime that already divided n (these are the 60 = 48 + 12 rhythms B
for n = 144 and the 72 = 6 + 12 + 54 rhythms B for n = 216 analyzed in Table ,
while, in the last one, 6 is a prime that did not divide n. Graphically, the two necessary
conditions for aperiodicity in both rhythms remain satisfied: each maximal hyperplane
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Figure 3.23: n = 144. Acy = 181 @ 3615 @ 1613.

4™ _operation on a Vuza canon of order 72. The parameters become: p;1 = 2, n; = 2-2 = 4,
p2 =3, ng =3, and ng = 2. L = {0}. #B = 60.

Figure 3.24: n = 216. Aoy = 541 @ 815 @ 2413.

n2 = 9-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 2, pa = 3,
ne=3-3=9,and n3 =2. L ={0}. #B =T72.

of the lattice has non-null intersection with convex hulls of the cyclotomic indices of A,
and the intersection is different from an entire maximal hyperplane.

ng-operation

In dealing with the case of the change of parameter from ng to On3, we need to distinguish
two starting situations: Vuza canons or extended Vuza canons. The reason lies in the
fact that a variation in ns necessarily affects a variation in the sets L and K (since
L® K = Zy,), when we are treating the case of extended Vuza canons.

Therefore, we first deal with the non-extended Vuza canons.

Definition 21 (fig-operation). Let A@® B = Z,, a Vuza canon and let ng = Ons, with
0 € N*, such that py, ni, p2, no, and ng satisfy conditions and Let also H™ be the
subgroup H™ = Azl npony of Zg, and K™ = K% 1 K33 1 K3? (with K72, K3? # )
be a complete set of cosets representatives for Zg, modulo H™. The fi3-operation on
A® B = Z, produces the new Vuza canon:

Opern,(A® B) = A™ @ B™ = Zy,,
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Figure 3.25: n = 360. A = 18I @ 401,.

71 = 10-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 2 -5,
p2 =3, ng =3, and ng = 2. L = {0}. #B = 990.

with
A" = figping Ay @ figpang Ag
Bﬁs — <(U1ﬁ3 @ﬁgnlfle @ {kiﬁﬁ’ ceey kqﬁl,,—m}) (SR
_ JU . 3
L (UI"S ® fizn V3 @ {kffm”l, s km |}>) .
L ((U;3 @® ngn2Vi' @ {k%ﬁ,g? R kg,lﬁg}) e
_ ~ >
L (U?@ﬁgngvﬁ@ {]‘72}%3“]‘7’2]; ‘}))
L (fl3n1n2ﬂp1p2 S Kgm) )
where

n —
o U® = ngpininaly,;

7 _
° U23 = n3p2n2n1]lpl;

o K™ =K1 _ .. ~|_|Kjﬁ3 with KT = P2+t kTt are non-empty subsets
1 1,73 1,n3’ 1,n3 = 1,n3 vt Vlng pty
of K{%;
7 n . _1+1
o KJ* =K}, - -HKQ%, with K5, = {kgfﬁ; ey k?ffﬁg} are non-empty subsets

of K;”.

Unlike after the application of n;-operation with ¢ = 1,2, in this case the elements of
both Ryrs and Rprs undergo the same effect (and in fact n3 has a symmetric role in A
and B):

Rpns =0R4 U (R4\(ARA U ORpR))
Rpns =0Rp U (Rp\(0Rp U ORp)).
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Figure 3.26: n = 144. Acps = 361 @ 1613.

ns = 4-operation on a Vuza canon of order 72. The parameters become: p; = 2, n1 = 2, ps = 3,
ne =3,and ng =2-2=4. L = {0}. #B = 8640.

Figure 3.27: n = 216. Acp = 5415 @ 2413.

n3 = 6-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 2, p2 = 3,
ne =3,and ng =2-3 =6. L ={0}. #B = 9035712.

As a consequence, the cyclotomic polynomials with indices less than or equal to ng are
all factors of B™ just as the cyclotomic polynomials with indices less than or equal to
ns were all factors of B. This means also that, |[B™| = 0| B|, while the cardinalities of A
and A™ are the same.

Again, we are interested in giving a graphic interpretation of RZ?’ and RZ? observing
what happens to the lattices of the cyclotomic polynomials of A@B = Z,, and Az, P B, =
Zgyn. The ng-operation determines an expansion by factor  of both the edge obtained as
the difference between the convex hull of ngpin;l,, and the convex hull of the cyclotomic
indices of Ay, and the convex hull A; itself. Similarly for factor napanads of A. F igures
[3:26] [3:27] and [3.28 show three examples referring to our generic extended Vuza canon
of period 72 to which we applied the ns-operation: again, in the first two figures, 6 is a
prime that already divided n (these are the 8640 rhythms B for n = 144 and the 9035712
rhythms B for n = 216 analyzed in Table , while, in the last one, 6 is a prime that
did not divide n.

Let us now consider as starting canon an extended Vuza canon, whose inner rhythm
A also has a factor L.

Definition 22 (ng-operation). Let A ® B = Z, be an extended Vuza canon and let
ng = Ong, with 6 € N*  such that py, n1, p2, n2, and ng satisfy conditions|[1} 2} and[3] Let
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Figure 3.28: n = 360. Acas = 901 @ 4015.

ng = 10-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 2, p2 = 3,
ne =3,and ng = 2-5 =10. L = {0}. #B = 9969957367560.

also H™ be the subgroup H™ = 731, 1, pyn, of Zg,. Consider K™ as a proper subset of
L, such that L@ K™ = Zy, and K™ = K1 U K1 U K7 (with K79, K2 # ). The
fg-operation on A@ B = Z,, produces the new extended Vuza canon:

Opery, (A® B) = A™ @ B™ = Zy,,

with
A — ﬁ3p1n11‘~11 @ ﬁ3p2n2j2 C—Df
B )
L <(U2n3 @ﬁ3n2‘~/11 @® {k%ﬁy KR k;}ﬁ3}> U
_ =~ =
L <U§3@ﬁ3ngvl’l@{k;’ﬁ;”,.--,kgii |}>)
] (ﬁ3n1n2ﬂp1p2 @KZ?S) )

where

7 — .
o U”? = ngpininzly,;
i — .
L] U23 = ngpznznl]lpl,

o K= Kllj13 LUK with Kl = {k:z"’lﬂ, N } are non-empty subsets

1,n3? 1,n3 1,n3
of K{3;
n3 __ 1 h"3 : S _ Ys—1+1 Ys
o Ky? =Ksp u-uKyq, with K35 = {kz,m e ,klm} are non-empty subsets

of K;_“*’.
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Figure 3.29: n = 288. Acps = 361 @ 3213.

(¢c) L =2I,. #B = T2. (d) T = 18I,. #B = 72 + 288.

4™3_operation on an extended Vuza canon of order 144. The parameters become: p; = 4, n, = 2,
p2=3,n2=3,and ng =2-2=4.

In this case, the factor L of A remains a factor of A™ after the application of the
ng-operation: it is in fact an extension of a proper subset L of Z,,, < Zp,. In this case,
however, it is necessary to choose a suitable set K™ such that K™ @®L = Z,,,. In general,
the observations made in the case of the ns-operation applied to a non-extended Vuza
canon continue to be valid.

Figure [3.29) shows an example referring to a generic extended Vuza canon of period
144 to which we applied the ng-operation.

pi-operation (i = 1,2)
Definition 23 (pj-operation). Let A@® B = Z, be a (extended) Vuza canon and let

p1 = Op1, with 6 € N*, such that py, ni, p2, n2, and ng satisfy conditions and
The pi-operation on A@ B = Z,, produces the new (extended) Vuza canon:

Operp, (A® B) = APr @ BPY = Zp,,,
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with
APY = ngping Ay @ napene AS L
BP = ((Ufl @ ngm V" @ {ki, . .,klf}) Lo
cou (U @mgm VT @ (k) )
L <<U§1 ®nanaVi' @ {k, .. .,kg“}) -
U (U§1 ® nsna Vi @ {k;;”’“l“, o k\;@\}))
U (ngnanally,p, @ K3)
where

D1 _ = .
o Ul = ngpininaly,;
P1 .
o Uy = ngpononily;

e AP' is a complete aperiodic set of coset representatives for L5, n, modulo nql5;

1,5 hp - .
o VP ... V,"P' are complete aperiodic sets of coset representatives for Zz,,,, mod-
ulo p1l,,,;

The definition is completely symmetric for the po-operation.

As in the case of fi-operation, we notice that R4 € R45 by construction. Also note
that S4 = Sa, , which implies that [AP'| = |A]. Instead, Sp & Sps, incorporating the
new prime powers introduced by . As a consequence, |BP*| = 0|B|.

The effect of the pi-operation in the lattice of cyclotomic indices of A @ B can be
seen only in the complex hull representing ngpiniAr: there is an expansion by factor 6
of both the edge obtained as the difference between the convex hull of ngpinil,, and the
convex hull of the cyclotomic indices of A;, and the convex hull A; itself. Figures m
and [3:31] show two examples referring to our generic extended Vuza canon of period 72
to which we applied the p;-operation, for ¢ = 1,2: 6 is a prime that already divided n
(these are the 36 rhythms B for n = 144 and the 168 rhythms B for n = 216 analyzed

in Table .

