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1. INTRODUCTION

RANSFORMATIONAL APPROACHES have a long tradition in formalized
music analysis in the American as well as in the European tradition.

Since the publication of pioneering work by David Lewin and Guerino
Mazzola, this paradigm has become an autonomous field of study mak-
ing use of more and more sophisticated mathematical tools, ranging
from group theory to categorical methods via graph-theoretical con-
structions (Nolan 2007). Within the transformational approach,
Klumpenhouwer networks (henceforth K-nets) are prototypical exam-
ples of music-theoretical constructions unifying the three domains we
just mentioned, since they provide a description of the inner structure
of chords by focusing on the transformations between their elements
rather than on the elements themselves. For this reason, K-nets represent
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a complementary approach to the traditional set-theoretical one with
respect to the problem of chord enumeration and classification. One of
the main interests for the “working mathemusician” lies in their deep
connections with some common constructions used in category theory.
In fact, following Mazzola’s original intuition on the relevance of the
categorical approach to the formalization of musical structures and
process, Klumpenhouwer networks seem suitable for music-theoretical
investigations making use of category theory, since they are based on
concepts (such as isographies) and principles (such as the recursive net-
work construction) which are naturally grasped by the functorial
approach. However, as we have suggested elsewhere (Popoff et al.
2015), although K-nets and, more generally, group action-based theo-
retical constructions, such as Lewin’s “Generalized Interval Systems”
(GIS), are naturally described in terms of categories and functors, the
categorical approach to transformational theory remains relatively mar-
ginal with respect to the major trend in the math-music community
(Mazzola 2002; Lavelle, unpublished paper; Fiore 2011; Popoff, sub-
mitted paper). Following Lewin’s (1990) and Klumpenhouwer’s
(1991) original group-theoretical descriptions, theoretical studies have
mostly focused until now on the automorphisms of the T/I group or
of the more general T/M affine group (Lewin 1990; Klumpenhouwer
1998). This enables one to define the main notions of positive and
negative isographies, notions which can easily be extended by taking
into account the affine group on ℤ12, together with high-order isogra-
phies. Since a prominent feature of K-nets is their ability to instantiate
an in-depth multi-level model of musical structure, category theory
seems nowdays the most suitable mathematical framework to capture
this recursive potentiality of the graph-theoretical construction (Mazzola
et al. 2006).

From a graph-theoretical perspective, a K-net is a directed graph
(also called digraph) where the vertices (or nodes) consist of pitch-
classes (or pitch-class sets) and the edges (or arrows) are elements of
the T/I group (or, in a more general setting, of the T/M affine
group). As an example, we represent two K-nets in Example 1. In
addition, these K-nets are 〈T2〉-isographic, in the sense that every edge
of the form Tp is sent to Tp and every edge of the form Ip is sent to Ip+2.
In the general case, what music theorists call the “path consistency
condition” (Hook 2007) is nothing else than the composition and
associativity law of morphisms, together with the definition of functors
in the categorical framework. Moreover, all K-nets correspond to
commutative diagrams in category theory, where the term “diagram” is
taken here in a naive sense (the technical concept of a diagram will be
introduced in Section 5.1.)
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Commutative diagrams, together with the notion of isography as an
algebraic relation between K-nets which is independent of the content
of the nodes, clearly suggests that the categorical approach is the
natural one for the study of any kind of networks. Moreover, category
theory shows how to go beyond the K-nets commonly used in
transformational analysis by defining diagrams which do not necessarily
have this property and by extending the isographic relation to different
levels, by considering transformations between networks of networks
and so on.

Following the very first attempt at formalizing K-nets in terms of
limits of diagrams within the framework of denotators (Mazzola et al.
2006), we have recently proposed a categorical construction, called
poly-K-nets (henceforth PK-nets) and taking values in Sets (Popoff et
al. 2015). This construction generalizes the notion of K-nets in various
ways by solving the sensitivity problem of the K-nets to the label of
their arrows. The concept of isography is in fact highly dependent on
the selection of specific transformations, meaning that two isographic
K-nets loose this isomorphic relation by eventually changing the
musical transformations between their nodes. To see this, we consider
the two K-nets of Example 1, but with a different labelling of the
edges (Example 2). One can quickly check that these K-nets are not

EXAMPLE 1: TWO K-NETS

EXAMPLE 2: TWO K-NETS, RELABELED
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isographic anymore. This asks for a more general setting in which
isographic networks remain isographic when the nodes are preserved
and the family of transformations between the nodes is changed (which
leads to the notion of complete isography), but with the possibility of
recovering the standard case in traditional K-nets (via the notion of
local isography).

