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Abstract
Identifying the musical motifs present in a composition is a fundamental as-
pect of our current understanding of musical analysis. Using mathematical
formalism to discover musically significant recurring patterns in a piece can
thus help to assist and refine musical analysis. While first attempts to deal with
this problem have been based on a string-type representation of music, further
developments have shown the advantages of using a geometric representation.
Using such a representation, point-set algorithms can be designed in order to
discover certain classes of patterns within a piece. Furthermore, recent devel-
opments have shown that the tools of mathematical morphology can be used
to devise such algorithms. So far, mathematical morphology has been used
for the discovery of patterns and their exact occurrences within a composi-
tion. In this master’s thesis, we propose a mathematical formalism with the
purpose of discovering patterns and their occurrences with variations in pitch
and rhythm. We define three operations based on morphological erosion: the
Opening-less Variational Erosion (or OVE), the Pivotal Variational Erosion
(or PVE) and the Intersectional Variational Erosion (or IVE). Each of these
operations holds properties that allow us to find patterns and their occurrences
with variations in a composition. We then apply our findings to a specific case:
the fugues from Bach’s Well-Tempered Clavier. Two algorithms, one based on
the OVE and the other based on the PVE, are designed in order to identify the
subject of the fugues. Both algorithms are able to do so consistently, as well
as identifying some relevant truncated instances of the subject.

Keywords: Musical Motifs, Musical Variations, Mathematical Morphol-
ogy, Point-Set algorithms, The Well-Tempered Clavier.
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Sammanfattning
Att identifiera de musikaliska motiv som finns i en komposition är en grund-
läggande aspekt av vår nuvarande förståelse av musikalisk analys. Att använda
matematisk formalism för att upptäcka betydelsefulla återkommande mönster
i ett musikverk kan därför bidra till att underlätta och förfina musikalisk analys.
De första försöken att hantera detta problem har baserats på en strängbaserad
representation av musik, men vidareutveckling har visat fördelarna med att
använda en geometrisk representation. Med hjälp av en sådan representation
kan algoritmer utformas för att upptäcka vissa klasser av mönster i ett verk.
Den senaste utvecklingen har dessutom visat att verktygen inom matematisk
morfologi kan användas för att ta fram sådana algoritmer. Hittills har matema-
tisk morfologi använts för att upptäcka mönster och deras exakta förekomst i
en komposition. I denna examensarbete föreslår vi en matematisk formalism i
syfte att upptäcka mönster och deras förekomst med variationer i tonhöjd och
rytm. Vi definierar tre operationer baserade på morfologisk erosion: Opening-
less Variational Erosion (eller OVE), Pivotal Variational Erosion (eller PVE)
och Intersectional Variational Erosion (eller IVE). Var och en av dessa ope-
rationer har egenskaper som gör att vi kan hitta mönster och deras förekomst
med variationer i en komposition. Vi tillämpar sedan våra resultat på ett speci-
fikt fall: fugorna från Bachs Wohltemperirte Clavier. Två algoritmer, den ena
baserad på OVE och den andra baserad på PVE, är utformade för att identifiera
subjektet i fugorna. Båda dessa algoritmer kan göra det konsekvent och även
identifiera några relevanta trunkerade instanser av subjektet.

Nyckelord: Musikaliska motiv, Musikaliska variationer, Matematisk mor-
fologi, Punktuppsättningsalgoritmer, Das Wohltemperierte Klavier.
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Chapter 1

Introduction: Musical Patterns
and Mathematical Spaces

In the first chapter of his seminal book Harmony [1], H. Schenker identifies
the motif as the fundamental building block of music as an art form. For the
music theorist, the underlying idea behind the motif is that of repetition: "only
by repetition can a series of tones be characterized as something definite" (p.5).
It is only through repetition that a bundle of notes can become identifiable as an
individual motif, and be endowed with some sort of associative and aesthetic
quality.

Though the work of H. Schenker has been undergoing critical reevalua-
tions in academic circles for its overreliance on the western classical canon
to explain music as a whole, it seems that this fundamental idea as become
ingrained in our current understanding of music, as many music psychologists
and music analysts have underlined that identifying the significant repetitions
in a piece of music is essential to achieve a meaningful interpretation of it [2,
3, 4, 5, 6].

Therefore, the task of finding repeating patterns in a musical piece from
its symbolic representation is a meaningful one. By symbolic representation,
we designate any set of symbols that communicates the way a musical piece
should be performed, e.g. sheet music or tablature. Knowing how to perform
such a task could be used to assist musical analysis and detect previously un-
seen underlying structures in some pieces. If that is what we see to accomplish,
the first question we need to ask ourselves is of course: what is a repetition ?
More precisely, when can we consider that two sets of tones are perceived as
"the same" ?

Such a broad question, which would mobilize notions in psychology, acous-
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tics and music theory is evidently outside of the scope of this thesis. However,
for our purposes, we point out that a repetition can be generally viewed as a
transformation. The most straightforward type of such a transformation is of
course the transposition, where a set of tones is transcribed in a higher or lower
register. But musical motifs can also be truncated, augmented, diminished, in-
verted, reversed, embellished, and so on. As such, we can already identify a
link between the notion of repetition in music and geometry through this broad
concept of "transformation". In this thesis, we are mainly interested in tonal
and rhythmic variations of a musical pattern, namely the case of repetition
where of the pattern (or some of its notes) presents some variations either in
tone or in rhythm.

The problem of finding the repetition of musical patterns is not a new
one. The first attempts at solving this problem rest upon a string-based ap-
proach, wherein it is assumed that the music to be analyzed is represented by
a string of symbols. The algorithms developed within this framework gener-
ally suffer from a few weaknesses. First, their scope are generally limited to
monophonic sources and voiced polyphonic sources (a.k.a music that can be
viewed as a superposition of voices), and they cannot be used for unvoiced
polyphonic music. Thus, though they can be very useful for some specific
types of music, such as fugues for example, they cannot be used in a general
case. Second, to compute the similarity between patterns, they generally use
the edit-distance which is typically not capable of finding a match between a
pattern and a highly-embellished variation of it. A typical example of such an
approach can be found in P.Y. Rolland’s FlExPat program [7].

The introduction of a multi-dimensional framework, wherein every note
is represented by a point in a space, allowed for better results. By defining
classes of repeating patterns, such as Maximal Translatable Patterns (MTP) or
Maximal Translational Equivalence Classes (MTEC), one can devise methods
in order to find elements of those classes. Notably, many such methods are
based on the SIA algorithm, which is able to compute the MTPs of a point set
[8]. This approach is generally combined with a set of heuristics that allows
us to select musically interesting repeating patterns.

Recent developments, notably the work of P. Lascabettes, have brought to
light the link between the point-set algorithms and mathematical morphology,
a theory based on geometry and lattice theory generally employed for ana-
lyzing geometrical structures in images. More specifically, it was shown that
patterns could be found using a morphological operation called erosion. What
is particularly interesting with this approach, is that it highlighted the duality
between the problems of finding a pattern and its occurrences. Morphological
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erosion gives us an operation that loops between the set of points describing a
pattern and the set of points describing its occurrences, meaning that you can
deduce one from the other.

It is within this framework of mathematical morphology that our contribu-
tion falls. Indeed, one limitation we meet with this approach is that it doesn’t
take into account variations in the pattern. Morphological erosion allows us to
find transpositions of a pattern within a musical piece, but as we have pointed
out before, the repetition of a pattern encompasses other types of transforma-
tions. Our main research question for this thesis is therefore the following:
how can we find occurrences of a pattern with variations using the tools of
mathematical morphology ? The objective is to provide a framework that is
able find musical motifs and their variations given a certain approximation
while keeping the looping structure that allows to deduce a pattern from its
occurrences and vice-versa.



Chapter 2

State of the Art

This chapter reviews the main topics that constitute the framework for our
work. We describe the basic operations of mathematical morphology, point-
set algorithms for the discovery of musical patterns, and the link between those
two fields.

2.1 Mathematical Morphology: a Theory for
Analyzing Geometrical Structures

In Handbook of Spatial Logics [9], it is said that mathematical morphology
arose in 1964 as a branch of image processing, with its main concepts and tools
developed in the works of G. Matheron and J. Serra [10, 11, 12]. It borrows
concepts from various branches of mathematics, such as algebra, topology and
discrete geometry, with the goal of analyzing the shape and topology of digital
objects.

The theory we are mainly focusing on is "binary" mathematical morphol-
ogy. In this case, we define a set E where E is of the form Rn, Zn, or Zn. The
power set P(E), provided with the inclusion relation which endows it with a
lattice structure, is the main point of focus.

To begin with morphology, it is useful to fix the following notations:

• The complement of X is Xc = {x ∈ E | x /∈ X} = E \X .

• The translation of X by t ∈ E is Xt = {x+ t | x ∈ X}.

• The symmetrical of X by t ∈ E is X̌ = {−x | x ∈ X} (when E =Rn

or E = Zn).

4



CHAPTER 2. STATE OF THE ART 5

2.1.1 Dilation and Erosion
Binary mathematical morphology is based on operations that allow for the
transformation and filtering of sets of points. Basic morphological operations
on sets can be obtained by combining set-theoretical operations with two basic
operators, dilation and erosion, which are based on the Minkowski additions
and subtractions.

Definition 2.1.1. Let P ∈ P(E), the dilation δP and erosion εP by P are
defined as:

δP : P(E) → P(E)

X 7→ X ⊕ P = {x+ p | x ∈ X, p ∈ P}
= {x ∈ E | P̌x ∩X ̸= ∅}

εP : P(E) → P(E)

X 7→ X ⊖ P = {x ∈ E | Px ⊆ X}

In this definition, though X and P play, formally speaking, similar roles,
in practice they generally correspond to objects with different characteristics.
X is thus oftentimes called the Image (a set that is generally big and given by
the problem) and P the Structuring Element (a set that is generally small and
chosen by the problem-solver). The set Xc is also given a name: it is called
the Background.

Figure 2.1: Top: The image X and the structuring element P . Bottom: the
dilation δP (X) of X by P and the erosion εP (X) of X by P .
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It should also be noted that the structuring element is defined in relation
to the origin OE of the space. This has a direct impact on the Minkowski ad-
ditions and subtractions, so when choosing a structuring element, one should
not only look at its shape but also its placement in the space.

These operations can be interpreted in the following way:

• the dilation of X by P corresponds to the union of all translations of P
from positions in X;

• the erosion of X by P corresponds to all the positions at which P occurs
in X .

These two operations are dual by complementarity: dilating a set is equiv-
alent to eroding its complement with the symmetric of the structuring element.
In other words, eroding an object is akin to dilating the background.

Proposition 2.1.1. Dilation and erosion are dual by complementarity [9]:

(δP (X))c = εP̌ (X
c) and (εP (X))c = δP̌ (X

c)

.

Figure 2.2: An illustration of duality between dilation and erosion. The ero-
sion of the image (left) is equivalent to the dilation of the background by the
symmetric of the structuring element (right).

With this duality in mind, we can see that both operations are intrinsically
linked: in fact, the properties of erosion can be derived from the properties
of dilation through duality. For instance, since dilation inflates the object and
deforms convex corners of the object, we can deduce that erosion deflates the
object and deforms concave corners of the object.
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Beyond this, these basic morphological operations present several math-
ematical properties that must be pointed out, as they are generally useful for
proofs and understanding their behavior as filters.