Rearrangement of K

As we have seen in Theorem [7| and [8] another possible way to pass from a (extended)
Vuza canon to another, is to consider a different way to partition the set K and choose
different sets K, K3 (and maybe K3). This time, the cyclotomic polynomials which
divide, respectively, the inner rhythm and the outer rhythm, remain the same.
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Figure 3.30: n = 144. Acpy = 1815 @ 1613.

99

p1 = 4-operation on a Vuza canon of order 72. The parameters become: p1 =2-2 =4, n; = 2,
p2 =3, n2 =3, and ng = 2. L = {0}. #B = 36.

Figure 3.31: n = 216. Aoy = 541, @ 8ls.

p2 = 9-operation on a Vuza canon of order 72. The parameters become: p1 = 2, n1 = 2, p2 =
3:3=9,n,=3,and nzg =2. L = {0}. #B = 168.
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Substitution of A;, V; (i = 1,2)

We are left to consider also the effects of Theorem [9] and Theorem [I0] In these cases,
we are going to substitute the sets A1, Aa, Vi, Vo with other coset representatives. The
cyclotomic polynomials which divide A and B will not change, (or at least, the essential
cyclotomic polynomials will not change) so the lattices of cyclotomic indices of the new
(extended) Vuza canon will not show any changes.

Substitution of prime factors

The lattice representation of the two complementary rhythms of an aperiodic tiling rhyth-
mic canon leads naturally to an operation on the prime factors of n: indeed, it is obvious
that all the geometric properties of the lattice representation do not depend on which
primes are the factors of n, but only on their relations. It is easy to see that (only with
a small exception for the prime p = 2 in Theorem [7, where we need that a parameter be
at least 3) if we exchange the primes in n with other ones, keeping the structure of the
factorisation of n unchanged, a (extended) Vuza canon will be transformed into a new
(extended) Vuza canon.



Chapter 4

Algorithms for aperiodic
complements

Numerous algorithms have been devised by various mathematicians for the computation
of aperiodic canons. An essential part of the construction of rhythmic canons is the
search for e.g. the outer voice B, knowing the inner one A. In this chapter, we show
some algorithms used for the generation of aperiodic motifs tiling with a given inner
rhythm and within a given period.

The first two known procedures that we illustrate in Section and Section
are the application of Coven-Meyerowitz theorem in [9] (which is not exhaustive for the
research of all possible aperiodic tiling complements) and the Kolountzakis and Matolcsi
Fill-Out Procedure in [21] (which is exhaustive).

We then go on presenting two new algorithms in Section and Section (which
are the fruit of a joint work with G. Auricchio, L. Ferrarini, S. Gualandi, and L. Pernazza)
for the exhaustive search of (aperiodic) tiling motifs, one in integer linear programming
language (the CS Algorithm) and the other in SAT encoding. We show how these models
can be used to efficiently check the necessity of the Coven-Meyerowitz condition (T2) and
also to define an iterative algorithm that, given a period n, finds all the rhythms which
tile with a given rhythm A. To conclude, we run several experiments to validate the time
efficiency of both models.

We proceed in Section taking advantage of the fastest procedure in connection
with the Coven-Meyerowitz formula to realise the complete enumeration of the aperiodic
canons with periods n = 180 and n = 200. We conclude this chapter by showing that
for period n = 900 there exist aperiodic canons that are not extended Vuza canons; this
is an observation that projects the investigation of aperiodic canons and their structure
towards new interesting conjectures and directions.

4.1 The Coven-Meyerowitz complement

In this section we show how to apply the Coven-Meyerowitz Theorem to obtain a comple-
mentary motif, given the inner rhythm and the period of the final canon. In general, the

61
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Coven-Meyerowitz theorem does not provide an aperiodic complement; however, there
are some conditions for which one can be sure that the final result will indeed be an
aperiodic canon.

Proposition 9 (Coven, Meyerowitz). If A c Z,, satisfies conditions (T1) and (T2), then

a complement of A in Zy, (i.e., Boyr satisfying A@® Boyr = Zy) can be defined taking as
its characteristic polynomial:

n npa—l
Bey(x) = H Dpa (:L‘p"(P)> = 1_[ D, (:L‘ 7 (@) > ,
pYIn P n
PYESA PYES A

v(pi)

where n = [ [, p; is the decomposition of n into prime powers.

This proposition allows us to define the Coven-Meyerowitz complement as a set.

Definition 24 (Coven-Meyerowitz complement). We define Coven-Meyerowitz comple-
ment the rhythm Bgjys © Z,, obtained as

np
Bow= @ 2
pg—i?n pV (») p

PYESa

a—1

(the Proposition above ensures that A@® Boys = Zy,).

Example 17. Consider a generic aperiodic inner thythm B < Zgs00 such that Sp =
{3,4,5,9,125}. A rhythm with these characteristics could be, for example, the extended
Vuza rhythm

B = 150015 @& 2500, @ {0, 1,2, 3,4, 25, 26, 27, 28, 29, 50, 51, 52, 53, 54}
L1 22501, @ 37513 @ {75, 76, 77, 78,79, 100, 101, 102, 103, 104}.

The Coven-Meyerowitz complement is given by
Aoy = (9-125) I @ (4-125)I3P (4-9 - 5)Is.

Figure shows the lattice representation of Acps: R4 is graphically represented as the
union of the hyperplanes which, starting from the vertices p® ¢ Sp, extend along all the
orthogonal axes, those corresponding to the prime powers that divide n and are different

from p, to include all multiples of p® (dividing n) which are not multiples of plotl),

Example 18. Now suppose that our starting motif is the Coven-Meyerowitz complement

of Example
A= 1125H2 @ 500H3 @ 180]15 c Z4500.

The Coven-Meyerowitz complement is given by
Beoy=(2-9-125)b®(3-4-125)[s® (4-9) 5 D (4-9-25)I5

as shown by its lattice representation in Figure [£.2] It is evident that, in this case, the
Coven-Meyerowitz complement is periodic of periods n/p;, for every prime p; | n.
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Figure 4.1: n = 4500. Acpyr = 112515 @ 50013 @ 18015.
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Lattice representation of Acay = (9-125)I; @ (4-125)I3 @ (4-9 - 5)Is when Sp = {4,5,9, 125}.
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Figure 4.2: n = 4500. Bcoyr = 22500 @ 150013 @ 3615 @ 9001I5.
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Lattice representation of Boy = (2-9-125) [ @ (3-4-125)I3 D (4 - 9)I5 @ (4 - 9 - 25)I5 when
Sa = {2,3,25).

Example [I7] and Example [1§ are instances of the following trivial observation.

Remark 4. Consider A ® Boy = Zy,. Beg is aperiodic if and only if S4 contains all
the maximum prime powers that divide n.

An interesting detail is the fact that the Coven-Meyerowitz complement actually has
a factorisation very similar to that of the (extended) Vuza motifs A. Indeed, the Coven-
Meyerowitz complement falls among these ones precisely under the hypotheses of Remark
i.e. that no element of Sp,,, is a maximum power (with respect to the factorisation
of n). Conversely, an extended Vuza motif A can be considered a Coven-Meyerowitz
complement when n; and n9 are prime powers and the factor L, if present, is of the form

a—1
I- @ "o,

p¥|n3

that is, L is itself a Coven-Meyerowitz complement of another rhythm in Z,.

As a last comment, we underline that the application of the Coven-Meyerowitz theo-
rem does not provide an exhaustive algorithm for the search of the complements of a given
motif in a given cyclic group Z,: on the contrary, they provide a unique complement for
each choice of n and Sp,,,.
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4.2 The Fill-Out Procedure

In [21I], M. N. Kolountzakis and M. Matolcsi used the Coven-Meyerowitz complement
and a new heuristic algorithm called Fill-Out Procedure, which they applied twice for an
exhaustive search for aperiodic canons (with a given n and Sy4). The key idea behind
the last one is the following: given a rhythm A € Z,, such that 0 € A, the algorithm sets
P = {0} and starts the search for possible expansions of the set P. The expansion is
accomplished adding an element a € Z,, to P according to the reverse order induced by
a ranking function r(z, P), which counts all the possible ways in which = can be covered
through a translation of A. Once every element of Z,,\(A @ P) has been ranked, the
algorithm tries to add the element with the lowest rank. Adding a new element defines a
new set, namely P © P, which is again expanded until either it can no longer be expanded
or the set becomes a tiling complement. The search ends when all the possibilities have
been explored.

The Fill-Out procedure is exhaustive, but, given an inner rhythm in a given cyclic
group Zn,, it finds all the tiling complements, regardless of whether they are periodic or
aperiodic. The algorithm finds also multiple translations of the same rhythm, which we
consider equivalent: this means that there are many solutions that must be removed in
post-processing to obtain a list of aperiodic canons without repetitions.