PK-nets have been introduced as natural extensions of K-nets, also
enabling the analyst to compare in a categorical framework digraphs
with different cardinalities. This fact may eventually occur in musically
interesting analytical situations and is outside of the scope of classical
K-nets theory. PK-nets also realize Lewin’s intuition that transforma-
tional networks do not necessarily have groups as support spaces, since
one can define PK-nets in any category. Morphisms of PK-nets clearly
show the structural role of natural transformations by which one can
generalize the case of isographic K-nets. In particular they enabled us
to define K-nets which remain isographic for any choice of trans-
formations between the original pitch-classes (or pitch-class sets). After
introducing some preliminaries, we will define PK-nets and provide the
first elementary examples of this theoretical construction.

Formally a PK-net K with values in Sets consists of a functor R from
a category Δ to Sets defining its form, a functor S from a small
category C to Sets representing its support in the musical context, a
functor F from Δ to C and a natural transformation φ from R to SF
showing how the category actions of Δ and C (via R and S ) are related.
K-nets correspond to the case where R takes its values in singletons. In
In a previous work, we have defined and studied the category PKNR of
PK-nets of form R whose morphisms measure the changes between
musical contexts (Popoff et al. 2015); its isomorphisms are related to
the notion of complete isography between PK-nets.

Here we introduce other morphisms between PK-nets, called PK-
homographies. In particular, two different kinds of PK-homographies
are distinguished: complete homographies, and local homographies
between PK-nets with the same form and the same support. These
different kinds of homographies, as well as their corresponding PK-
isographies, are compared and illustrated by many musical examples,
often in the frame of K-nets. We study the category HoPKNR of PK-
nets and their PK-homographies, as well as its sub-category of
complete PK-homographies (which is a quotient of PKNR); e.g.,
constructing limits and connected colimits.

Brief indications are given on the construction of higher level PK-
nets, for instance by taking squares in HoPKNR or defining PK-nets
taking their values in categories other than Sets, in particular in the
category Diag(Sets) (which allows re-iteration of the Diag operation).
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2. PRELIMINARIES

The reader is supposed to be familiar with standard arithmetics in the
cyclic group ℤ12. By an abuse of notation this group will also represent
the set of the twelve pitch-classes as well as the twelve interval-classes,
with the usual semitone encoding. All arithmetic in ℤ12 is supposed to
be performed modulo 12. Some elementary notions of category theory
(functors, natural transformations, limit and colimit constructions [Kan
1958]) are also supposed known. A glossary containing the definitions
of the category theory terms used throughout this article is included in
Annex 3. In contrast to Mazzola’s category-based mathematical music
theory (2002), all functors considered in the paper are covariant.

The group T/I is the group of transpositions and inversions of the
twelve-pitch-classes. It is generated by the transposition T, whose
action on an element x of ℤ12 is T ⋅x =x +1, and by the inversion I,
whose action on an element x of ℤ12 is I⋅x =−x . The T/I group has
for presentation T /I =〈T , I ∣ T 12=I 2=ITIT =1〉, and is thus iso-
morphic to the dihedral group D24 of order 24. The transpositions Tn

are usually notated Tn, while the inversions T nI are usually notated I n.
One can also consider the larger group of transformations T/M

acting on ℤ12, by adding the transformation M, whose action on an
element x of ℤ12 is M ⋅x =5x. Similarly, we will notate the elements
TnM as Mn. The group generated by T, I, and M is isomorphic to
ℤ12 ⋊ Aut(ℤ12); i.e., the holomorph of ℤ12. Notice that the T/M group
can also be described as the group of affine transformations of ℤ12,
whose elements are functions f (x )=kx + l , k ∈{1, 5, 7, 11}, and l ∈ℤ12.

It is a well-known result that the automorphism group of T/I is
isomorphic to ℤ12 ⋊ Aut(ℤ12). Notice that Aut(T/I) is isomorphic to
the T/M group. In the most general form, its elements will be notated
〈kl 〉 in this paper, with k ∈{1, 5, 7, 11}, and l ∈ℤ12, by analogy with
the more traditional notation for positive and negative isographies,
namely 〈T l 〉= 〈1l 〉, and 〈I l 〉= 〈11l 〉, which we will also use. The action
of these automorphisms on elements of the T/I group is given by

• 〈kl 〉 (T p )=T kp, and

• 〈kl 〉 (I p )=I kp +1.