• Concerning extensiveness, both operations present properties provided
that the origin is part of the structuring element:

The dilation by P is extensive (X ⊂ δP (X)) if and only if 0E ∈ P

The erosion by P is anti-extensive (εP (X) ⊂ X if and only if 0E ∈ P )

• Dilation and erosion are increasing:

X ⊂ Y ⇒ δP (X) ⊂ δP (Y )

X ⊂ Y ⇒ εP (X) ⊂ εP (Y )

• Dilation is increasing according to the structuring element and erosion
is decreasing according to the structuring element:

P1 ⊂ P2 ⇒ δP1(X) ⊂ δP2(X)

P1 ⊂ P2 ⇒ εP2(X) ⊂ εP1(x)

• Concerning the union and intersection of sets:

δP (X ∪ Y ) = δP (X) ∪ δP (Y ) and δP (X ∩ Y ) ⊂ δP (X) ∩ δP (Y )

εP (X ∩ Y ) = εP (X) ∩ εP (Y ) and εP (X ∪ Y ) ⊃ εP (X) ∪ δP (Y )

• The dilation, when seen as an operator with two arguments, is commu-
tative with respect to the image and the structuring element:

δP (X) = δX(P )

• These two operations verify the adjunction property, which is significant
in a lattice-theoretical framework:

δP (X) ⊆ X ′ ⇐⇒ X ⊆ εP (X
′)

• These operations verify the iteration property:

δP (δP ′(X)) = δP⊕P ′(X) and εP (εP ′(X)) = εP⊕P ′(X)
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2.1.2 Opening and Closing
Along with dilation and erosion, we can identify two other fundamental oper-
ators that can be derived from the previous two: opening and closing. They
are defined as follows:

Definition 2.1.2. Let P ∈ P(E). The opening γP and closing φP by P are
defined by:

γP : P(E) → P(E)

X 7→ X ◦ P = (X ⊖ P )⊕ P

φP : P(E) → P(E)

X 7→ X • P = (X ⊕ P )⊖ P

These operations can be interpreted in the following way:

• the opening of X by P corresponds to the union of all occurrences of
translations of P in X;

• the closing of X by P corresponds to all positions at which P occurs in
the union of all translations of P from positions in X .

Figure 2.3: Left: Opening of X by P . Right: Closing of X by P .
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Proposition 2.1.2. Opening and closing are dual by complementarity [9]:

(γP (X))c = φP̌ (X
c) and (φP (X))c = γP̌ (X

c)

Hence, the properties of closing are derived from the properties of opening
by duality. For example, since opening removes the narrow parts of the object
and deforms convex corners of the object, we can deduce that closing fills the
narrow parts of the background and deforms concave corners of the object.
This duality is illustrated by the following figure.

Figure 2.4: An illustration of the duality of opening and closing. Left is an
opening of the image, while right is a closing of the background.

As with erosion and dilation, we list some of the useful and important
properties concerning the two operations:

• Concerning extensiveness:

The opening by P is anti-extensive (γP (X) ⊆ X)
The closing by P is extensive (X ⊆ φP (X))

• The opening and closing are increasing with respect to the image:

X ⊆ Y ⇒ γP (X) ⊆ γP (Y )

X ⊆ Y ⇒ φP (X) ⊆ φP (Y )

One of the most notable and useful properties about the opening and clos-
ing operators is idempotency:

Proposition 2.1.3. The opening and closing are idempotent:

γP ◦ γP = γP and φP ◦ φP = φP

This is particularly significant in the field of image processing where mor-
phology was first applied, because it means that these operators extract all the
information available to them after only one application. This means that they
are morphological filters, i.e. increasing and idempotent operators.
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2.1.3 Summary
These four operators constitute the basis on which mathematical morphology
is laid upon. New filters can be obtained by composing closing and open-
ing with the same structuring element, which give four new idempotent filters
(opening followed by closing, closing followed by opening, opening followed
by closing and then by opening, and finally closing followed by opening and
then by closing). Iterative methods on these operators can also be used in order
to introduce new filters.

Among those four fundamental operators, erosion and opening are said to
be analytic and dilation and closing are said to be generative. This is due to the
former being anti-extensive and the latter being extensive (under the condition
OE ∈ P for dilation and erosion). As such, erosion and opening are capable of
extracting information from a dataset, which makes them prime tools for the
analysis of music. On the other hand, dilation and closing enrich a dataset and
create more information, which can be useful to reveal the proximity between
parts of a dataset.

Through duality, composition and idempotency, the morphological opera-
tions are strongly linked between one another, creating a robust tool set. The
relationships between the operators is summarized in the figure below:

Figure 2.5: The links between the four main operations of mathematical mor-
phology (Source: [13]).
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2.2 Point-set Algorithms
The point-set algorithms presented in this section were developed with the
intent of finding musically interesting patterns as well as their occurrences. As
stated in our introduction, they were developed as an alternative to string-based
approaches that were ill-adapted for unvoiced polyphonic music or pieces that
were using embellishments.

What constitutes their specificity is that they are based on a multidimen-
sional representation of music. Here the musical data are represented as a set
Rn, where each point represents a musical note and each dimension a property
of the notes. Generally, we use the space R2 to represent the pitch and onset
of the notes, but other parameters can be considered to enrich the analysis
(e.g. the duration, or the voice which the note is part of in the case of voiced
music). This multi-dimensional representation of music is close to traditional
music representations, such as the score or the MIDI format.

Figure 2.6: Bach’s Prelude in E flat major, BWV 998 represented in three
different ways: sheet music (top), 2-dimensional point set (bottom-right) and
MIDI representation (bottom-left). Source: [14].
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In the following, we use X to refer to the dataset we wish to analyze, and
P to refer to a pattern.

2.2.1 Maximal Translatable Patterns and the SIA Algo-
rithm

As a first approach, musically interesting patterns in a dataset representing a
musical piece can be thought of as Maximal Translatable Patterns, otherwise
called MTPs.

Definition 2.2.1. Given a vector v ∈ E, the MTP for v in X is defined as
follows:

MTP (v,X) = {x ∈ X | x+ v ∈ X}

Indeed, a pattern can be viewed as a subset of points from the dataset that
can be translated within the dataset. By choosing maximal translatable pat-
terns, i.e. the largest pattern that can be translated according to a vector, we
ensure that no point that could be part of a musically interesting pattern is
left out. Of course, in practice and as we have mentioned in the introduction,
other kind of transformations can be used to create repeating patterns, but the
restriction to only translated patterns is a good starting point as it is the clearest
example of what a pattern can be.

Figure 2.7: Result of MTP (v,X) where X designates the point-set and v =

x2 − x1.

The Structure Induction Algorithm [8], also called SIA, is an algorithm
designed to compute all the MTPs of a dataset and constitutes the basis for
point-set algorithms with the aim of discovering musical patterns.
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SIA is designed in such a way that it computes all the translations that can
be found within a dataset and the MTPs for these translations. If we define an
ordering < on E, and denote a couple of objects A and B with the notation
< A,B >, then the algorithm returns the following set.

SIA: {< x2 − x1,MTP (x2 − x1, X) > | x1, x2 ∈ X ∧ x1 < x2}

This is done in a worst-case running time ofO(k.n2log2n) for a k-dimensional
dataset of size n [8]. This algorithm is thus capable of computing translatable
patterns within a dataset. Recall however that our objective is not only to find
patterns, but also their occurrences. This is where the concept of Translation
Equivalence Class, or TEC, enters the fray.

Definition 2.2.2. Let P ∈ P(E), the TEC for P in X is defined as follows:

TEC(P,X) = {Q ∈ P(E) | ∃t ∈ E s.t. Pt = Q ∧Q ⊆ X}

Definition 2.2.3. Let P,X ∈ P(E), the set of translators of P in X is defined
as follows:

T (P,X) = {t ∈ E |Pt ⊆ X}

The TEC of a certain pattern can be represented by the pattern and its set
of translators, instead of representing each point that is part of an element of
the TEC. Doing so is generally less costly when it comes to data-storage.

Figure 2.8: The TEC and set of translators of P where the first point of P is
the origin of E.

The SIATEC algorithm [8], uses all the patterns discovered with SIA and
computes the TECs associated with these patterns. In other words, SIATEC
computes the largest translatable patterns P in X and the set of translators of
P in X (since a TEC can be represented by a pattern and its set of translators).
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SIATEC:
{< MTP (x2−x1, X), T (MTP (x2−x1, X), X) > | x1, x2 ∈ X∧x1 < x2}

The two algorithms we have just described constitute the basis for point-
set algorithms for discovering musical patterns. However, they present a few
glaring problems:

• most patterns discovered are not musically interesting;

• the problem of isolated membership: a musically significant pattern
can be contained within a MTP along with other temporally isolated
members;

Figure 2.9: Illustration of the problem of isolated membership: one point that
can be translated with a musical motif is clearly not part of it.

• the algorithm may not discover musically interesting patterns that occur
with variations.

While the last point is the subject of this thesis, the two other problem
can generally be dealt with by using heuristics to select musically interesting
patterns.

2.2.2 The Use of Heuristics to Select Patterns
In order to select musically relevant patterns we need to define a set of heuris-
tics that allows us to discriminate the good contenders from the bad ones. In
this section we look at some of these heuristics and present some of the algo-
rithms derived from SIA that use them. We first introduce compactness.
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To define compactness, we first need to define what the region of a set of
points is. This can be defined in a variety of ways, e.g. with a time segment, a
bounding box or a convex hull. One can thus define a region function R that
associates to any set of points a subset of E.

Definition 2.2.4. Given a region function R, the compactness C(P,X) of a
pattern P in X is defined as the ratio of the number of points of P to the
number of points of X in R(P )

Musically significant patterns generally have more compact occurrences:
notes in a group that constitutes a coherent whole are generally close to each
other. Figure 2.10 shows different how differently defined regions of a pattern
lead to different compactness values.

(a) Time segment (b) Bounding Box

(c) Convex Hull

Figure 2.10: Compactness of a pattern in differently defined regions.

This notion of compactness can be used to deal with the problem of iso-
lated membership. It is notably used in the SIACT algorithm [15]. The aim of
SIACT is, for P a pattern found by SIA, to avoid having a pattern P ′ ⊂ P that
is musically more important thanP . In order to do that, SIACT applies a "com-
pactness trawler" to the MTPs discovered by SIA. More precisely, it computes
the compactness of MTP sub-patterns to determine whether they should be
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considered as a pattern. The algorithm is given two threshold values: a com-
pactness threshold and a point threshold. Sub-patterns not satisfying these two
thresholds are then deleted.

Another useful concept for finding musically interesting patterns is that
of the compression ratio. To understand what it is we first need to define the
covered set of a TEC in a dataset.

Definition 2.2.5. Let P,X ∈ P(E) and TEC = TEC(P,X), the covered
set COV (TEC,X) of TEC in X is defined as follows:

COV (TEC,X) =
⋃

P∈TEC P

From this concept, we can define the compression ratio of a TEC.