In their work, Kolountzakis and Matolcsi carry out a complete classification of all
aperiodic tiling of Z44; however, the method described is not convenient to classify all
aperiodic tiling for periods > 200. Indeed, the number of aperiodic tiling increases to at
least exponentially with n (see [21]):

Theorem 17 (Kolountzakis, Matolcsi). There are arbitrarily large n and aperiodic
tilings Z, = A @ B, such that there are additional distinct aperiodic tiling complements
Bi,..., By of A, with k = e“V™, with C' a constant.

4.3 The Cutting Sequential Algorithm

In this section, we propose an Integer Linear Programming Model (ILP) whose solutions
are the aperiodic rhythms tiling with a given rhythm A. In particular, we formulate the
Aperiodic Tiling Complements Problem using ILP model that is based on the polynomial
characterisation of tiling canons. The ILP model uses auxiliary 01 variables to encode
the product A(x) - B(x) which characterises tiling canons. The aperiodicity constraint is
also formulated in terms of 0 — 1 variables; the objective function is equal to a constant
and has no influence on the solutions found by the model. The ILP model is coupled with
a sequential cutting algorithm that adds a no-good constraint every time a new canon
B is found, to prevent finding solutions twice. In addition, the sequential algorithm sets
new no-good constraints, one for each translation of B; hence, in contrast to the Fill-Out
Procedure, the CS Algorithm needs no post-processing.

The purpose of the model is twofold. First, we want to determine, for a given rhythm
A, all the tiling complements B in Z,. In this case, we are interested not only in testing
the tiling property but also in finding all the complements of A. Given a rhythm A
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and a period n, the Matolcsi and Kolountzakis’ Fill-Out Procedure provides a complete
classification of the complements of A in Z,, [2I]. The main idea behind this algorithm
is to use packing complements and add one by one the new elements discovered by an
iterative search. At the best of our knowledge, this is the only algorithm able to provide
the complete list of complements of a given rhythm, for n < 200. For larger n the
problem has been considered in [19], but the author was able to give only a lower bound
to the number of tiling complements. Therefore, we choose to compare our performances
with the one of the Fill-Out Procedure.

Secondly, we aim to determine if a given aperiodic rhythm A, that does not satisfy
the (T2) property, tiles with an aperiodic rhythm B. This could be used to efficiently
test possible counterexamples to the necessity of condition (T2) [3].

The tiling problem is very similar to the decision problem of DIFF studied in [20],
which is shown to be NP-complete. This suggests a lower bound on the computational
complexity of the tiling decision problem. Since our problem consists in solving a linear
system of 3n — 1 unknowns and 3n + 3(M,(p) — 1) constraints, the complexity of finding
a single aperiodic solution is O(n® + 3M,(p)), where M, (p) denotes the number of all
distinct primes in the factorisation of n. However, Kolountzakis argued that verification
of condition (T2) can be done in polynomial time. So if condition (T2) were necessary
for tiling, the problem would be P-complete.

As we will see, solving this linear problem finds us only one of the possible solutions.
However, we can update the problem by removing the found solution from the feasible
set. If we solve the updated problem, we are then able to find a new solution. By iterating
this process until the problem cannot be solved we will find all the tiling complements
of the given rhythm A.

Since we are not interested in looking for all the possible solutions but rather for all
the classes of equivalents rhythms modulo translations or affine transformations, we can
customise the constraints added at each step. In particular, if we are interested in finding
all the solutions modulo affine transformations, the number of constraints to add at each
iteration is equal to the cardinality of P = {a € N : ged(a,n) = 1} times the cardinality
of the set of all translations fixing the first entry of the solution equal to 1. Therefore,

we add O (|P|%> new constraints at every iteration, where n 4 is the cardinality of the

rhythm A. As a result, finding new tiling rhythms gets harder at each iteration.

An important property exploited in this algorithm is the invariance of the set of
solutions under affine transformations, that is, any affine transformation sends tiling
solutions into tiling solutions.

Remark 5. Recall that a set A is periodic modulo &k | n if and only if

" —1
xk—1

A(x).

Whenever a rhythm A is periodic modulo k£ | n, with & # n, it is periodic modulo

all multiples of k dividing n. For this reason, when it comes to check whether A is

periodic or not, it suffices to check if it is periodic modulo m; = p?‘l_lpg‘2 DAY Mg =



4.3. THE CUTTING SEQUENTIAL ALGORITHM 67

a1, as—1 an (AP D) any—1 a1, Q9 QN .
D1 D5 DN, o, my = pUtpyt . pnY T, where no= p'py?...py" is the prime

powers factorization of n.

Our main result is Theorem where we state that imposing the aperiodicity of the
solution can be done through linear constraints. Finally, we show how solving a sequence
of increasingly harder linear problems leads to a complete enumeration of all the tiling
complements of a given rhythm A.

4.3.1 Tiling constraints

First of all, we define the linear equations that describe the tiling property. Let us take an
inner rhythm A and a possible outer rhythm B. Since the degrees of their characteristic
polynomials, A(x) and B(z), are both less than or equal to n — 1, the degree of the
product R(x) is less than or equal to 2n — 2. We denote by r the vector with 2n — 1
entries containing the coefficients of the polynomial R(z) := A(z)B(z). By Remark
we know that B tiles with A if and only if

Rx)=1+x+ax*+ - +2™ 1 mod z" — 1. (4.1)
We can express condition (4.1)) through n linear equations
i + Tign = 1, Vi=0,...,n—1.

Therefore, we can express the constraint

n—1
R(z) = A(x)B(x) = Z x', mod z" — 1,
1=0
through the linear system
Fi(B)—ri=0 Vie {0,...,2n — 2},
74 Tjgn =1 Vje{0,...,n—1},

where F;(B) is the function that associates to a rhythm B the i-th coefficient of A(z)B(z),
that is

Fo(B) = aobg,
Fl(B) = ai1bg + agby,
FQ(B) := asbg + a1b1 + agba,

F2n—2(B) = an—lbn—la

where b = (bg, b1, ...,b,—1) are the coefficients of B(z). Notice that, since A is given, all
the equations presented above are linear with respect to the variables b; and r;. We then
can express them through a linear system

A X =Y, (4.2)

where
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e Aisa (3n—1) x (3n — 1) matrix which depends only on the given rhythm A,

e X = (b,r)" is the vector composed by the coefficients of B(z) and the coefficients
of R;

e ) is the (3n — 1)-dimensional vector defined as

0  ifief0,...,2n—2),
yi:{ { }

1 otherwise.

Finally, in order to ensure that B(z) and R(z) are polynomials with coefficients in {0, 1},
we will require b; and r; to be binary variables, i.e. they can only assume value 0 or 1.

4.3.2 Aperiodicity constraints

We impose now the aperiodicity constraints. Let us assume n = pi"p§? ... p?VN . Without
loss of generality, we can suppose

pr <p2 <---<pPN

and, therefore, if we define the set of the maximal divisors of n as M, := {m; =
n
o Ye=1,..N, we have

my <my—1 <-:---<<my.

According to Remark [5] to verify if the rhythm B is periodic or not, it is sufficient to
check its periodicity only for periods in M,. We can characterize the periodicity with
respect to a given period m; as it follows.

Proposition 10. Let B be a rhythm in Z,, let b be the binary vector containing the
coefficients of pg, and let m; € M,,. Then, B is mj-periodic if and only if

i1 p; if ieB
D7 bigrm, = (4.3)
r=0

0 otherwise,
for each i =0,...,m; — 1.

Proof. Let us assume B c Z,, is mj;-periodic. We prove that (4.3|) holds. By Definition
[7, we have that

ieB <= i+rmjeB (4.4)
for each r = 0,...,p; —1. Let b be the vector of the coefficients of pg. By equation (4.4),
we get

bi =0 = b(i+rm]-) mod n = 0 for r = 0, sy P — 1, (45)

bi=1 <= b =1 forr=0,...,p; — 1, (4.6)

i+rm;) modn
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therefore, for any given ¢ = 0,...,m; — 1, we have

pj—1 bj if ieB

Z bi-i—rmj =
r=0

0 otherwise,

which concludes the first half of the proof.
Let us now assume that (4.3)) holds and fix ¢ € {0,...,m; — 1}. If

pj—1

Z bi+rmj =0,
r=0

we have b;irm; = 0 for each r = 0,...,p; — 1, since each by is either equal to 0 or 1,
which is equivalent to (4.5)). Similarly, if

pj—1
Z bi+rmj =Dy
r=0

we have b;y,m; = 1 for each v = 0,...,p; — 1, which is equivalent to (4.6)). Since (4.5)
and (4.6)) are equivalent to the m -periodicity of B, the thesis follows. O

Let us take m; € M,,. To impose that the rhythm B is not m;—periodic, we introduce
the family of auxiliary variables

Each family &%) is composed of binary variables subject to the following constraints:

pi—1 ,

Z bi+kmj _iji(]) <pj—1, (4.7)
k=0

pj—1

D7 biskm, —pU7 >0, (4.8)
k=0

mj;—1

Yo <™, (4.9)
i=0 Pj

for each j such that pjjnp and for each i = 0,...,m; — 1, where np is the cardinality of
B.