The automorphism group of T/M is isomorphic to:

ℤ2 × (ℤ12 ⋊ Aut(ℤ12)).
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Its elements are notated (u 〈kl 〉), with u ∈ℤ2={1ℤ2
, z }, k ∈{1, 5, 7, 11},

and l ∈ℤ12. Their action on elements of the T/M group is given by:

• (1ℤ2
, 〈kl 〉) (T p)=T kp ,

• (1ℤ2
, 〈kl 〉) (I p)=T kp+ l ,

• (1ℤ2
, 〈kl 〉) (M p )=M kp +4l,

• (z , 〈10〉) (T p )=T p,
• (z , 〈10〉) (I p )=I p,
• (z, 〈10〉) (M p)=M p +6.

3. DEFINING PK-NETS

We begin by defining a Poly-Klumpenhouwer network (PK-net) as
introduced in Popoff et al. (2015).

DEFINITION 1. Let C be a category, and S a functor from C to the
category Sets. Let Δ be a small category and R a functor from Δ to
Sets with non-void values. A PK-net of form R and of support S is a
4-tuple (R, S, F, φ), in which

• F is a functor from Δ to C,

• and φ is a natural transformation from R to SF.

The definition of a PK-net is illustrated by the diagram in Example 3.
The category Δ serves as the abstract skeleton of the PK-net: as such,
its objects and morphisms are abstract entities. Their labelling by
musical entities is performed by the functor F from Δ to the category C.
Traditional transformational music theory commonly relies on a group
acting on a given set of objects: the T/I group acting on the set of the
twelve pitch-classes, the same T/I group acting simply transitively on

EXAMPLE 3: PK-NET DEFINITION SUMMARY
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the set of the 24 major and minor triads, the PLR group acting simply
transitively on the same set, etc. From a categorical point of view, the
data of a group and its action on a set is equivalent to the data of a
functor from a single-object category with invertible morphisms to the
category of sets. However, this situation can be further generalized by
considering any category C along with a functor S: C → Sets. This is
the point of view we include in the definition of a PK-net. Note that
the functor S corresponds to an action of the category C on the
disjoint union of the sets S (c ) for the objects c ∈  C as shown by
Charles Ehresmann (1957). Recent examples in transformational music
theory have taken advantage of this more general definition. For
example, Noll (2005) considers the action of an eight-element monoid
on the set of the twelve pitch-classes, which can be considered as a
single-object category C with eight non-invertible morphisms along
with its corresponding functor S: C → Sets, where the image of the
only object of C is the set of the twelve pitch-classes.

The functor F then allows to label each object of Δ by an object of C,
and each morphism of by a morphism of C. By explicitly separating the
categories Δ and C, we allow for a same PK-net skeleton to be
interpreted in different contexts. For example, a given category C may
describe the relationships between pitch-classes, while another category
C' may describe the relationships between time-spans (Lewin 1987).
Different functors F: Δ → C and F': Δ → C' will then label the arrows
of Δ differently, depending on whether the PK-net describes pitch-
classes or time-spans. Two PK-nets may actually be related by different
kinds of morphisms of PK-nets, some of which have already been
described previously (Popoff et al. 2015), while the others will formally
be introduced in the next sections.

The objects of Δ do not represent the actual musical elements of a
PK-net, which are introduced by the functor R: Δ → Sets. This functor
sends each object of Δ to an actual set, which may contain more than a
single element, and whose elements abstractly represent the musical
objects of study. However, these elements are not yet labelled. In the
same way the morphisms of Δ represent abstract relationships which
are given a concrete meaning by the functor F, these elements are
labelled by the natural transformation φ. The elements in the image of
S represent musical entities on which the category C acts, and one
would therefore need a way to connect the elements in the image of R
with those in the image of S. However, one cannot simply consider a
collection of functions between the images of R and the images of S in
order to label the musical objects in the PK-net. Indeed, one must
make sure that two elements in the images of R which are related by a
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function R(f), f being a morphism of Δ, actually correspond to two
elements in the image of S related by the function SF(f ). The purpose
of the natural transformation is thus to ensure the coherence of the
whole diagram.