Definition 2.2.6. Let P,X ∈ P(E) and TEC = TEC(P,X), the compres-
sion ratio CR(TEC,X) of TEC in X is defined as follows:

CR(TEC,X) = |COV (TEC,X)|
|P |+|TEC(P,X)|−1

The compression ratio represents the data storage saved when represent-
ing the points of the covering of a pattern by the pattern and its translator set.
A higher compression ratio emphasizes patterns that do not overlap and that
repeat a lot, which is generally the case for musically relevant patterns. There-
fore, a good heuristic for selecting musical patterns is to prioritize patterns
with a high compression ratio.

The COSIATEC algorithm, which stands for "COmpression with SIATEC",
uses this heuristic to great effect. Its aim is to cover the entire dataset with a
set of relevant non-overlapping TECs [16].

First the SIATEC algorithm is applied to obtain the set of all TECs of X .
The algorithm then selects the "best" TEC (highest compression ratio). Next
all the points covered by the "best" TEC are removed from the dataset, and
from then on we repeat the algorithm loop. The algorithm stops when X is
empty. COSIATEC produces a family of TECs that covers the entire dataset
without overlap.

The main problem with COSIATEC is that it is costly in time: it calls
repeatedly SIATEC, which has already a running time cost of O(n3). SIATE-
CCompress is a less costly alternative. Its aim is also to produce a set of TECs
covering the X dataset, but this time the TECs may overlap [16].



CHAPTER 2. STATE OF THE ART 17

SIATECCompress runs SIATEC just once, and then ranks the TECs in or-
der from the best to the worst compression ratio, selecting TECs to the result
set by taking a trip down the list and adding the TECs that introduce enough
points to be deemed interesting.

2.2.3 MTECs: Another Class of Repeating Patterns
In a 2013 article, T. Collins and D. Meredith present the concept of maximal
TEC, otherwise called MTEC [17].

Definition 2.2.7. Let P,X ∈ P(E) and |TEC(P,X)| = m. P is a MTEC
if:

∀P ′ ∈ P(E), P ⊊ P ′ ⇒ |TEC(P ′, X)| < m

In other words, if an MTEC is a pattern such that when it is enriched with
new points, then the number of new pattern occurrences necessarily decreases.
To understand the usefulness of this definition, we may want to look at a char-
acterization of MTECs.

Proposition 2.2.1. Let P ⊂ X:

P is MTEC⇔ P =
⋂

v∈T (P,X) MTP (v,X) [13]

From this characterization, one can show that MTPs are themselves MTECs.
Therefore, MTECs can be viewed as a generalization of MTPs, where a pat-
tern is defined by the fact that it can be translated by one or several vectors.
Notably, the concept of MTECs can help us to avoid the problem of isolated
membership, as illustrated in Figure 2.11.

One of the main difficulties in using MTECs to find musically relevant pat-
terns is that it is unpractical to compute all the MTECs of a dataset. This class
of patterns is far bigger than the the class of MTPs, and computing them all
would require too big of a complexity. And even if we could reasonably com-
pute all MTECs of a dataset, most of the found patterns would be musically
uninteresting just like MTPs. Thus in order to understand how MTECs can be
used efficiently to discover patterns, we need another angle of attack. In Sec-
tion 2.3, we explore how morphology can be useful in order to find MTECs.
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Figure 2.11: Illustration of the characterization of MTECs: the four points that
are both in the blue and red envelopes form an MTEC that is the intersection
of two MTPs.

2.2.4 Transformable Patterns
As stated in our introduction, translation is not the only way that a pattern
can be transformed. In a recent article [18], D. Meredith broadens the notion
of MTP to encompass other types of transformations. We first need a few
definitions.

Definition 2.2.8. A transformation class F on E is a family of bijections from
E to E.

Definition 2.2.9. Let P ⊆ X . P is said to be transformable in X with respect
to a transformation class F if there exists a transformation f ∈ F such that
f(P ) ⊆ X .

We can then generalize the notion of TEC to other transformations, as well
as the covered set that is derived from it:

Definition 2.2.10. Let P ⊆ X . The occurrence set of P in X with respect to
F is defined as:

OS(P,X, F ) = {P} ∪ {f(P ) | f(P ) ⊆ X and f ∈ F}
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Definition 2.2.11. Let P ⊆ X and S = OS(P,X, F ). The covered set of S
is defined as:

COV (S) =
⋃

P∈S P

Finally, we can define the Maximal Transformable Pattern (MTFP), which
generalizes the concept of MTP:

Definition 2.2.12. Let f ∈ F a transformation. The maximal transformable
pattern for f in X is:

MTPF (X, f) = X ∩ f−1(X)

This corresponds to the set of points in X that are mapped to other points
of X by f . Note that when f is a translation by a vector v, we find that this
definition coincides with that of the MTP for v in X . The following property
is also worth noting:

Proposition 2.2.2. Let f ∈ F a transformation. We then have:

MTFP (X, f−1) = f(MTFP (X, f)) [14]

Using these concepts, D. Meredith proposes an algorithm capable of com-
puting the maximal transformable patterns of size greater than a certain num-
ber. It generalizes the strategy adopted in SIA to any user-specified transfor-
mation class over the data space E. Thus, when the transformation class is a
class of translations, the algorithm reduces to being SIA.

2.3 Morphology as an Underlying Structure
of Point-Set Algorithms

2.3.1 Point-set Theory can be Reformulated using Mor-
phological Operations

P. Lascabettes showcases the link between mathematical morphology and the
geometric approach at the core of point-set algorithms [13], allowing for a bet-
ter understanding of what they entail. More precisely, he showed that most of
the concepts used for point-set algorithms can be redefined in morphological
terms, from the maximal translatable patterns to the translational equivalence
pattern including the covered set. His main results are as follows.
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Proposition 2.3.1. Let x1, x2 ∈ X and {x1, x2} the structuring element with
origin set on x1. We have:

MTP (x2 − x1, X) = ε{x1,x2}(X)

Proposition 2.3.2. Let P,X ∈ P(E), we have:
TEC(P,X) = {δt(P ) ∈ P(E) | t ∈ εP (X)}

Proposition 2.3.3. Let P,X ∈ P(E), we have
T (P,X) = εP (X)

Proposition 2.3.4. Let P,X ∈ P(E) and T = TEC(P,X), we have:
COV (T,X) = γP (X)

However, the most important results concerns MTECs, and the way they
can be characterized through morphological erosion. We must here mention
two important lemmas.
Lemma 2.3.1. Let P,X ∈ P(E), we have:

P ⊂ εεP (X)(X)

Lemma 2.3.2. Let P,X ∈ P(E), we have:
εP (X) = εεεP (X)

(X)

Those lemmas shed light on a fundamental property of morphological ero-
sion, namely that it involves a looping behavior with respect to the structuring
element (see Figure 2.14). If one erodes an image X by a certain set of points
P , giving the set O = εP (X), then by eroding X by O, it is ensured that P
is contained in εO(X). Moreover, by eroding once again the space by εO(X),
one obtains the original erosion O.

These lemmas can then be used to prove the following theorem and its
corollary [13].
Theorem 2.3.1. Let P,X ∈ P(E), we have:

P is MTEC⇔ P = εεP (X)(X)

Corollary 2.3.1.1. Let P,X ∈ P(E), we have:
P is MTEC⇔ ∃S, P = εS(X)

This significance of this result must be emphasized, as not only it gives
us a characterization of MTECs in morphological terms, but according to the
corollary we can affirm that the MTECs of a dataset are the patterns discovered
by erosion. This result gives us an angle with which we can devise methods in
order to find musically relevant MTECs. Mathematical morphology thus gives
us a way of discovering musical patterns that are not MTPs (see Fig 2.12).
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Figure 2.12: An MTEC pattern obtained with the erosion of the dataset X by
the set S = {x1, x2, x3}.

2.3.2 Using Morphology to Discover Musical Patterns
One way of approaching the problem of discovering a musical pattern through
mathematical morphology is to try to find it from its onsets:

Definition 2.3.1. Let P,X ∈ P(E), the onsets of P in X are defined by:

O = εP (X)

The onsets of a pattern can be viewed as the starting points of each of its
occurrences (if the origin of the pattern is placed on its first note). With the
notations of the above definition, what we call the problem of discovering a
pattern from its onsets is understanding when the following equation is true:

P = εO(X)

The reason why we are interested in this problem is because it is generally
easier to discover the onsets than the patterns. This is due to the temporal
nature of music, and more specifically to the fact that generally any note (or
rest) value is defined as a multiple of certain time span in a music piece, which
often induces periodicity when repeating patterns.

Figures 2.13 illustrates a case where we can indeed discover a pattern from
its onsets.
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(a) A repeating pattern and its onsets (b) The pattern is rediscovered when look-
ing at the onsets of the onsets

Figure 2.13: Discovering a pattern from its onsets?

However, in order to understand the depth of the relationship between pat-
terns and onsets, we need to look at the concept of MTEC conjugate pairs.

Definition 2.3.2. LetP,O,X ∈ P(E). The pair (P,O) is an MTEC conjugate
pair if it satisfies:

P = εO(X) and O = εP (X)

MTEC conjugate pairs correspond to patterns and their onsets that can be
deduced from each other. Once we have found such a pair, we have found the
complete information on a pattern in the data: using the erosion again just
leads us in a loop.

Given a musical pattern P , it cannot always be obtained from its onsets O
with an erosion, since several different patterns can have the same onsets and
the erosion of these onsets can only be equal to one of these onsets at most.
However, the following theorem ensures that there exists an MTEC couple
(P ′, O) such that the onsets of P ′ are the same as those of P :

Theorem 2.3.2. Let P,O,X ∈ P(E) such that O = εP (X) and O ̸= ∅. By
defining P ′ = εO(X), we have:

O = εP ′(X)
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Figure 2.14: The looping behavior of erosion.

What’s more, Lemma 2.3.1 ensures that P ⊆ P ′. Thus, given a musical
pattern, we can always complete it with additional notes to obtain an MTEC
conjugate pair of a pattern and its onset.

Note that formally speaking, patterns and onsets play a similar role, which
means that we can also use the symmetrical approach: starting from a set of
onsets, we can complete them to obtain an MTEC conjugate pair of a pattern
and its onset.

2.3.3 Discovering Musical Patterns with Variations with
Variational Operations

In his master’s thesis [14], E. Tamagna proposes an approach to discover mu-
sical patterns with variations, which is precisely the topic we are interested in.
His approach is based on the definition of an operation akin to morphological
erosion, but that allows for the discovery of patterns with a certain degree of
similarity. To do so, we first need to define an application that can associate
to a pattern other patterns that are similar in a certain sense.

Definition 2.3.3. A variational class application is an applicationCl : P(E)→
P(P(E)) that associates to a pattern P a family Cl(P ) ⊂ P(E) such that
P ∈ Cl(P ). We say that Cl(P ) is a variation class for P .

This allows us to define what we can call a variational erosion, which
plays a role similar to binary erosion but accounts for variations of the pattern
as defined by the variational class application.