Since Z?: _01 bitkm; < pj, condition (4.7) assures us that Ui(j )= 1if

pi—1

Z biJrkm]' =DPj-
k=0
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Condition (4.8)) assures us that U W _q only if

(2

pj—1
> bivkm, = pj-
k=0

Therefore, conditions (4.7)) and (4.8) combined, assure us that

pj—1

U,L(]) =] Z bi+kmj :pj'
k=0

Since Y1) b = np, if Z;i’vofl Ui(j ) = 52, it follows that

P p it U7 =1

Z bi-i—kmj =
k=0

0 otherwise,

and, hence, according to Proposition @, B is mj-periodic. By adding the constraints
(4.7)), (4.8), and (4.9) to the linear system, we, therefore, remove all the periodic solutions
from the feasible set.

Remark 6. To improve efficiency, we remove a family of auxiliary variables Y(7) :=
{Ui(J)} imposing

mj—1 n
o< -2 -1, (4.10)
i=0 Pj

Indeed, if B = (bo,b1,...,bp—1) is not mj;—periodic, there must exist a translation of

B such that (4.10) holds. Since UM is the family containing the highest number of
variables, and therefore the one more memory demanding, we choose to remove it.

Conditions (4.7)—(4.9) and (4.10) are linear for any j, therefore, we can add them
to the system described in (4.2]) and obtain the following Integer Linear Programming

(ILP) problem
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min  O({b;},{ri},U)

i
s.t. Z ai_jbj —r; =0
j=0
i+1

Z anf(ifj)bj —Titn = 0
=0

T +7Tjpn =1

mo—1

Zb 37—1

p]—l

> biskm; —psU <pj— 1,
k=0

pj—1 ,
3 biskm, — U7 >0,

bo = 1,
by € {0,1}
Tk € {071}
Y e {0,1}

Vie{0,...,n— 1},
Vie{0,...,n—2},
Vje{0,...,n—1}
Vie{l,...,N},
ViE{O,...,mj—l},
Vie{l,...,N},
Vie {0,...,mj — 1},
Vie{l,...,N},
Vie{O,...,mj—l},
Vke{l,...,n—1},
Vk e {0,...,2n — 2},
Vie{l,...,N},
Vie{0,...,m; — 1},
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(4.11)

(4.12)

(4.13)
(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where O is a suitable linear function to minimize. The constraint (4.19) allows us to
reduce the size of the feasible set by removing a degree of freedom from the possible

solutions. We denote the model just introduced as the Master Problem (MP).

Theorem 18. Given an inner rhythm A inZ, let Y =

the rhythm associated to the characteristic polynomial

is aperiodic and tiles with A.

(b,r) be a solution of MP. Then,
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Remark 7. The set of constraints of the MP fully characterize the possible aperiodic
rhythms tiling with a given rhythm A. The functional O does not play any role; however
it can be used to induce an order or a selection criteria on the space of solutions. For
example, let us consider the following functional

2n—2

O(b,r) := Y i°b;.

=0

This functional prefers the tiling complements whose first components are as full as
possible of 1’s. Choosing the right functional O can help in discerning, among all the
possible tiling complements of the given rhythm A, the ones we want to find. However,
since the aim of our tests is to find all the possible tilings, we will not need to impose
any selection criteria and, therefore, we set

O(b,r) := 0.

Once we find an aperiodic rhythm B® tiling with a given rhythm A, we can remove
BW from the set of all possible solutions D4 and obtain a new set of feasible solutions
DS). Let us denote with M P™) the restriction on DS) of M P and call B the solution
of MPW, we can then remove this solution from DS), define the set Df), and define
MP® | starting the whole process again. Repeating this process until we find an unsolv-
able problem, we retrieve all the possible solutions of the original Master Problem and,
therefore, we generate all the aperiodic rhythms tiling with the rhythm A.

Let us now detail how to cut out from the feasible set the solution found at each
iteration. Let B() be a rhythm tiling with A and let b = (by,...,b,_1) be the coeffi-
cients of its characteristic polynomial. We denote with I(}) the set of non-zero coordinate
indexes of the vector b that is

W .= {z’e{(),...,n—l}‘bizl}.

We then define a new linear system by adding the constraint

n
PSR (4.20)
iel() A
or equivalently
Moo < b, (4.21)
i1 A

to the MP. By solving this new problem, we find a new solution b = b(1) of the initial
tiling problem. We iterate this procedure until we find an unsolvable problem. All the
solutions found during this process are stored in memory and given as final output of the
algorithm.

In Algorithm [T} we sketch the pseudocode of this algorithm.
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Input :rhythm A
Output: S, list of Aperiodic rhythms B, such that A® B = Z,
z* = OPT(MP)
add z* to S
while P # ¥ do
add Y,c;, bi < B to (MPY)
Solve (M P®)
Znew = OPT(MP®)

set L« =1, .
add zpew to S
end
return S

Algorithm 1: The Cutting Sequential Algorithm.

Remark 8. Adding the constraints one by one is highly inefficient. Therefore, once we
find a solution, we compute all its affine transformations, which, according to Theorem
are possible solutions and remove them as well. Since we impose by = 1, we consider
only the affine transformations that preserve this constraint.

This procedure, however, is customizable: if we remove only the translations of the
found solution the algorithm will return all the solutions modulo translations. Given
a solution (1) we can remove the affine transformations of a given solution through a
linear constraint. According to , we impose

D7 bagirr) <np — 1 (4.22)
iel(@)

where k runs over all the translations which fix the first position and a runs over the set
of numbers co-prime with n.

Complexity of the Method

To conclude, we analyze the complexity of the system (4.2]). The unknowns to determine
are the 3n — 1 coordinates of the vector (b,r) plus the variables needed to impose the

aperiodicity constraints, Ui(j ), which are

e 0

pePR\{po}

where P, is the set of primes that divide ng. Therefore, we have 3n — 1 constraints for

the feasibility, the 30, given by conditions , , and plus the one given
by condition .

If we want a complete enumeration of all the tiling complements of the given rhythm,
the complexity increases, since we are adding constraints at each iteration. The amount
of constraints to add depends on the equivalence relation we are considering. If we are
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Table 4.1: Number of tiling complements of the aperiodic rhythms tested.

l n ‘ Ra ‘ Rp ‘ n°® of A’s ‘ n° of B’s ‘
[ 72 ] {2,8,9,18,72} [ {3,4,6,12,24,36} | 6@ [ 301 |
[ 108 | {3,4,12,27,108} [ {2,6,9,18,36,54} | 252(30) | 3(1) |
120 [ {2,5,8,10,15,30,40, 120} {3,4,6,12,20, 24, 60} 18 (4) 8 (2)
120 {2,3,6,8, 15,24, 30, 120} {4,5,10,12, 20,40, 60} 20 (3) 16 (5)
144 {2,8,9,16,18,72, 144} {3,4,6,12, 24, 36, 48} 36 (10) 6 (1)
144 {4,9,16, 18,36, 144} {2,3,6,8,12,18,24,48, 72} 6 (2) 12 (9)
{2,3,6,8,12,24, 48,72} 312 (1)
144 {2,9,16, 18,36, 144} {3,4,6,8,12,24, 36,48, 72} 12 (2) 6 (1)
{2,9,16,18, 144} 48 (7)
{3,4,6,8,12,24,48, 72} 156 (9)
168 {2,7,8,14,21, 42, 56, 168} {3,4,6,12,24, 28,84} 54 (8) 16 (3)
168 {2,3,6,8,21,24, 42,168} {4,7,12,14, 28,56, 84} 42 (4) 104 (15)
180 | {3,4,5,12,15,20,45,60, 180} {2,6,9,10,18, 30, 36, 90} 2052 (136) 8 (2)
180 | {2,5,9,10,18,20,45,90, 180} {3,4,6,12,15, 30, 36, 60} 96 (12) 6 (1)
180 {3,4,9,12, 36,45, 180} {2,5,6,10,15, 18,20, 30,60,90} | 1800 (171) 16 (5)
180 {2,4,9,18,20, 36,180} {3,5,6,10,12,15,30,45,60,90} | 120 (18) 9 (2)

looking for all the solutions modulo translation, we add np constraints at each iteration,
since there are exactly np feasible translations preserving the constraint by = 1. If we
search for all the solutions up to affine transformations, the number of constraints added
is np times the quantity of numbers primes to n.

4.3.3 Computational results

We observe that the CS Algorithm is faster than the Fill-Out Procedure. We compare
the two algorithms on rhythms in Z,, for n = 72,108,120, 144, 168, 180. We ran all our
experiments on a ASUS VivoBook15 with Intelcore i7. The algorithm is implemented in
Python using Gurobi v9.1.1, [13].

It is worth of mention that the Fill-Out-Procedure finds every complement modulo
translation, while the CSA can be customized to compute every complement modulo all
the affine transformations. We chose to run our method to compute all the solutions
modulo affine transformation, The experiment we ran is the following: given a rhythm
A, we list every complement. Afterwards, we reverse the problem: we fix one of the
found complements, namely B, and search for all the complements of B. The rhythms
used for our experiments are reported in Table while, in Table we compare the
runtimes of CSA with the runtimes of the Fill-Out Procedure. The CSA is customized
in order to find all the classes modulo affine transformations.