Definition 2.3.4. We call the variational erosion by P in X with respect to
Cl

ε̃Cl(P )(X) = {x ∈ E | ∃Q ∈ Cl(P ), Q+ x ⊂ X}

After having defined a form of "variational morphology", one can gener-
alize some of the concepts at the core of point-set algorithms.
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Definition 2.3.5. Let P ∈ P(E). The Variational Equivalence Class (or
VEC) of P in X with respect to Cl is defined as:

V EC(P,X,Cl) = {R ⊂ X | ∃Q ∈ Cl(P ),∃t ∈ E,Qt = R}.

Definition 2.3.6. Let P ∈ P(E). We say that P is a Maximal Variational
Equivalence Class (or MVEC in X with respect to Cl if:

∀P ′ ∈ P(E), P ⊊ P ′ =⇒ |ε̃Cl(P ′)| < |ε̃Cl(P )|

E. Tamagna then proceeds to apply this theory to a specific variational class
application, namely the semitone class application. This class application al-
lows us to represent small variations in a pattern, more precisely variations
where only one note differs of one semitone compared to the original pattern.
The goal was then be to find a generalization to the characterization of MTECs
from Theorem 2.3.1, in order to find patterns more easily:

P is MTEC⇔ P = εεP (X)(X)

However, such a characterization has yet to be found, which limits the prac-
tical use of MVECs in an algorithmic context. In the following, we present an
alternative approach to the discovery of musical patterns with variations.



Chapter 3

Discovery of Musical Patterns with
Variations

In this chapter, we present the mathematical concepts developed in order to
find the variations of patterns and the results ensuring the validity of our ap-
proach. More specifically, this chapter is dedicated to morphological methods
and operations that can help us finding patterns with their variations.

Figure 3.1 presents a typical case. Given a certain pattern P , we can see
that morphological erosion of a data set by P gives us the occurrences of this
pattern. However, an occurrence of the pattern that is slightly altered is not
picked up by this operation. What we aim to do then is defining operations
that allow us to find such variations.

We mainly present two approaches to finding variations, based on two op-
erations that we call Opening-less Variational Erosion and Pivotal Variational
Erosion. Both approaches present some benefits and limitations, be it from a
mathematical or musical perspective. We also present another operation called
Intersectional Variational Erosion, that also presents interesting properties.

25
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Figure 3.1: The limitations of morphological erosion. When applying the
erosion of a dataset X by a pattern P , slightly altered occurrences of P are
not detected.

3.1 Opening-less Variational Erosion
We define the Opening-less Variational Erosion in the following:

Definition 3.1.1. Let X,P,A ⊂ P(E). The Opening-less Variational Ero-
sion, or OVE, of X by P with respect to A is defined by:

ε̃P,A(X) = εP (X) ∪ εP (δA(X \ γP (X))

In practice, and similarly to previous approaches, X represents the dataset
we wish to study and P represents a pattern whose occurrences we would like
to find. We however give ourselves a dilating element A, in order to construct
new data points that would allow us to find occurrences of patterns similar to
P .

Generally, we impose OE ∈ A, in order to guarantee X \ γP (X) ⊆
δA(X \ γP (X)). Indeed, when dilating the set, we want to keep the origi-
nal points.

Figure 3.2 shows how the OVE works on the example from Figure 3.1.
Given a data set X and a pattern P , we first find the occurrences of P in X

through the regular morphological erosion εP (X). We then remove those oc-
currences, which corresponds to the opening γP (X), and dilate the remaining
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points with the chosen dilating element A. Finally, we find occurrences of P
in this dilated set with εP (δA(X \ γP (X)). The result of the operation is then
the union of εP (X) and εP (δA(X \ γP (X)).

(a) After finding occurrences of P in X , we remove γP (X)

from X and dilate the remaining set of points with A.

(b) The OVE is the union of εP (X) and εP (δA(X\γP (X)).

Figure 3.2: The OVE applied on a dataset X in order to find a pattern P and
its variations.

The choice of A determines the kind of variations we can find. For in-
stance, in the case E = R2, where the first dimension represents the onsets
of notes and the second dimension their pitch, choosing the dilating element
{(0, 0); (0, 1)} finds occurrences of a pattern with alterations of pitch, while
{(0, 0); (1, 0)} finds occurrences of a pattern with alterations in rhythm. This
is illustrated by Figure 3.3.

Moreover, one should note that notes that are not part of the original set X
can be found using the OVE (illustrated in Figure 3.3.c). This is not an issue,
as such a note, that appeared as a consequence of dilation, can be associated
to the original note from which it originated. In the case where the dilating
element contains more than two points that are not OE , it is possible that a
constructed note can be associated to several original points. In that case, an
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order of priority can be defined to decide which point it should be associated
with in priority.

(a) The dataset X contains three occurrences of P :
one exact (left), one with variations in rhythm (mid-
dle) and one in with variations in pitch (right).

(b) Using A = {(0, 0); (0, 1)}, we can
find variations of P in pitch.

(c) Using A = {(0, 0); (1, 0)}, we can
find variations of P in pitch.

Figure 3.3: The impact of the dilating element on the variations of a pattern
that are discovered with the OVE.

Recall that in order to use the operation in an algorithmic context, we would
like the operation to have a behavior akin to that in Figure 2.14, such that we
can find a pattern with its occurrences in a dataset. More precisely, for X a
dataset and P a pattern in E, if we define P ′ = ε̃ε̃P,A(X),A(X), we would like
to have:

ε̃P,A(X) = ε̃P ′,A(X)

This is however generally not the case. Moreover, one can show that that
neither ε̃P,A(X) ⊆ ε̃P ′,A(X) (see Figure 3.4) nor ε̃P,A(X) ⊇ ε̃P ′,A(X) (see
Figure 3.5) is generally true.
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(a) We consider the dataset X , a
set of onsets O and a dilating ele-
ment A.

(b) We compute P = ε̃O,A(X).

(c) We compute O′ = ε̃P,A(X). (d) We compute P ′ = ε̃O′,A(X).
In this case, we have P ⊊ P ′.

Figure 3.4: For X a dataset, O a set of onsets and A a dilating element, we
have a case where ε̃O,A(X) ⊊ ε̃O′,A(X) for O′ = ε̃ε̃P,A(X),A(X).
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(a) We consider the dataset X , a
set of onsets O and a dilating ele-
ment A.

(b) We compute P = ε̃O,A(X).

(c) We compute O′ = ε̃P,A(X). (d) We compute P ′ = ε̃O′,A(X).
In this case, we have P ⊋ P ′.

Figure 3.5: For X a dataset, O a set of onsets and A a dilating element, we
have a case where ε̃O,A(X) ⊋ ε̃O′,A(X) for O′ = ε̃ε̃P,A(X),A(X).
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In order to avoid this problem, we define the OVE with respect to an MTEC
conjugate pair.

Definition 3.1.2. LetX,A,Q ∈ P(E) and (P,O) be an MTEC conjugate pair
in X . The OVE with respect to the MTEC conjugate pair (P,O) is defined
as a pair of operations:

ε̃PQ,A(X) = εP (X) ∪ εQ(δA(X \ γP (X)))

ε̃OQ,A(X) = εO(X) ∪ εQ(δA(X \ γO(X)))

One can note that, due to the properties of MTEC conjugate pairs, we have:

εP (X) = O; εO(X) = P ; γO(X) = γP (X).

Therefore, the expression of the OVE with respect to an MTEC couple can
be simplified.

Proposition 3.1.1. Let X,A ∈ P(E) and (P,O) be an MTEC conjugate pair
in X . By denoting γ = γO(X) = γP (X), we have for all Q ∈ P(E):

ε̃PQ,A(X) = O ∪ εQ(δA(X \ γ)
ε̃OQ,A(X) = P ∪ εQ(δA(X \ γ)

The idea behind the OVE with respect to an MTEC conjugate pair is to look
for variations of patterns that have already been discovered for being part of an
MTEC conjugate pair, which makes them candidates for potentially musically
interesting patterns. Once we have found a pattern that is part of an MTEC
conjugate pair, this set of operations allows us to look for either occurrences
of the pattern with alterations, or new points that can be considered part of the
pattern.

Theorem 3.1.1 ensures that we can find a loop with these operations.

Theorem 3.1.1. Let X,A ∈ P(E). Let (P,O) be an MTEC couple in X . If we
define:

O′ = ε̃PP,A(X);
P ′ = ε̃OO′,A(X);
O′′ = ε̃PP ′,A(X).

We then have: O′′ = O′.

Proof. To simplify notations, we can write X ′ = δA(X \ γP (X)) = δA(X \
γO(X)).

We set:
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O′ = ε̃PP,A(X) = O ∪ εP (δA(X \ γP (X))) = O ∪ εP (X
′);

P ′ = ε̃OO′,A(X) = P ∪ εO′(δA(X \ γO(X))) = P ∪ εO′(X ′);
O′′ = ε̃PP ′,A(X) = O ∪ εP ′(δA(X \ γP (X))) = O ∪ εP ′(X ′).

We can show εP (X
′) = εP ′(X ′) by double inclusion.

Firstly:

P ⊂ P ′ =⇒ εP ′(X ′) ⊂ εP (X
′) .

Let then o ∈ εP (X
′).

Then, by definition of morphological erosion:

o ∈ εP (X
′) =⇒ Po ⊂ X ′ =⇒ ∀p ∈ P, o+ p ∈ X ′.

But also, εP (X ′) ⊂ O′ =⇒ o ∈ O′.
Thus:

∀p ∈ εO′(X ′), O′
p ⊂ X ′ =⇒ o+ p ∈ X ′.

Since P ′ = P ∪ εO′(X ′), this gives us:

∀p ∈ P ′, o+ p ∈ X ′.

Therefore: o ∈ εP ′(X ′). Thus, we have εP (X
′) ⊂ εP ′(X ′)

Finally:

εP (X
′) = εP ′(X ′) =⇒ O ∪ εP (X

′) = O ∪ εP ′(X ′)

=⇒ O′ = O′′

This looping structure gives us a procedure in order to find occurrences
with variations of a pattern. Start with an MTEC conjugate pair (P,O) and
a dilating element A. Then compute ε̃PP,A(X): this gives a set of onsets O′

that correspond to occurrences of P and its variations (as defined through A).
Finally compute ε̃OO′,A(X): this gives a set P ′ that completes the pattern P

with new points that can also be considered part of it. Theorem 3.1.1 ensures
that this process has brought out all the information available.

Note however that, since both members of an MTEC conjugate pair have
formally speaking the same role, one can start this process from O instead of
P . Therefore, the procedure can be used in two different ways: to find new
occurrences of a pattern (when one starts the procedure withP ), or to complete
a pattern (when one starts the procedure with O). Figure 3.6 summarizes the
looping structure of the procedure.
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Figure 3.6: The looping behavior of OVE with respect to an MTEC conjugate
pair (P,O).

One can wonder whether the patterns P1 and P2 and the onsets O1 and O2

from Figure 3.6 are related in any way. The following theorem ensures that
they are through inclusion.

Theorem 3.1.2. Let X,A ∈ P(E) and let (P,O) be an MTEC conjugate pair
in X . If we define (as in Figure 3.6):

O1 = ε̃PP,A(X);
P1 = ε̃OO1,A

(X);
P2 = ε̃OO,A(X);
O2 = ε̃PP2,A

(X).

Then we have: P1 ⊂ P2 and O2 ⊂ O1.