Every time we find a solution, we have to add new constraints to the Master Problem
and solve it again. As a result, the problem we solve gets computationally harder at each
iteration. In Figure [4.3] we report the time required to find the next tiling solution for
two rhythms in Zigg.
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Figure 4.3: Times (in seconds) to find the next solution with CS Algorithm.
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Table 4.2: Runtimes (in seconds) of the CS Algorithm and the Fill-Out Procedure.

IEN Ra \ Rp | CSA A[FP A[CSA B| FP B |
[ 72 ] {2,8,9,18,72} [ {3,4,6,12,24, 36} [ 010 [ 159 [ 0.02 [ 0.33 |
[ 108 | {3,4,12,27,108} [ {2,6,9,18,36,54} | 7.84 [896.06] 0.03 [ 0.72 |
120 | {2,5,8,10,15,30,40, 120} {3,4,6,12,20, 24, 60} 0.27 [24.16] 0.07 | 213
120 | {2,3,6,8,15,24,30,120} {4,5,10,12, 20, 40, 60} 014 [10.92] 0.15 | 3.30
144 {2,8,9,16,18, 72,144} {3,4,6,12,24, 36, 48} 2.93 [8253] 0.06 [ 3.77
144 {4,9,16,18, 36, 144} {2,3,6,8,12,18,24, 48,72} 010 [ 7.13 | 1.71 | 66.27
{2,3,6,8,12,24,48, 72}
144 {2,9,16,18, 36, 144} {3,4,6,8,12,24, 36,48, 72} 0.11 [12.13] 1.08 | 33.39
168 | {2,7,8,14,21,42,56, 168} {3,4,6,12,24, 28,84} 17.61 [461.53] 0.13 | 7.91
168 | {2,3,6,8,21,24,42,168} {4,7,12,14, 28,56, 84} 091 [46.11] 1.94 | 35.36
180 [{3,4,5,12,15,20,45,60,180}  {2,6,9,10, 18,30, 36, 90} 1422.09] >3600] 0.25 [1243.06
180 [{2,5,9,10,18,20,45,90,180}|  {3,4,6,12, 15,30, 36, 60} 48.04 [900.75] 0.11 [ 8.22
180 {3,4,9,12,36,45,180}  [{2,5,6,10,15,18,20,30,60,90} [ 492.18 | >3600| 0.18 | 7.51
180 {2,4,9,18,20,36,180}  [{3,5,6,10,12,15,30,45,60,90} | 8.82 [280.72] 0.29 | 14.34

4.4 The SAT Encoding Algorithm

In this section, we present in parallel a second ILP model and a SAT encoding for
the Aperiodic Tiling Complements Problem that are both used to enumerate all tiling
complements of A in Z,, (see [5]).

Before analyzing the tiling problem, let us introduce the SAT encoding, that is, the
process of transforming a problem into a SAT problem. If such an assignment M exists,
then it is said to satisfy B and we talk about a model of B.

A Boolean formula is in Conjunctive Normal Form (CNF) if the formula is a conjunc-
tion (s) of clauses where each clause is a disjunction (or) of literals and each literal is a
propositional variable or the negation of a propositional variable. There has been a great
deal of effort in devising techniques and creating tools for solving SAT problems, that is,
to determine if a CNF formula is satisfactory and to identify the model of the formula.
We refer to tools such as SAT solvers. Satisfiability is interesting as any problem can be
coded as a CNF formula and a SAT solver can be used to solve the corresponding SAT
problem.

We define two sets of constraints:

1. the tiling constraints that impose the condition A® B = Z,,, and

2. the aperiodicity constraints that impose that the canon B is aperiodic.

4.4.1 Tiling constraints

Given the period n and the rhythm A, let @ = [ag,...,a,—1]7 be its characteristic
(column) vector, that is, a; = 1 if and only if ¢ € A. Using vector a we define the
circulant matrix T € {0, 1}"*" of rhythm A, that is, each column of T is the circular shift
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of the first column, which corresponds to vector a. Thus, the matrix 7" is equal to

a Ap—1 Ap—2 ... Q1
ai aq ap—-1 ... a9

T =
ap—-1 Ap—2 0ap-3 ... Qg

We can use the circulant matrix 7" to impose the tiling conditions as follows. Let us
introduce a literal z; for i = 0,...,n — 1, that represents the characteristic vector of the
tiling rhythm B, that is, z; = 1 if and only if ¢ € B. Note that a literal is equivalent to
a 0-1 variable in ILP terminology. Then, the tiling condition can be written with the
following linear constraint:

D Tywi=1, Vji=0,....n—1 (4.23)
i€{0,...,n—1}

Notice that the set of linear constraints imposes that exactly one variable (lit-
eral) in the set {Z;4+i—j mod n}jea is equal to one. Hence, we encode this condition as
an Exactly-one constraint, that is, exactly one literal can take the value one. The
Exactly-one constraint can be expressed as the conjunction of the two constraints
At-least-one and At-most-one, for which standard SAT encoding exist (e.g., see [7,25]).
Hence, the tiling constraints are encoded with the following set of clauses depend-
ingoni=20,...,n—1:

\/ (xn—(j—z’) mod n) /\ (_'xn—(k—i) mod n V¥V TTn—(1—i) mod n) . (4'24)
JjeA kleA k1

4.4.2 Aperiodicity constraints

In view of Definition (7 if there exists a b € B such that (d + b) mod n # b, then the
canon B is not periodic modulo d. Notice that by Remark |5 we need to check this
condition only for the values of d € D,,.

We formulate the aperiodicity constraints introducing auxiliary variables yq;, 24,

uq,; € {0, 1} for every prime divisor d € D), and for every integer i = 0,...,d — 1. We set
n/d—1 n n/d—1

Ug; =1 < x; =—]v T; =01, 4.25

d,i kz_zo i+kd d kZ:_O i+kd ( )

forall de Dy, i =0,...,d— 1, with the condition

d—1
Dugi<d—1, VYdeD,. (4.26)
1=0
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Similarly to [6], the constraints (4.25) can be linearized using standard reformulation
techniques as follows:

n/d

0< Y @ivnd — yai < 1 VdeD,, i=0,....d—1, (4.27)
= d d
n/d n n

0<Z(1—xi+kd)—dzd,i<3—1 VdeD,, i=0,...,d—1, (4.28)
k=0

Ydi + 2di = Udy VdeD,, 1=0,...,d—1. (4.29)

Notice that when ug; = 1 exactly one of the two incompatible alternatives in the right
hand side of is true, while whenever ug; = 0 the two constraints are false. Corre-
spondingly, the constraint imposes that the variables y4; and z4; cannot be equal
to 1 at the same time. On the other hand, constraint imposes that at least one of
the auxiliary variables uq; be equal to zero.

Next, we encode the previous conditions as a SAT formula. To encode the if and only
if clause, we make use of the logical equivalence between C7 < Cy and (—C; v C3) A
(C1 v —=C3). The clause C} is given directly by the literal w4 ;. The clause Cs, expressing
the right hand side of , i.e. the constraint that the variables must be either all true
or all false, can be written as

n/d n/d
Cy = /\ Tivkd | V /\ Tivkd |, VdeDy.
k=0 k=0

Then, the linear constraint (4.26]) can be stated as the SAT formula:

d
- (ud70 AUGT A A udy(d_l)) = Uq,i, Yd € D,,.

|
—

N
Il
=}

Finally, we express the aperiodicity constraints using

d

|
—

d—1
[(ﬁCQ \Y udJ) A (CQ \% ﬂd,i)] A Ud 1, Vd € D,,. (4.30)

Il
o
~
Il
=}

)

Note that joining (4.23)), (4.27))-(4.29) with a constant objective function gives a complete
ILP Model, which can be solved with a modern ILP solver such as Gurobi to enumerate all
possible solutions. At the same time, joining and into a unique CNF formula,
we get our complete SAT encoding of the Aperiodic Tiling Complements Problem.

4.4.3 Computational results

First, we compare the results obtained using our ILP model and SAT encoding with the
runtimes of the Fill-Out Procedure and of the CS Algorithm. We use the canons with
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Table 4.3: Aperiodic tiling complements for periods n € {72,108, 120, 144, 168}.

" " o | runtimes (s) 4B
prijmprmms FOP | CSA| SAT | ILP

|72 2[2[3]3]2] 1.59 | 010 | <0.01 ] 003] 6]

(18] 2[2[3]3]3] 896.06 | 784 0.09] 0.19] 252 |

oo 2125372 24.16 027 002] 004 18

22 3]5]2 10.92 014 | 0.01] 004| 20

4[2[3[3]2 82.53 293 0.02] 011] 36

g | 2] 23] 3| 4] >10800.00 | >10800.00 | 11.04 | 46.96 | 8640

2 12(3]3]|4 7.13 0.10 | <0.01 | 0.05 6

2 4332 80.04 094 0.02| 008 60

s | 2127372 461.53 1761 [ 0.04] 020[ 54

212 3]7]2 46.11 091 | 002] 007 | 42

periods 72, 108, 120, 144 and 168 that have been completely enumerated by Vuza [30],
Fripertinger [12], Amiot [2], Kolountzakis and Matolcsi [21]. Table 4.3|shows clearly that
the two new approaches outperform the state-of-the-art, and in particular, that SAT
provides the best solution approach. We then choose some periods n with more complex
prime factorisations, such as n = p?¢®r = 180, n = p?qrs = 420, and n = p?¢*r? = 900.
To find aperiodic rhythms A, we apply Vuza’s construction [30] with different choices of
parameters pi, p2, ni, ng, ng. Thus, having n and A as inputs, we search for all the
possible aperiodic complements and then we filter out the solutions under translation.
Since the post-processing is based on sorting canons, it requires a comparatively small
amount of time. We report the results in Table the solution approach based on
the SAT encoding is the clear winner. It is also noteworthy that, from a Music theory
perspective, this is the first time that all the tiling complements of the studied rhythms
are computed (their number is reported in the last column of the two tables).

Implementation Details

We have implemented in Python the ILP model and in PySat [I7] the SAT encoding
discussed in We use Gurobi 9.1.1 as ILP solver and Maplesat [24] as SAT solver.
The experiments are run on a Dell Workstation with a Intel Xeon W-2155 CPU with 10
physical cores at 3.3GHz and 32 GB of RAM.
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Table 4.4: Aperiodic tiling complements for periods n € {180, 420, 900}.

n Dy, pPr| ni| p2| N2| N3 Sil;lt‘l mes (5) LD #B
2125 3| 3 2.57 5.62 2052
31 3|5 2] 2 0.07 0.14 96
180 {36, 60,90} 21213 5| 3 1.25 2.23 1800
2151 3| 3] 2 0.05 0.16 120
2121 3] 3] 5|8079.07| > 10800.00 | 281232
7151 3| 2] 2 2.13 3.57 720
51 7] 3] 2| 2 1.52 4.08 672
719512 3] 2 7.73 16.11 3120
51 71 2] 3| 2 1.63 4.18 1008
71315 2] 2 4.76 7.45 864
3|1 7| 5] 2| 2 12.78 32.19 6720
420 | {60, 84,140,210} 71312 5] 2 107.83 1186.21 | 33480
3|1 7] 2| 5| 2 0.73 2.36 840
7121 5] 3] 2 11.14 21.19 1872
21 71 5| 3] 2 17.31 52.90 | 10080
7123 5| 2 89.97 691.56 | 22320
21 71 3| 5] 2 1.17 4.13 1120
21250 3| 3] 2 43.60 110.65 | 15600
51101 3| 31| 2 107.36 741.79| 15840
900 | {180,300,450} 2191 5| 5] 2 958.58 | > 10800.00 | 118080
6| 3| 5| 5| 215559.76| > 10800.00 | 123840
31 6] 5| 5] 2 486.39 8290.35| 62160
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4.5 Enumerating aperiodic canons

As pointed out by E. Amiot in [3], an application of the Coven-Meyerowitz completion
formula in Proposition [J]is part of an algorithm (due to M. Matolcsi [21], 5]), designed to
catalogue the aperiodic canons in a given non-Hajoés group Z,,. This algorithm allowed
to check the Fripertinger results for n = 72 and n = 108 and to complete the catalogue
for n = 120, n = 144, and n = 168. The idea is to check all possible S4 sets. In light of
the good performance of the SAT Encoding Algorithm, it could be proposed to use it to
search for all the possible aperiodic complements of a given rhythm with a given period.

1. Compute all partitions into two subsets of the set of prime power divisors of n.
Keep (usually) the smaller part, which will be S4 (the other will obviously be Spg).

2. Discard all the partitions that produce only periodic tilings due to condition (T2),
eliminating all sets R4 that either

e make sure that A is periodic, or

e make sure that B must be periodic (remembering that Rp must contain at
least all the divisors of n not in R4).

3. Compute the Coven-Meyerowitz complement B¢y for S4.

4. Find all possible A by completing Boays, using the SAT Encoding Algorithm. Sort
by the different R4 values, keeping a representative for each possibility.

5. For each remaining representative of possible A’s, compute B’s complements with
the SAT Encoding Algorithm, discarding periodic ones.

6. Whatever remains is an aperiodic canon.

4.5.1 The cases n = 180 and n = 200

Let us now apply the algorithm described above and try to complete the enumeration of
the aperiodic canons of period 180.

1. The prime powers that divide 180 are 2, 4, 3,9, and 5. In any tiling A®B = Z1g the
cyclotomic polynomials corresponding to these prime powers must divide exactly
one of A(z) and B(x), according to condition (T1) of [9]. There are 15 possible
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partitions {H4, HB} of the elements {2,4,3,9,5}. The partitions are:

{12,4},{3,9,5}}, {12}, {4,3,9,5}},
12,3}, {4,9,5}}, {14},{2,3,9,5}},
12,9}, {4,3,5}}, {3},{2,4,9,5}},
{{2,5},{4,3,9}}, {19}, {2,4,3,5}},
{{4,3},{2,9,5}}, {{5},{2,4,3,9}},

{{4,9},{2,3,5}},
{{4,5},{2,3,9}},
{{3,9},{2,4,5}},
{13,5},{2,4,9}},
{{9,5},{2,4, 3}}.

2. No partition produces periodic tilings due to condition (T2) of [9]. Therefore, in
this step, we can not discard any case.

3. We list out all subsets Boys © Zigo such that Beyy tiles Zqgp and ®p(z) divides
Bow(x) for all h e HBowm:

(2015 @ 6015 @ 3615), (451, @ 2015 @ 6013 @ 3615),
(901, @ 6015 @ 3615), (901, @ 2015 @ 6013 @ 3615),
(901, @ 2015 @ 3615), (451, @ 901, @ 6013 @ 3615),
(901, @ 2015 @ 60I3), (451, @ 901, @ 2013 @ 3615),
(451, @ 6015 @ 3615), (451, @ 901, @ 2013 @ 6013),
(451, @ 2015 @ 36I5),
(451, @ 2015 @ 60L3),
(451, @ 901, @ 3615),
(451, @ 901, @ 6013),
(45T, @ 901, @ 2013).

4. We search all possible A’s by completing the Bcoyy’s using the SAT Encoding Algo-
rithm and keep a representative for each possible R4 value (represented in Figure
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L4

R4 = {2,3,6,10,12, 15,18, 30, 60, 90},
A = {0, 20,40, 45, 65, 85},

R = {2,9,6,10, 18,30, 36,90},
A = {0,12,24, 45,57, 69},

Ra = {4,3,6,12,15,30, 36,60},
A = {0, 18,20, 38, 40, 58},

R4 = {2,5,6,10, 15,18, 20, 30, 60, 90},
A = {0,12,24, 36, 45, 48, 57, 69, 81, 93},

R4 = {3,5,6,10,12, 15, 30,45, 60, 90},
A = {0, 18,20, 36, 38, 40, 54, 56, 58, 72, 74, 76,92, 94, 112}.

5. For each representative of possible A’s found in the previous step, we then compute
complements B discarding periodic ones. The possible Rp are the following:

Rp = {4,9,5,6,12,18, 20, 36, 45, 180},
Rp = {4,9,5,6,12,20, 36, 45, 180},
Rp = {4,9,5,6,18, 20, 36, 45, 180},
Rp = {4,9,5,6,20, 36,45, 180},

Rp = {4,9,5,12, 18,20, 36, 45, 180},
Rp = {4,9,5,12,20, 36,45, 180},

Rp = {4,9,5,18,20,36,45, 180},

Rp = {4,9,5,20, 36,45, 180},

Rp = {4,3,5,10,12, 15,20, 45, 60, 180},
Rp = {4,3,5,12, 15,20, 45,60, 180},

Rp = {2,9,5,10, 18,20, 45, 90, 180},
Rp = {4,3,9,12, 36, 45},

Rp = {2,4,9,18,20, 36, 180}.

6. It turns out that the aperiodic canons we get at the end of the research are exactly
the extended Vuza canons of period 180. Note that all the aperiodic rhythms B such
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that Rp is one of the 8 types including Sp = {4,9, 5} tile with aperiodic rhythms A
such that R4 = {2, 3,6, 10,12, 15, 18, 30,60,90}. This means that elements 6, 12, 18
in those Rp’s can be considered indices of non-necessary cyclotomic polynomials
dividing B(x). Similarly, the aperiodic rhythms B such that Rp is one of the
2 types including Sp = {4, 3,5} tile with aperiodic rhythms A such that R4 =
{2,9,6,10,18,30,36,90}, and so 10 in those Rp’s is the index of a non-necessary
cyclotomic polynomial.

Remark 9. As pointed out by E. Amiot in [3] and as can be verified applying
Matolcsi’s algorithm described above, the necessity of condition (T2) also holds for
all aperiodic rhythms in Zgg.

The order of the next non-Hajos group is n = 200. It is a simple case in which n = p3¢?,
with p and ¢ primes; then, we are also sure that condition (T2) is necessary for tiling, for
all rhythms in Zsogg. Therefore, from the point of view of the construction of extended
Vuza canons, this case is analogous to n = 72 and n = 108 (see Figure .