Proof. Once again, we can write X ′ = X \γP (X) = X \γO(X), which gives
us:

O1 = O ∪ εP (X
′)

P1 = P ∪ εO1(X
′)

P2 = P ∪ εO(X
′)

O2 = O ∪ εP2(X
′)

We then have:

O ⊂ O1 =⇒ εO1(X
′) ⊂ εO(X

′)

=⇒ P ∪ εO1(X
′) ⊂ P ∪ εO(X

′)

=⇒ P1 ⊂ P2

By symmetry, we also have O2 ⊂ O1.
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Keeping notations from Figure 3.6, it is possible to haveP1 = P2 andO1 =

O2. In that case, the problem of finding new occurrences and the problem of
finding new points part of the pattern are equivalent. It is however generally
not the case, as illustrated by Figure 3.7.

(a) (P,O) is an MTEC conjugate pair in
the dataset X .

(b) We compute O1 = ε̃PP,A(X) and
P1 = ε̃OO1,A

(X).
(c) We compute P2 = ε̃OO,A(X) and
P1 = ε̃PP2,A

(X).

Figure 3.7: From and MTEC conjugate pair (P,O) in a datasetX , we compute
O1,P1,P2 and O2 like in Figure 3.6. We can see that P1 ⊊ P2 and O1 ⊋ O2.
O1 corresponds to new occurrences of the pattern and P2 to new points of the
pattern found with the OV E with respect to (P,O)

The main drawback with this approach is that it forces us to work from
MTEC conjugate pairs in order to find patterns with variations in a dataset.
This is a limitation, as it prevents us from discovering new patterns when com-
pared to the regular approach, and only allows us to get more information on
an already discovered pattern. We can find new occurrences of the pattern, or
complete it with new points, but not discover a whole new pattern.

However, one should recall that more is not necessarily better when it
comes to finding musically interesting patterns in a music piece. Sometimes,
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finding less patterns can add clarity to the analysis of the piece. Thus, getting
more information on already found MTEC conjugate pairs is a good way to
ensure that the new information is meaningful. Notably, it sometimes allows
us to determine that two different MTEC conjugate pairs actually represent the
same pattern when variations are accounted for.

3.2 Pivotal Variational Erosion
We define the Pivotal Variational Erosion in the following manner:

Definition 3.2.1. Let X,P,A ⊂ P(E) and x ∈ E. The Pivotal Variational
Erosion, or PVE, of X by P with respect to A is defined by:

ε̂xP,A(X)={t ∈ E | Pt ⊆ δA(X) ∧ t+ x ∈ X}

In practice, just like in the case of the OVE, X is the dataset we wish to
study, P a pattern whose instances we want to find in X , and A a dilating
element that defines the types of variations we want to find. We however have
an additional parameter x, called the pivot, that allows us to only keep points
that are part of the original dataset X after translation by x.

Once again, we generally impose OE ∈ A, so that X ⊂ δA(X). This time,
we also generally choose A to be symmetric with respect to OE . Doing so
ensures that variations are kept whether they occur in one sense or the other.
Finally, we also generally choose x ∈ P , in order to look for instances of P in
the dilated dataset with at least one point in common with the original dataset.

Figure 3.8 illustrates how this operations functions on the example from
Figure 3.1.

We can show that this operation has a looping behavior with well chosen
pivot points. First, the following lemma ensures that the PVE is decreasing
with respect to the structuring element.

Lemma 3.2.1. Let X ∈ P(E), A ∈ P(E) and x ∈ E. Let P, P ′ ∈ P(E)

such that P ⊆ P ′. Then:

ε̂xP ′,A(X) ⊆ ε̂xP,A(X).
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(a) We look for instances of a pattern P in
the dilation of the dataset δA(X).

(b) We keep those instances if the first
point of P is part of the original dataset
X .

Figure 3.8: The PVE applied on a dataset X with pivot OE , which is the
leftmost point of P , in order to find a pattern P and its variations.

Proof. Let t ∈ ε̂xP ′,A(X). Then:

(P ′
t ⊆ δA(X) ∧ Pt ⊆ P ′

t) =⇒ Pt ⊆ δA(X)

Also: t ∈ ε̂xP ′,A(X) =⇒ t+ x ∈ X .
Therefore:

(Pt ⊆ δA(X) ∧ t+ x ∈ X) ⇐⇒ t ∈ ε̂xP,A(X)

This second lemma then gives us an inclusion relationship between a pat-
tern and the PVE of the PVE of the pattern (with well chosen pivots), provided
the pattern can be found in the original dataset. This is a generalization of
Lemma 2.3.1 for variations.

Lemma 3.2.2. Let X,A ∈ P(E) and x ∈ E. Let P ∈ P(E) and t ∈ E such
that Pt ⊂ X . Then:

P ⊆ ε̂tε̂xP,A(X),A(X).

Proof. Let us write O = ε̂xP,A(X) and let p ∈ P .
We need to show:

p ∈ ε̂tO,A(X)

In other words, we want to show:
(i)︷ ︸︸ ︷

Op ⊆ δA(X)∧
(ii)︷ ︸︸ ︷

p+ t ∈ X
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Firstly, we have Pt ⊂ X . Therefore: p+ t ∈ X (ii)

Then, by definition of O:

∀o ∈ O,Po ⊆ δA(X) =⇒ ∀o ∈ O, ∀q ∈ P, q + o ∈ δA(X)

=⇒ ∀q ∈ P,Oq ⊆ δA(X)

=⇒ Op ⊆ δA(X) (i)

Thus: p ∈ ε̂tO,A(X)

Using those two lemmas, we can prove the following theorem that ensures
that the PVE has a looping property when choosing appropriate pivot points.

Theorem 3.2.1. Let X,A ∈ P(E). Let P ∈ P(E), x ∈ P and t ∈ E such
that Pt ⊂ X . Then:

ε̂xP,A(X) = ε̂x
ε̂t
ε̂x
P,A

(X),A
(X)

(X).

Proof. We reason by double inclusion.
First, according to Lemma 3.2.2, we have: P ⊆ ε̂tε̂xP,A(X),A(X).
Therefore, according to Lemma 3.2.1:

ε̂x
ε̂t
ε̂x
P,A

(X),A
(X),A

(X) ⊆ ε̂xP,A(X)

For the other inclusion let us write O = ε̂xP,A(X) and consider o ∈ O.
By definition of O, we have: o+ x ∈ X .
Also, if we write P ′ = ε̂tO,A(X):

∀p ∈ P ′, Op ⊂ δA(X) =⇒ ∀p ∈ P ′, ∀q ∈ O, q + p ⊂ δA(X)

=⇒ ∀q ∈ O,P ′
q ⊂ δA(X)

=⇒ P ′
o ⊂ δA(X)

We therefore have:

∀o ∈ O, (P ′
o ⊂ δA(X) ∧ x+ o ∈ X) =⇒ ∀o ∈ O, o ∈ ε̂xP ′,A(X)

=⇒ ∀o ∈ O, o ∈ ε̂xε̂tO,A(X),A(X)

=⇒ O ⊆ ε̂xε̂tO,A(X),A(X)

=⇒ ε̂xP,A(X) ⊆ ε̂x
ε̂t
ε̂x
P,A

(X),A
(X),A

(X)
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Thus, we have found an operation that loops and discovers patterns and
their occurrences with variations defined from an approximation. Considering
a dataset X , a set of points P such that ∃t, Pt ⊂ X , and choosing x ∈ P , one
can use the PVE ε̂xP,A(X) in order to find occurrences of P and its variations as
defined by the dilating element A, and then ε̂xε̂xP,A(X),A(X) in order to complete
P into a "conjugate" of O. One then has found all the information available
with this operation. This looping behavior is represented in Figure3.9.

The operation thus presents a clear advantage compared to the previous
approach, which is that it does not necessitate to start from an already found
MTEC conjugate pair. Thus, it is possible to find patterns unrelated to MTEC
conjugate pairs and that appear with variations in a music piece. This approach
is thus more powerful than the previous one.

However, as stated before, more is not always better when it comes to find-
ing musically significant patterns. One thus needs to define heuristics to select
patterns that might be interesting among the new ones found. Moreover, since
this approach dilates the entire dataset and does not remove the opening be-
fore dilation in contrast to the previous approach, it is more susceptible to find
instances of a pattern that are redundant (e.g. when dilating an instance of the
pattern where a unique point is present).

Figure 3.9: The looping behavior of the PVE starting from a pattern P and
with x, t ∈ E such that x ∈ P and Pt ⊂ X .
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3.3 Intersectional Variational Erosion:
We define the Intersectional Variational Erosion in the following manner:

Definition 3.3.1. Let X,P,A ⊂ P(E). The Intersectional Variational Ero-
sion, or IVE, of X by P with respect to A is defined by:

ε̄P,A(X) = {t ∈ E | Pt ⊆ δA(X) ∧X ∩ Pt ̸= ∅}

In practice, just like in the two previous cases, X is the dataset we wish
to study, P a pattern whose instances we want to find in X , and A a dilating
element that defines the types of variations we want to find, and we generally
impose OE ∈ A.

Figure 3.10 illustrates how this operations functions.

(a) We look for instances of a pattern P in
the dilation of the dataset δA(X).

(b) We keep those instances if and only
if they have a point in common with the
original dataset X .

Figure 3.10: The IVE applied on a dataset X in order to find a pattern P and
its variations.

This operation constitutes an example of an operation that appears promis-
ing but ultimately does not satisfy the properties we are looking for. It is how-
ever close, since it can be guaranteed to loop after a finite number of iterations
under certain circumstances. This can be proven with the following lemma.

Lemma 3.3.1. Let X ∈ P(E), A ∈ P(E) and P ∈ P(E) such that ∃t, Pt ⊂
X and OE ∈ A. Then:

P ⊆ ε̄ε̄P,A(X),A(X)

Proof. Let us write O = ε̄P,A(X). Let p ∈ P , we need to show:

p ∈ ε̄O,A(X) ⇐⇒ Op ⊆ δA(X) ∧X ∩Op ̸= ∅
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By definition of O:

∀o ∈ O,Po ⊆ δA(X) =⇒ ∀o ∈ O, ∀q ∈ P, q + o ∈ δA(X)

=⇒ ∀q ∈ P,Oq ∈ δA(X)

=⇒ Op ∈ δA(X)

Also: OE ∈ A =⇒ X ⊂ δA(X)

Therefore: Pt ⊂ X =⇒

{
Pt ⊂ δA(X)

X ∩ Pt ̸= ∅
=⇒ t ∈ O

Which gives us:{
Pt ⊂ X

t ∈ O
=⇒

{
p+ t ∈ X

p+ t ∈ Op

=⇒ X ∩Op ̸= ∅

Thus: p ∈ ε̄O,A(X)

Using this lemma, one can show that the IVE ends up looping after a finite
number of iterations, provided the dataset and dilating element are finite, and
the structuring element is part of the dataset.

Theorem 3.3.1. Let X ∈ P(E), A ∈ P(E) and P ∈ P(E) such that ∃t, Pt ⊂
X and OE ∈ A. We define the following series:

(Pn)n∈N :

{
Po = P

Pn = ε̄Pn−1(X) for n ≥ 1

If we suppose that X and A are finite, then: ∃n ∈ N, Pn = Pn+2.