Applying Matolcsi’s algorithm in combination with the SAT Encoding Algorithm, we
found also in this case that all the aperiodic canons possible with period 200 are exactly
the extended Vuza canons of Chapter

Remark 10. Thus, the catalogue of aperiodic canons is complete for all (non-Hajos)
groups with order n < 200 and it coincides with Table

4.5.2 The case n = 900 with S, = {2,3,5}

As we have seen in Table and in Table the possible choices of the parameters pq,
ni, p2, n2, and ng for the period n = 900 are numerous and most of them provide an
extremely high number of extended Vuza canons. At the moment, it is hard to verify
the number of every combination of parameters through an algorithm for the exhaustive
research of complements.

However, studying the partition {HA,HB} = {{2,3,5},{4,9,25}} of prime powers
dividing 900, we were able to calculate the number of all aperiodic rhythms tiling with
the Coven-Meyerowitz complement

Aoy (x) = Pg (:c225) i (mIOO) i3 (x36) .

The SAT Encoding Algorithm allowed us to compute the number of all tiling complements
of Acar, which turned out to be 303360. As underlined in Remark @] Acjs can in this
case be part of an extended Vuza canon as “inner rhythm” (the one for which n ¢ Ry)
according to the construction:
A=A10A 0L
= ngpin1 Ay @ ngponaAs ® L,

where parameters pi,n1, p2, n2, ng and factors A;, Ay, L are defined as in Chapter |3 In
light of this, we have three possibilities.
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180.

Figure 4.4: n

= 45l @ 2015.

(a) Acm

18I, @ 201;.

(c) A

45T, @ 1215.

(b) A

2013 & 18I.

(e) A

450 @ 12I5.

(d) A

180.

anons of period n

epresentations of all possible A’s for aperiodic c

Lattice r
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Figure 4.5: n = 200. Acyr = 501, @ 8l3.

Lattice representation of any rhythm A of any aperiodic tiling rhythmic canon with period n = 200.

1. (p1,n1,p2,n2,n3) = (2,2,3,3,25). A; = 1004;, Ay = 225A4,, L = 361;.
2. (p1,n1,p2,n2,n3) = (2,2,5,5,9). A; = 36A1, Ay = 22545, L = 1001;.
3. (p1,n1,p2,n2,n3) = (3,3,5,5,4). A] = 36A1, Ay = 10045, L = 2251,.

We compute the extended Vuza complements B’s in each case. Recall that

-k () ()
P2

qu

#m LS (2) (70 ).

p1U|p1
L #Vi=1. #Vo=1. #K =5. |K|=5. U1 =25-2-2-3-I3. Uy =25-3-3-2- L.

B= ((U1@25-2.f/21@{ki,...,k?g}) e
o (mes-2 e (k) o
s (@253 W @ k), k) L
o (e s e (L)) L5208 L@ Ky).

The number of extended Vuza complements of Aoy in Zggo is

n "
1<i<m

4B =" S (mipany - #0)" - (mapins - #%)tﬁ'(nmzﬁﬁ-('ii') — 281232,

where (t;1,ti2,t;3), with ¢ = 1,..., m, represents a possible partition of the remain-
der classes modulo |K| of Zggp.
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2. #VI =3 #Vp=2. #K =3. |K|=3. U, =9-2-2.5-I5. Uy =9-5-5-2 1.
B= ((U1@9-2-f/21@{k%,...,kﬁl})u---
oo e e ) o
u((U2@9-5.Vll@{k;,...,kgm})u-..
U <U2@9~5-f/{l@{k;’"”h—l“,...,k'2K2'})) L(9-2-5 s @ Ks).

Similarly to the previous case, the number of extended Vuza complements of Ay
in Zgoo is #B = 12600.

3. #Vi=16. #Vo =8 #K =2 |K|=2. U =4-3-3-5-15. Uy =4-5-5-3-13.
B (@43 ek, .k} o
U <U1@4-3-f/2j@{klf’”l,...,k‘lKl'}))u
o((@d5 W@k, k) o
o (ess e fhrtt L),

The number of extended Vuza complements of Acps in Zggg is #B = 1920.

It is interesting to note that the number of extended Vuza complements for each of the
three individual cases for n = 900 analyzed above, corresponds to the number of extended
Vuza complements of Aj,, = ngplnlfh ® ngpQTLQAQ for a new period n’ = pinipanany
such that nf = ng/a and o = |L| = ng/|K|. Let us see how to construct the Vuza
complements respectively in the cases n’ = 900/5, n’ = 900/3, and n’ = 900/2. Note,
first of all, that #V; and #V5 will not change, since they are independent of the parameter
ns.

L #Vi=1. #Vo=1. K' =Z5. U =5-2-2-3-13. Uy=5-3-3-2-15.
B = ((U{@5-2-1721@{k},...,k§1})u..-
U <U{®5~2-V2j®{klf*”l,...,k'lKl'}))u
o((m@s3- W ek, k) o
U <U§®5-3-f/1h®{k?h‘lﬂ,...,k'f?‘})) L(5-2-3-Tos @ K3).

The number of extended Vuza complements of A’C a0 Zigo is

1 ~ N\ ti1 ~ \ ti2 3 ns/o

#B =5 > (mpona- #2) " (napins - #V) - (mama)- < / ) = 281232,
a 1<ism i

where (t;1,t;2,t;3), with ¢ = 1,..., m, represents a possible partition of the remain-

der classes modulo |K'| = nfy = | K| of Zygy (see Figure [4.6).
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2. #Vi =3. #Vh =2 K' =23 U, =3-2-2-5-I5. Uy =3-5-5-2-Ty.

B = ((U{@3-2~1721®{k},...,kl11}> e
U (U{@?,-z-ffg@{/.clf*“,...,k'fl'}))u
L ((U§®3-5.121@{@,...,@"1}) e
L (U§®3-5-f/l’l@{k?h*1+1,...,k|2K2‘})) L(3-2-5 Tos ®K3).

The number of extended Vuza complements of Al in Zso is therefore #B' =
12600 (see Figure [4.7).

3. #Vi =16 #Vo =8 K' =Zy. U =2-3-3-5-15. Uy =2-5-5-3-1T3.

B = ((U{@z.&ffg@{ki,...,kil}) e
U (U{@Q-?)-f/zj@{kzllj’lﬂ,...,k'lKl'}))u
s((m@25- W ek, k) o

ooz et k).

The number of extended Vuza complements of Ay, in Zgso is #B' = 1920 (see

Figure .

What we have seen is the effect of ng-operation applied to a Vuza canon of period
pinipanang to get an extended Vuza canon of period pinipang(fns), in combination
with the addition of an appropriate set L that makes the cardinalities of the old and new
sets K identical. Note that the number of all tiling sets with L = 7l (s prime) in Z,, is
s".

Remark 11. Finally, note that the extended Vuza motifs B tiling in Zggg with Acyr =
nspini Ay @ ngpansds ® L (such that S; = {2,3,5} and L is an extension of L), are
the same B’s tiling with A’s which differ only for different extensions of L (see Figures
(b), (¢), (d), and (e) in Figures [1.7, and [£.8). The reason lies in the fact that the
three summands of B(x) always have in common all the cyclotomic factors with indices
grater than ng which are not factors of A(z), whatever K (z). Therefore, in our case, all
cyclotomic polynomials with indices multiple of ¢ | ng and not of n3 are always divisors
of B(z).

Let us now go back to the 303360 aperiodic tiling complements calculated with the
SAT Encoding Algorithm. The sum of the extended Vuza complements of the same
Acpy turns out to be 281232 + 12600 + 1920 = 295752 < 303360. Our attention is
then drawn to the 7608 exceeding rhythms. It is easy to prove that these rhythms have
characteristic polynomials with factorisations in cyclotomic polynomials that cannot be
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achieved through the Vuza construction, nor the extended Vuza algorithm. The set Rp
for all these 7608 rhythms is in fact given by

Rp = {4,9,25,36,100, 225, 900},

which does not correspond to any extended Vuza rhythm as pointed out in Remark
Note that condition (T2) holds also for these rhythms.

A nice characteristic is that there is no equirepartition of any of them modulo some
divisor of n; that is to say when (w.l.0.g.), the rhythm is not divisible by some ¢. Lagarias
and Szabo, in [22], were the first who exhibited tilings which have this feature. In fact,
they found the smallest known aperiodic canon without equirepartition for n = 900,
and the outer rhythm of this canon is one of the 7608 aperiodic rhythm we are talking
about. In Figure [£.9] the lattice of the 7608 aperiodic with no equirepartition rhythms
is represented: it consists of 8 vertices of the lattice cube of 900 (all except, of course,
vertex 1).

In their paper Lagarias and Szabo pointed out that the rhythm they found, although
less regular than others, gives rise anyway to a quasiperiodic canon (i.e. a canon of the
form A® B = Z,, such that there exists a subgroup H = {h; = 0, hg, ...} and a partition
B = uB; with A+ By + hy = A + B;). In their case, H = {0,300, 600}.

The quasi-periodicity conjecture, originally made by Hajos, states that every canon
is in fact quasi-periodic (because either A or B admits the above type f partition).

It is worth noting that all 7608 complements (the one found by Lagarias and Szabo
included) admit a partition as in the above definition, and are thus quasi-periodic, with
respect to each of the 3 possible subgroups Hy = {0,450}, Hs = {0,300,600}, and
Hs; = {0,180, 360, 540, 720}. Indeed, they usually admit several such partitions; they
therefore offer no counterexample against the quasi-periodicity conjecture.
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=900. A; ® Ay = 451 @ 2015.

Figure 4.6: n
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representations of tiling complements of the 281232 extended Vuza rhythms for p;
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=3,
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2251, @ 3615.

Figure 4.7: n = 900. A1 ® Ao
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Lattice representations of tiling complements of the 12600 extended Vuza rhythms for p; = 2,
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10015 & 3615.

Figure 4.8: n =900. A1 ® Ao
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Figure 4.9: n = 900. Aoy = 22515 @ 10015 @ 3615.

Lattice representations of the tiling complements of the 7608 aperiodic rhythms with Rp =
{4,9,25, 36,100, 225, 900}.
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Table 4.5: Number of extended Vuza canons for n = 900, with ns € {2,3,5,6, 10, 15}.

[ [ [ po [ no [ n3 ] L [ #K | Sa | #B |
2 |25 3 3 | 2 {0} 1 | {3,5,25} 15600
25| 2 | 3 | 3 | 2 {0} 1 (3,4} 67783088736
5 |10 3| 3 | 2 {0} 1 {3,4,5} 15840
105 | 3] 3|2 {0} 1 (3,5} 235200
219 |55 | 2 {0} 1 13,5,9} 118080
91 2 | 5] 5 | 2 {0} 1 1,5} 1302000
316 | 5] 5 | 2 {0} 1 13,4,5) 62160
6 | 3|55 | 2 {0} 1 3,5} 123840
3125 2] 2 ] 3 {0} 1 | {2,5,25) 870000
25| 3 | 2| 2 | 3 {0} 1 2,9} 405323290006272
5 |15 2| 2 | 3 {0} 1 {2,5,9} 585900
5] 5| 2| 2| 3 {0} 1 2,5} 3572152200
26 | 5| 5 | 3 {0} 1 {2,5,9} 606526200
6 | 2| 5] 5 | 3 {0} 1 (2,5} 181892400
314 5] 5 |3 {0} 1 12,4,5) 15859200
I3 5] 5] 3 {0} 1 15,9} 21816000
31121 2] 5 {07 1 | {2,325} 30487590000
L] 3225 {0} 1 2,3} 6199976956848428880
592 2| 5 {0} 1 12,3,9} 14392209600
9 | 5 | 2] 2| 5 {0} 1 (2,25} 9397268160000
2 |10 3| 3 | 5 {0} 1 | {2,3,25) 28101810330000
0] 2 ]3] 3|5 {0} 1 2,3} 19135986535691625600
5 4|3 3 | 5 {0} 1 12,3, 4} 1290026373120
115 | 3] 3] 5 {0} 1 {3, 25} 221859000000
2] 35 5 | 6 {0} 1 (5,9} 1198799538300000
213 5|5 | 6 {0, 17 2 12,5,9} 619200
213 5|5 | 6 10,1, 2} 3 {3,5,9} 180
21355 | 6 10,3} 3 {2,5,0} 2476800
21355 | 6 10,2, 4} 9 {3,5,0} 1440
312 5] 5|6 {0} 1 4,5} 4261202400000
312 5] 5|6 {0, 1} 2 {2,4,5} 98400
312 5] 5|6 {0,1,2} 3 {3,4,5} 240
312 5] 5|6 {0,3} 8 {2,4,5} 393600
312 5] 5 |6 10,2, 4} 9 {3,4,5} 720
2 5] 3] 3 |10 {0} 1 {3, 25} 70815038895648196875000
2 | 5| 3| 3 |10 {0, 17 2 | {2,3,25) 7733880000
2 1 5 | 3| 3 | 10] {01,234} 5 | {3,525 120
2 1 5| 3| 3 |10 10,5} 32 | {2,3,25) 123742080000
2 | 5 | 3| 3 | 10] {0,24,6,8 | 25 | {3,5,25} 600
51 2| 3| 3 |10 {0} 1 3,4} 358259231012762271522516
5 2| 3| 3 |10 {0, 1} 2 12,3, 4} 12015371520
5 2 | 3| 3 | 10| {0,1,2,3,4} 5 {3,4,5} 96
5 2] 3| 3 |10 {0,5} 32 {2,3,4} 192245944320
5 2 | 3| 3 | 10| {0,2,4,68 | 25 {3,4,5} 480
3152 215 {0} 1 {2, 25} 39058645298760000000000000
315 | 2] 2|15 {0,1,2} 3 | {2,3,25) 9540000
315 | 2] 2 |15 {0,1,2,3,4} 5 | {2,5,25) 1800
315 |2 2|15 {0,5, 10} 243 | {2,3,25}) 772740000
315 | 2] 2 | 1510360912} | 125 | {2,5,25} 45000
51 3 2| 2 |15 {07 i 12,97 | 2922314149256236917556396032
51 3 2 2 |15 10,1, 2} 3 12,3,0} 21792240
5 3| 2| 2 |15 {01,234} 5 {2,5,9} 2052
5 3] 2| 2 |15 {0,5, 10} 243 | {2,3,9} 1765171440
5 | 3| 2| 2 |15 ] {0,3,6,9,12} | 125 | {2,5,9} 51300
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Table 4.6: Number of extended Vuza canons for n = 900, with n3 € {4,9,25}.

|

|

B

D

|

|

P1 ny P2 no ns #B
5 5 3 3 4 {0} 1 {3,5} 4393656000
5 5 3 3 4 {0, 1} 2 {2,3,5} 1920
5 5 3 3 4 {0, 2} 4 {3,4,5} 3840
5 5 2 2 9 {0} 1 {2,5} 492531744599996000
5 5 2 2 9 {0, 1,2} 3 {2,3,5} 12600
5 5 2 2 9 {0, 3,6} 27 {2,5,9} 113400
2 2 3 3 25 {0} 1 {2, 3} 4490273576208113571719324814532411392
2 2 3 3 25 {0,1,2,3,4} 5 {2, 3,5} 281232
2 2 3 3 25 {0,5,10, 15, 20} 3125 {2, 3,25} 175770000

95
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4.6 Testing necessity of condition (T2)

As mentioned in Section [4.3] we wanted to test the CS Algorithm and the SAT Encoding
Algorithm not only to find all the complements of a given aperiodic rhythm for a certain
period n of the canon. A second objective was to try to test some "critical" rhythms
which could be candidates for a non-T2 aperiodic canon.

We have therefore created a short routine in Wolfram Mathematica capable of pro-
ducing a 0-1 product A(z) of cyclotomic polynomials which had among its factors at
least one whose index’s prime power factors were not in R, by testing the divisibility by
the Coven-Meyerowitz complement characteristic polynomial. Such A(z) is by construc-
tion overloaded with superfluous cyclotomic factors; hence it may be hoped that some
complements B(z) will lack at least one product of elements of Sp in their Rp, i.e. (T2)
might be false though A® B = Z,,. Therefore, we were interested in determining whether
a given rhythm A admits an aperiodic tiling complement B. For this reason, being able
to verify the tiling property of a rhythm A in a reasonable amount of time is important.

In Table we report the rhythms tested with our method. The runtimes required
to determine the non-existence of an aperiodic complement vary in a range from 1 minute
(for the rhythms in Z1950, Zes10, and Zgspp) up to 10 minutes (for the rhythm in Za7995).

Table 4.7: Rhythms with superfluous cyclotomic factors checked.

n Rhythm tested
1050 | {0,15,30, 35,45, 60, 70, 75,90, 105}
2310 | {0,5,6,10,12,18,24, 26,30, 31,36}
6300 | {0,2,4,5,6,7,8,10,12,350, 352, 354, 355, 356, 357, 358, 360, 362}
27225 | {0,9,15,18,24, 27,30, 36,39, 45, 54, 3025, 3034, 3040, 3043, 3049, 3052, 3055, 3061,
3064, 3070, 3079, 6050, 6059, 6065, 6068, 6074, 6077, 6080, 6086, 6089, 6095, 6104}
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Figure 4.10: n = 1050. R4 = {2, 10,21, 25,50, 105}.

33

L]
VR

Lattice representation of the non-tiling rhythm A = {0, 15, 30, 35,45, 60, 70, 75,90, 105}. No prime
power dividing 21 or 105 (in blue) is in S4.
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Figure 4.11: n = 6300. R4 = {3,4,9, 10, 20,28, 100, 140, 700}.
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Lattice representation of the non-tiling rhythm A = {0,2,4,5,6,7,8, 10,12, 350, 352, 354, 355, 356,
357,358,360, 362}. No prime power dividing 10 (in blue) is in Sa.
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