Proof. We reason by induction in order to show: ∀n ∈ N, Pn ⊆ Pn+2.

Firstly, Lemma 3.3.1 ensures that P0 ⊆ P2

Let us then suppose that Pn−1 ⊆ Pn+1 for a certain n ∈ N∗.
We then have Pn = ε̄Pn−1,A(X) and Pn+2 = ε̄Pn+1,A(X).
Let p ∈ Pn, we would like to show:

p ∈ ε̄Pn+1,A(X)

In other words, we would like to show:

(Pn+1)o ⊆ δA(X) ∧X ∩ (Pn+1)o ̸= ∅
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Using the same reasoning as in Lemma 3.3.1, one can show (Pn+1)o ⊆ δA(X) .
Also, by definition of On−1 and by the induction hypothesis, we have:{

X ∩ (Pn−1)o ̸= ∅
Pn−1 ⊆ Pn+1

=⇒ X ∩ (Pn+1)o ̸= ∅

Thus, we have indeed have Pn ⊆ Pn+2.

The series (P2n)n∈N is thus increasing.
However, ∀n ∈ N∗:

P2n ⊆ εP2n−1(δX(A)) ⊆ εP1(δX(A))

Since X and A are supposed finite, then so is εP1(δX(A)).
Since (P2n)n∈N is increasing and bounded, ∃n ∈ N, Pn = Pn+2 .

We represent the looping behavior in Figure 3.11. This result makes it pos-
sible to use the operation in an algorithmic context, as we can use the operation
a finite number of times before finding all the information available. However,
doing so can be inefficient, as there is no guarantee that it loops quickly. This is
due to the fact that it is not decreasing with respect to the structuring element,
as illustrated in Figure 3.12. Not knowing when the process ends is a signifi-
cant drawback when designing our algorithms, as it potentially increases their
complexity.

Moreover, the IVE is very similar to the PVE, the difference being that
PVE requires that a specific point of the pattern be part of the original dataset,
whereas the IVE only requires that it be the case for any point of the pattern.
The looser condition that defines IVE thus makes it even more prone to finding
redundancies than the PVE. This can be seen in Figure 3.10.c, where an extra
occurrence of the pattern is found due to the proximity between the pattern
and an isolated point.

Taking this into account, we favor the use of the PVE rather than the IVE
in an algorithmic context.

Figure 3.11: The looping behavior of the IVE starting from a pattern P ⊂ X .
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(a) We define a dataset X , a structuring el-
ement A and two patterns P1 and P2 such
that P1 ⊂ P2.

(b) We compute ε̄P1,A(X). (c) We compute ε̄P2,A(X). In this
case, we have ε̄P1,A(X) ⊊ ε̄P2,A(X)

Figure 3.12: The IVE is not decreasing with respect to the structuring element.



Chapter 4

Finding Patterns in Bach’s Well-
Tempered Clavier

In this section, we apply the mathematical results of the previous section to
a concrete case: the Well-Tempered Clavier by J.S Bach. The goal is to find
the subject for each of the fugues from the first book of the cycle using the
operations defined in the previous chapter. We describe two algorithms: one
based on the OVE with respect to an MTEC conjugate pair, and one based on
the PVE. Other algorithms for the discovery of musical patterns were used as
sources inspiration of [8, 19]. In both cases, we compare the results from the
algorithm with those from a paper by M. Giraud, R. Groult and F. Levé [20],
in order to determine the strengths and limitations of our approaches.

In the following, one should keep in mind that those algorithms are specif-
ically tailored to the problem of finding the subject of a fugue and its occur-
rences, and that different strategies should be adopted when it comes to find-
ing unspecified recurring patterns in a piece of music. However, the aim is to
demonstrate that using the operations we have defined in Chapter 3 can indeed
refine the description of a piece when compared to the use of regular erosion
in order to find MTEC conjugate pairs. As algorithms designed to find musi-
cally interesting MTEC conjugate pairs improve, they can be combined with
our approach. Notably, since MTPs form a subset of MTECs, one could use
our approach in the context of the SIA algorithm and its derivatives.

In the following, the notes from the music pieces are represented by points
in E = R2. The first dimension represents the onset of the note in time. We
consider that a time value of one quarter note is represented by a value of
one. The second dimension represents the pitch in MIDI encoding, e.g. C5
is represented by the value 60. In the following, we use the lexicographic

43
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ordering on E:

∀x,y ∈ E,x < y ⇐⇒ (x1 < y1) ∨ (x1 = y1 ∧ x2 < y2)

4.1 Using the OVE with respect to an MTEC
Conjugate Pair

4.1.1 Description
This first algorithm is based on the OVE with respect to an MTEC conjugate
pairs. As such, the idea behind this algorithm is to first find musically inter-
esting MTEC conjugate pairs, and then use the operation in order to find new
occurrences of the pattern, and possibly new points that could be part of the
pattern.

The first step consists in finding MTEC conjugate pairs. Since we are look-
ing for the subject of a fugue, which always appears first during the exposition,
we can look for it by considering the initial consecutive notes of the piece. To
take into account the cases where there is an anacrusis, we may allow to look
for the subject within the consecutive notes after an onset of one or two notes.
The process is described by Algorithm 1.

Let X be the dataset we wish to study, and A the dilating element used to
study variations. Starting with n = 1, we consider the three sets constituted
from n consecutive notes, starting from the first, second and third notes. For
each set, we consider the erosion of X by each set. If the erosion contains
only one element, then it means that the motif appears only once in the piece
and thus that it is not a repeating pattern. When this is the case for all three of
the considered sets, we can stop the process, as any of the following sets we
might consider will contain at least one of those and thus cannot be a repeating
pattern. If the erosion contains more than one element, then it means that it is
a repeating pattern. We can then erode X once more by the erosion in order to
complete the pattern, giving us an MTEC conjugate pair (P,O), with P being
a pattern and O its onsets. We then save the pair in a list, if it is not already
present in it.

Once this is done, the next step consists in discriminating between patterns
that are potentially musically interesting and those that are not. This is where
we need to introduce a set of heuristics. We consider two parameters: the
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number of notes and the compactness of a pattern. The condition on the num-
ber of notes is pretty straightforward: we want a pattern to contain sufficiently
enough notes to be considered a "subject" of the fugue. The minimum number
of notes we decided on is 4. When it pertains to compactness, we first need
to define the region of a pattern. To do this, we use the ordering that we have
defined on E: the region of a pattern is the set of all points between its first and
last points as defined by this ordering. Considering the first occurrence of the
pattern, we thus define its compactness as the ratio of its length to the number
of points of X that are between its first and last points. The minimum com-
pactness we impose is 0.6. We thus delete any element from the list of MTEC
conjugate pairs where the pattern does not satisfy both of these conditions.

Algorithm 1 Finding MTEC conjugate pairs from consecutive notes
n← 1

Pairs← []

stop← False
while not stop do

onsets← []

for k ← 1 to 3 do
S ← the n consecutive notes of X starting from the k-th note
O ← εS(X)

if |O| > 1 then insert O in onsets

end if
end for
if onsets is empty then

stop← True
else

for O ∈ onsets do
P ← εO(X)

if (P,O) not in pairs then
insert (P,O) in pairs

end if
end for

end if
end while

The final step consists in applying the OVA with respect to MTEC conju-
gate pairs to the MTEC conjugate pairs we have memorized. The process is
described in Algorithm 2.
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For every MTEC conjugate pairs (P,O) we have memorized, we compute
O′ = ε̂PP,A(X) and then P ′ = ε̂OO′,A(X). We thus have extracted all the in-
formation available using the OVE with respect to the (P,O). We then want
to memorize the extended pairs (P ′, O′) in a new list. However, one of the
interesting aspects of this approach is that it can reveal that MTEC conjugate
pairs can be equivalent to one another when extended. The case where this is
the clearest is when two MTEC conjugate pairs give way to the same extended
pairs, but it needs not necessarily be the case. Recall that notes that are not
part of the original set can be found through erosion. However, these notes still
refer to notes from the music piece through dilation. Therefore, two patterns
can refer to the same motif despite being different. Therefore, in order to avoid
redundancies, we compare what one can call the reference of the extended pat-
terns, i.e. the set of points obtained when each point of the extended pattern is
associated with the point in the dataset from which it comes through dilation.
If their are several such points, one can choose an order of priority. This is
referred to as refA

X(P
′), and is well defined as long as P ′ ⊂ δA(X). Thus,

for each extended pair computed, we check if the reference of the extended
pattern has not already been found before adding it to the list.

Algorithm 2 Using the OVA with respect to MTEC conjugate pairs
V arPairs← []

mem← []

for all (P,O) ∈ Pairs do
O′ ← ε̂PP,A(X)

P ′ ← ε̂OO′,A(X)

if refA
X(P

′) is in mem then
insert (P ′, O′) in V arPairs

insert P ′ in mem

end if
end for

Considering an extended couple (P ′, O′) from an MTEC conjugate pair
(P,O), using the notion of reference is useful to count the actual number of
notes in the pattern and the actual number of occurrences, especially when
the structuring element used to dilate the space has more than one non-zero
element, which can lead to redundancies. One should however keep in mind
that the way the algorithm is laid out implies that P ′ ⊂ δA(X) but not neces-
sarily that O′ ⊂ δA(X). When this is the case, the reference of O′ can not be
properly defined. However, we have O′

p ⊂ δA(X) for p being the first element
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of P ′, meaning that we can compute the reference of O′
p. Thus, |ref(P ′)| and

|ref(O′
p)| give us respectively the actual number of notes in the pattern, and

the actual number of occurrences.

In the end, the algorithm gives us a list of extended pairs giving us a pattern
and its occurrences in X with variations as defined by the dilating element A.
The expected behavior is that the algorithm not only gives us the subject of the
fugue and its occurrences with variations, but also recurring partial instances
of the subject, which are also interesting to pick up on and can deepen the
understanding of the pieces.

The complexity necessary to compute the erosion of a set X by a structur-
ing element P is O(|P ||X| × ln(|P ||X|)), because it is based on sorting a list
of |P ||X| elements. To compute an OVA with respect to an MTEC conjugate
pair with dilating elementA this would give usO(|A||P ||X|×ln(|A||P ||X|)),
as it’s complexity is equivalent to that of an erosion on the dilated set. Since
we are doing a determined amount of such operations for every set of consec-
utive notes in X up until a certain point, this gives us a worst case complexity
of O(k × n3ln(k × n)), where k = |A| and n = |X|.

4.1.2 Results
In this section, we consider a few cases to illustrate some of the benefits and
drawbacks of the approach and compare our results with those of M. Giraud,
R. Groult and F. Levé [20]. We study the fugues from the first book of the
Well-Tempered Clavier using 4 distinct dilating elements, defined below and
represented in 1

A1 = {(0, 0), (0, 1)};
A2 = {(0, 0), (0, 1), (0, 2)};
A3 = {(0, 0), (0, 1), (0.25, 0)};
A4 = {(0, 0), (0, 1), (0.25, 0), (0, 2), (0.5, 0)}.

Each of these dilating elements determine the types of variations that can
be detected. A1 and A2 both only deal with variations in pitch. A1 allows us to
detect variations of one semitone and A2 of both one semitone and one whole
tone. A3 and A4 deal with both pitch and rhythm. A3 can detect variations
of one semitone and variations of one quarter-note, while A4 can also detect
variations of one whole tone and of one half-note. While using a structuring
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Figure 4.1: The dilating elements used for the algorithm.

element with more points allows us to discover more occurrences of a pattern,
it is also more susceptible to finding redundancies and to overshoot.

Let us first look at the Fugue n°2 (BWV 847), where the subject contains
20 notes and appears 8 times [20] . The method of the authors to find the
subject of the fugue provided the same result.

Using regular erosion to find MTEC conjugate pairs gives us two MTEC
conjugate pairs: one gives us a pattern of 19 points with five occurrences and
the other a pattern of 20 points with four occurrences, neither of which is
satisfying. Using the OVE with respect to an MTEC pair on any of those
MTEC conjugate pairs then gives us a new pair corresponding to a pattern with
20 points, and either six occurrences in the case where the dilating element is
A1 or A3, or eight occurrences in the case where the dilating element is A2 or
A4. Figure 4.2 illustrates this.

Thus, using A2 or A4 as the structuring element allows us to find the same
result as M. Giraud, R. Groult, and F. Levé [20], which was the expected result.
Two elements of interpretation can be gleaned from this fact. Firstly, our ap-
proach seems indeed capable of improving the results obtained from looking
at MTEC conjugate pairs, even when using A1 or A3. Secondly, the fact that
using A2 or A4 provided better results than A1 or A3 suggests that variations
of a whole-note need to be taken into account in order to get a satisfying read
on Bach’s fugues.
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(a) In the Fugue n°2, we find an MTEC
conjugate pair giving us a pattern with
19 points and 5 occurrences.
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(b) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A1 or A3 completes the pattern
to 20 points and finds one more occur-
rence.

(c) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A2 or A4 completes the pattern
to 20 points and finds three more oc-
currences.

Figure 4.2: Completing an MTEC conjugate pair in Fugue n°2.

For another example where our approach leads to similar results than M.
Giraud, R. Groult, and F. Levé, we can look at the Fugue n°1. However, as we
will see, our approach allows us to glean some other information concerning
the subject and its occurrences. The subject of this fugue contains 14 notes and
appears 23 times [20]. Using their methods, the authors of the article found a
subject of 14 notes that appeared 21 times.

With our method, using A1, A2 or A3 we find five extended pattern-onset
couples, and using A4 we find six of them. The results are summarized in
Table 4.1.

couple n° A1 A2 A3 A4

1 N° of points 7 7 7 7

N° of occurrences 23 23 23 25

2 N° of points 8

N° of occurrences 24

3 N° of points 10 10 11 11

N° of occurrences 22 22 22 23

4 N° of points 14 14 14 14

N° of occurrences 21 21 21 22

5 N° of points 15 15 15 15

N° of occurrences 6 6 9 22

6 N° of points 22 25 23 30

N° of occurrences 3 3 3 3

Table 4.1: Results of the first algorithm on the Fugue n°1 for different dilating
elements
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Let us discuss the result of the A1 column. The third element of the column gives
us the same result as M. Giraud, R. Groult, and F. Levé in their article: a pattern
with 14 points and 21 occurrences. However, looking at the first element gives us the
expected number of occurrences, which was 23. Thus, our approach gives us some
other information than that in the article of reference: it also gives us the number of
certain partial occurrences of the pattern. Moreover, with the fourth and fifth element
of the column, we also get occurrences of patterns that are greater than the subject
and contain also parts of the counter subject. Using A2 and A3 gives way to similar
results, with a few differences for the couples n°3, n°5 and n°6, while using A4 gives
us one more couple and generally makes us find either patterns that are greater or that
have more occurrences. We illustrate the use of our approach for the couple n°1 and
the couple n°4 in Figure 4.3 and Figure 4.4.

(a) In the Fugue n°1, we find an MTEC
conjugate pair giving us a pattern with
6 points and 21 occurrences.

(b) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A1 or A3 completes the pattern
to 7 points and 23 occurrence.

(c) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A2 or A4 completes the pattern
to 20 points 25 occurrences.

Figure 4.3: Completing an MTEC conjugate pair in Fugue n°1.
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(a) In the Fugue n°1, we find an MTEC
conjugate pair giving us a pattern with
13 points and 16 occurrences.

(b) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ementA1, A2 orA3 completes the pat-
tern to 7 points and finds 21 occur-
rence.

(c) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A4 completes the pattern to 14
points and finds 22 occurrences.

Figure 4.4: Completing an MTEC conjugate pair in Fugue n°1.

For a case where our approach proved to be an improvement of the results
obtained by M. Giraud, R. Groult, and F. Levé, let us take a look at the Fugue
n°5, where the subject contains 13 notes and appears 11 times [20]. It is a
case where the authors of the article seem to have underestimated the number
of notes in the subject and overshot the number of occurrences, as they have
found a subject with 9 notes and 35 occurrences.

For every dilating element that we consider, we have found four extended
pattern-onsets pairs. The results are summarized in Table 4.2.

In each case, the fourth pattern-onset pair gives us the result we were ex-
pecting: a pattern with 13 notes and 11 occurrences. But we should also note
that the third pair gives us a pattern with 9 notes and that the second pair
gives us a pattern with 35 occurrences (or 36 in the case where A4 is used),
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couple n° A1 A2 A3 A4

1 N° of points 5 5 5 5

N° of occurrences 37 37 37 56

2 N° of points 8 8 8 8

N° of occurrences 35 35 35 36

3 N° of points 9 9 9 9

N° of occurrences 21 21 23 23

4 N° of points 13 13 13 13

N° of occurrences 11 11 11 11

Table 4.2: Results of the first algorithm on the Fugue n°5 for different dilating
elements

which were the results found by M. Giraud, R. Groult, and F. Levé. Thus, our
approach not only gives us the expected number of notes and number of oc-
currences, but also explains why M. Giraud, R. Groult, and F. Levé obtained
the results they got. The Fugue n°5 is a piece where the subjects appears
frequently in a truncated form. We illustrate our findings in Figure 4.5 and
Figure 4.6, with our approach applied respectively to the second and fourth
pair.

(a) In the Fugue n°5, we find an MTEC
conjugate pair giving us a pattern with 13
points and 9 occurrences.

(b) Using the OVE with respect to the
MTEC conjugate pair with dilating ele-
ment any of our dilating elements keeps
the pattern at 13 points and finds 11 oc-
currence.

Figure 4.5: Completing an MTEC conjugate pair in Fugue n°5.
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(a) In the Fugue n°5, we find an MTEC
conjugate pair giving us a pattern with 8
points and 19 occurrences.

(b) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A1, A2 or A3 keeps the pattern
at 8 points and finds 35 occurrence.

(c) Using the OVE with respect to the
MTEC conjugate pair with dilating el-
ement A4 keeps the pattern at 8 points
and finds 36 occurrences.

Figure 4.6: Completing an MTEC conjugate pair in Fugue n°5.

One of the questions we need to ask ourselves is: which dilating element
should be privileged when using our algorithm. Unfortunately, there does not
seem to be an absolute answer to this question, which is the main limitation
of our approach. To illustrate this, we can consider the Fugues n°9 and n°14.
The Fugue n°9 has a subject with 6 notes and 12 occurrences [20], while the
Fugue n°14 has a subject with 18 notes and 7 occurrences [20]. In both cases,
M. Giraud, R. Groult, and F. Levé did not find the same result: they found a
subject with 18 notes and 10 occurrences for the Fugue n°9 and a subject with
18 notes and 6 occurrences for the Fugue n°14.

In both cases, our approach enables us to find a pattern-onset pair with
the expected values, but for only one dilating element. For the Fugue n°9,
we need to use A1, as the other dilating elements overshoot the number of
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occurrences. For the Fugue n°14 the correct result is obtained with A4, as
the other dilating elements find either not enough points in the pattern or not
enough occurrences.

There thus does not seem to be a "size-fits-all" dilating element for our pur-
poses. However, the dilating elements A2 and A4 seem to generally give way
to more interesting results, as they take into account variations of one whole
tone, which are not uncommon in Bach. A4 does have a tendency to overshoot,
but can also sometimes discover more relevant points than A2.

Let us now discuss the limitations of our approach. We will first discuss
the case of the Fugue n°16. According to our article of reference [20], the
subject should contain 11 notes and should appear 16 times, and the authors
found a subject with 11 notes and that appears 14 times, underestimating the
number of occurrences.

Using our algorithm with A4 gives us four pattern-onsets pairs, one of
which gives us a pattern with 11 notes and 16 occurrences. One may think
that this is a good thing, as we have found the expected number of occur-
rences. However, upon closer inspection this result comes from the fact that
an occurrence has been counted several times. This is illustrated in Figure 4.7.
What this means, is that the method we use to avoid counting redundancies is
not full proof, and that they are cases where the results "lie". In this case, we
thought we had improved the results of M. Giraud, R. Groult, and F. Levé, but
in fact we only have found the same result.

(a) In the Fugue n°16, we find an MTEC
conjugate pair giving us a pattern with 11
points and 6 occurrences.

(b) Using our method with A4 keeps the
pattern at 11 points and finds 16 occur-
rence. The circled pattern is counted 3
times.

Figure 4.7: Completing an MTEC conjugate pair in Fugue n°16.
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Finally, let us end this section with a case where our approach gives us
significantly worse results than that of M. Giraud, R. Groult, and F. Levé. Let
us consider the case of the Fugue n°21. The subject of this fugue has 38 notes
and 8 occurrences. This is also the result discovered by the authors of the
articles.

Using our approach, for each dilating element we find only one pattern-
onsets pair. Using A1, we find a pattern of 112 notes with only 2 occurrences.
Using the other dilating elements, the pattern found is even greater, and still
has 2 occurrences. In this case, we widely overshot the number of notes in
the pattern. The reason is because the MTEC conjugate pair we attempt to
extend already has a pattern with two many notes, i.e. the subject ended up
mixed with the counter-subject giving us a subject that is "too long". This
is illustrated in Figure 4.8. M. Giraud, R. Groult, and F. Levé bypassed this
problem by fixing an upper limit to the number of notes the subject could have.
Thus, this example illustrates a limitation of our approach: since we need to
start from MTEC conjugate pairs in order to find patterns with variations, we
cannot find patterns that are not extension of the patterns of the MTEC pairs.
The next algorithm, using the PVE, does not have this problem.

(a) In the Fugue n°21, we find an MTEC
conjugate pair giving us a pattern with
109 points and 2 occurrences.

(b) Using our method with A1 completes
the pattern at 112 points and finds 2 oc-
currence.

Figure 4.8: Completing an MTEC conjugate pair in Fugue n°21
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4.2 Using the PVE

4.2.1 Description
This second algorithm is based on the PVE. Since we do not need to start from
MTEC conjugate pairs in order to use this operation, the process is different
from the previous algorithm. Instead of applying the morphological erosion
and then the variational operation, we will directly apply the PVE to the po-
tential motifs.

This algorithm is to the first two steps of the previous one, with the PVE
taking on the role of the regular erosion. The first step, which consists in
finding pattern-onset pairs from the dataset is described by Algorithm 3.

Let X be the dataset we wish to study, and A the dilating element used to
study variations. Starting with n = 1, we consider the three sets constituted
from n consecutive notes, starting from the first, second and third note. For
each one of these sets, we consider the PVE of X by the set, using the first note
of the set as the pivot. This gives us the onsets of the set in X . If there is only
one onset, then it means that the motif appears only once in the piece (with
variations accounted for this time) and thus that it is not a repeating pattern. If
this is the case for all three of the considered sets, we can stop the process, as
any of the following sets we might consider will contain at least one of those
and thus cannot be a repeating pattern. If there is more than one onset, then
it means that it is a repeating pattern. We then compute the PVE of X by the
onsets, choosing the origin of the space OE as the pivot, in order to complete
the pattern. Since the original set S is chosen such that S ⊂ X , choosing OE

as the pivot ensures that we can apply Theorem 3.2.1. and thus that we won’t
gain more information by applying the PVE with the same pivots.

We thus obtain a pair (P,O) with P a pattern and O its onsets. However,
a pattern P can be found with different onsets depending on the pivot we have
used. To ensure that a pattern is always associated to a unique set of onsets,
we apply the PVE to X one last time, using the pattern P as the structuring
element and the first element of P as the pivot, obtaining a new set of onsets
O′. If (P,O′) has not already be found, we add it to our list of pattern-onset
pairs.
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Algorithm 3 Finding patterns from consecutive notes with the PVE
n← 1

Pairs← []

stop← False
while not stop do

onsets← []

for k ← 1 to 3 do
S ← the n consecutive notes of X starting from the k-th note
s← the first note of S
O ← ε̂sS,A(X)

if |O| > 1 then insert O in onsets

end if
end for
if onsets is empty then

stop← True
else

for O ∈ onsets do
P ← εOE

O (X)

p← the first note of P
O′ ← εpP (X)

if (P,O′) not in pairs then
insert (P,O′) in pairs

end if
end for

end if
end while

The next and final steps consists in discriminating between patterns that are
potentially musically interesting and those that are not. We can use the same
set of heuristics as for the first algorithm: we consider the number of notes and
the compactness of a pattern as significant parameters. We once again choose
a minimum number of 4 and a compactness of 0.6 (with compactness being
defined in the same way as before.

In the end, the algorithm gives us a list of pattern-onset pairs that give us
a pattern and its occurrences in X with variations as defined by the dilating
element A, similarly to the first algorithm.

The complexity necessary to compute the PVE of a set X by a structuring
element P with dilating element A is O(|A||P ||X|ln(|A||P ||X|)), since it
has equivalent complexity to doing the erosion of the dilated dataset by the
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pattern. Since we are doing at most three PVEs of X by every set consecutive
notes in X up until a certain point, this gives us a worst case complexity of
O(k ∗ n3ln(k ∗ n), where k = |A| and n = |X|.

4.2.2 Results
In this section we consider a few cases to illustrate some of the benefits and
drawbacks of the approach and compare our results with those of M. Giraud,
R. Groult and F. Levé [19], but also with those obtained with our first algo-
rithm. We study the fugues from the Well-Tempered Clavier using 2 distinct
dilating elements. Those are different from the ones used in the previous sec-
tion because the PVE works better with symmetrical dilating elements. They
are defined below and represented in Figure 4.9.

B1 = {(0, 0), (0, 1), (0,−1)};
B2 = {(0, 0), (0, 1), (0,−1), (0, 2), (0,−2)};

Figure 4.9: The dilating elements used for the algorithm.

The first thing one can remark concerning this algorithm is that we gen-
erally obtain more pattern-onsets couples than in our first approach. This is
exemplified by the case of the Fugue n°2. The results obtained with both struc-
turing elements are summarized in Table 4.3.

In the first algorithm, using A1 or A2 led to only one pattern-onset pair
discovered: a pattern with 20 points and 6 occurrences in the case of A1 and
a pattern with 20 points and 8 occurrences in the case of A2. In the approach
using the PVE, we get 5 pattern-onset pairs using B1, and 9 pattern-onset pairs
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using B2. In Table 4.3, we can see that the fifth element found with B1 is a
pattern with 20 points and 6 occurrences and that the ninth element found with
B2 is a pattern with 20 points and 8 occurrences, confirming the results from
the first algorithm. However, the other pairs also give us truncated instances
of the subject.

This can be seen as a benefit of our approach. Discovering partial occur-
rences of a pattern can refine the analysis of the musical piece, especially in the
context of Bach’s fugues where the use of truncated instances of the subject is
often deliberate, especially during the episodes. In Figure 4.10, we show two
of the repeating patterns found using the PVE with B2. The first one corre-
sponds to the subject, and the second one to a truncated version of the subject
with only 5 notes. In the second case, we can clearly see the episodes of the
fugue appear.

couple n° B1 B2

1 N° of points 5 5

N° of occurrences 16 22

2 N° of points 5 5

N° of occurrences 9 15

3 N° of points 10 5

N° of occurrences 7 15

4 N° of points 6 6

N° of occurrences 8 14

5 N° of points 20 6

N° of occurrences 6 14

6 N° of points 11

N° of occurrences 11

7 N° of points 8

N° of occurrences 13

8 N° of points 8

N° of occurrences 12

9 N° of points 20

N° of occurrences 8

Table 4.3: Results of the second algorithm on the Fugue n°2 for different di-
lating elements.

However, having more pattern-onset pairs can also unnecessarily complex-
ify the analysis of the fugue, and draw attention away from the important el-
ements, which in our case are the subject and maybe a few of its truncated
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(a) We have found a subject with 20 notes
and 8 occurrences.

(b) We have found that the subject trun-
cated to the five first notes appears 22
times. The circled areas correspond to the
episodes.

Figure 4.10: Patterns found using the PVE with B2 in Fugue n°2.

instances. In order to select the most interesting pairs and avoid such a prob-
lem, we may want to add other criteria of selection in the future.

The example of the Fugue n°2 exemplifies pretty well the general behav-
ior of the PVE-based algorithm in comparison to the OVE-based algorithm.
Generally, the PVE-based algorithm finds more pattern-onsets pairs than the
OVE-based algorithm, and the results found with the OVE-based algorithm
are part of the results found with the PVE-based algorithm. When that is the
case, this allows us to refine the analysis found with our first algorithm, but
can also complexify it more than necessary. This behavior can notably also be
observed for the Fugue n°1 and the Fugue n°5.

For an example where this approach leads to better results than the first
algorithm, we may take a look at the Fugue n°21. Recall that when we used
the OVE-based algorithm, whatever the dilating element used, we found only
one pattern with more than one hundred points and only 2 occurrences, when
we were expecting a pattern with 38 points and 8 occurrences. Using a PVE-
based algorithm, we get the results that are summarized in Table 4.4.

One can thus remark that using B2 as a dilating element allows us to dis-
cover a pattern with 38 points and 8 occurrences (the 10th pair in the second
column), which were the values expected for the subject of the fugue. Thus, the
PVE-based algorithm can improve results in some cases where the OVE-based
algorithm is unsatisfying. The pattern found is represented in Figure 4.11.
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Figure 4.11: Using the PVE with dilating element B2 in the Fugue n°21, we
find a pattern with 38 notes and 8 occurrences.

couple n° B1 B2

1 N° of points 5 5

N° of occurrences 11 36

2 N° of points 5 5

N° of occurrences 17 33

3 N° of points 5 5

N° of occurrences 13 32

4 N° of points 38 8

N° of occurrences 5 14

5 N° of points 8 6

N° of occurrences 5 19

6 N° of points 39 6

N° of occurrences 4 27

7 N° of points 112 7

N° of occurrences 2 22

8 N° of points 90 12

N° of occurrences 2 12

9 N° of points 8

N° of occurrences 14

10 N° of points 38

N° of occurrences 8

11 N° of points 97

N° of occurrences 3

12 N° of points 109

N° of occurrences 3

13 N° of points 121

N° of occurrences 2

Table 4.4: Results of the second algorithm on the Fugue n°21 for different
dilating elements.
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This approach is however still susceptible to redundancies. We can see this
if we consider the example of the Fugue n°16, which already posed a problem
for the previous algorithm. Using B2, we find a pattern with 11 notes and
16 occurrences, which were the expected values for the subject of the fugue.
However, upon closer inspection, a pattern was counted twice, and we have
actually found only 15 occurrences. Figure 4.12 illustrates this case.

Figure 4.12: Using the PVE with dilating element B2 in the Fugue n°16, we
find a pattern with 11 notes and 16 occurrences. The circled occurrence was
counted twice.



Chapter 5

Conclusion: Perspective and Fu-
ture Works

In this thesis, we have defined three operations that allow us to discover pat-
terns and their occurrences with variations in a music piece: the Opening-less
Variational Erosion (OVE), the Pivotal Variational Erosion (PVE) and the In-
tersectional Variational Erosion (IVE). All of them are based on the use of a
dilating element which defines the kind of variation we can discover. We then
have designed two algorithms, the first one based on the OVE and the second
one based on the PVE, that use those operations in order to find the subject of
a fugue. In both cases, the algorithm returns a list of pairs representing a pat-
tern and its onsets, finding not only the subject of the fugue but also relevant
truncated instances of the subject. In the case of the OVE-based algorithm,
we start by finding MTEC conjugate pairs from consecutive points at the be-
ginning of the fugue and then extend them using the OVE with respect to the
MTEC conjugate pair, while in the PVE-algorithm we apply the PVE directly
to those consecutive points. Generally, the first algorithm gives us less pairs
when compared to the second. Using the PVE-algorithm can thus refine, but
also sometimes needlessly complexify the analysis. We get from both algo-
rithms results similar to those obtained with the approach of M. Giraud, R.
Groult, and F. Levé [20], provided we choose an appropriate dilating element.

One of the limitations of our approach is that it is tailored to a specific case,
which is the problem of identifying the subject of a fugue. In order to find
musically significant recurring patterns in any music piece, another approach
needs to be considered. However, one of the more interesting aspects of our
approach is that it fits very well in the paradigm of finding patterns through
the discovery of MTEC pairs. Thus, as algorithms designed to discover MTEC
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pairs in a point-set are developed, they can be combined with the use of the
OVE or the PVE in order to allow for the discovery of patterns with their
variations.

Another limitation of our approach is that it only accounts for small vari-
ations of a pattern, be it in pitch or in rhythm. However, as pointed out during
the introduction, those are not the only types of transformations one can en-
counter. Our method does not take into account transformations such as inver-
sion or temporal dilation for example. Some of these transformations, when
they can be represented by a bijection, could be discovered through the defor-
mation of the dataset. It would then be plausible to use our approach to find
transformed patterns in datasets that themselves have small variations in pitch
or rhythm.

Finally, our approach could potentially be improved with the use of fuzzy
mathematical morphology. Fuzzy mathematical morphology applies the prin-
ciples of morphology on fuzzy sets, i.e. sets whose elements have degrees of
membership. There are two ways one could use fuzzy logic to improve the
operations we have defined. Firstly, a fuzzy dilating element could be used.
This would allow to easily differentiate between perfect occurrences of a pat-
tern and occurrences with variation. The other way we could use fuzziness
would be with the pattern themselves. This could be a way to relate patterns
that have some notes in common, e.g. truncated instances of a pattern.
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