Note that the definition of PK-nets encompasses the usual case of K-
nets, for which

• the category C corresponds to the group T/I of transposi-
tions and inversions, considered as a single-object category,

• the group T/I acts on the set ℤ12 of the twelve pitch-classes
in the usual way, which defines a functor S: T/I → Sets, and

• the functor R is such that for any object X ∈  Δ, the set
R(X) is a singleton.

In a previous issue of Perspectives of New Music, Mazzola and Moreno
Andreatta have proposed a categorical formalization of K-nets as
elements of the limit of a diagram of sets or of modules (Mazzola et al.
2006). We can compare the notion of PK-net with this notion of K-
net (Popoff et al. 2015). A PK-net does not represent a unique K-net,
but the set of K-nets associated to SF and a way to “name” them (via
limφ) by the K-sets of R. The PK-net “reduces” to a K-net if R(X) is a
singleton for each object X of Δ. The difference between the notion of
PK-net exposed here and the formalization of Mazzola and Andreatta
lies mainly in the presence of the functor R and the associated natural
transformation φ: R → SF. Their set-oriented formalization introduces
a direct functor F: Δ → Sets, wherein each object of Δ is mapped to a
copy of ℤ12, and where each arrow is mapped to an affine function
from ℤ12 to ℤ12. As explained above, by introducing the functor R, we
separate the actual musical objects (the elements of the images by R)
from their interpretation in the context S. This allows us to change the
context through morphisms of PK-nets (not necessarily confining our-
selves to the usual T/I group), a possibility which was not described in
the work of Mazzola and Andreatta.

Notice that the framework of PK-nets allows much more general
networks to be defined, by replacing the category Sets by any category
H to obtain the notion of a P(oly-)K-net in H. For example, one
could consider the category of ordered sets, or the category of sets and
partial functions between them. Some other interesting situations
include the case where H is a category of presheaves: the networks
considered by Mazzola et al. (2006), correspond to PK-nets in
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Mod@ℤ of the form (R, S, F, φ) where C = T/I (p. 104) and to PK-
nets in a category of presheaves, with F an identity, which are called
networks of networks (106–107). In addition, the authors show how
to define iterated networks using powerset constructions. In another
case, H could be the category Diag(C) of diagrams in a category C,
which could be used to define a hierarchy of PK-nets of increasing
orders (without recourse to powerset constructions as in Mazzola et
al., [2006]).

We now detail several examples showing the advantages of our more
general definition of PK-nets

DEMONSTRATION 1. The functor R allows one to consider sets
R(X), X ∈  Δ, whose cardinality | R(X) | is greater than 1.

For example, let C be the group T/I, considered as a single-object
category, and consider its natural action on the set ℤ12 of the twelve
pitch-classes (with the usual semi-tone encoding), which defines a
functor S: T/I → Sets. Let Δ be the interval category (i.e., the
category with two objects X and Y and precisely one morphism
f : X → (Y ), and consider the functor F: Δ → T/I which sends f to T4.

Consider now a functor R: Δ → Sets such that

R (X )={x1, x3, x3, } and R (Y )={y1, y 2, y3, y 4,}, and such that

R ( f ) (x i )= yi , for 1≤ i≤3.

Consider the natural transformation φ such that

φ(x1) = C, φ(x2) = E, φ(x3) = G, and φ(y1) = E, φ(y2) = G#, φ(y3) =
B, and φ(y4) = D. Then (R, S, F, φ) is a PK-net of form R and
support S which describes the transposition of the C-major triad to
the E-major triad subset of the dominant seventh E 

7 chord. This
functorial construction is shown in Example 4.

This example should make clear to the reader the main differences
between a PK-net and a traditional K-net. Here, the vertices of the PK-
net are not restricted to singletons, and may be sets of arbitrary
cardinality. In addition, this allows us to use an injective function from
one set to the other, thus formalizing the dominant seventh E7 chord
as being built upon a triad (the E-major triad transposed by four
semitones) with an added note. As the next examples show, PK-nets
have additional advantages.
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DEMONSTRATION 2. The definition of PK-nets allows one to
consider networks of greater generality than the usual K-nets.

Consider the category C = T/I and the functor S: T/I → Sets as
in the previous example, and consider the category Δ with one single-
object X and one non-trivial morphism f : X → X such that f2 = idX.
Consider now the functor F: Δ → T/I which sends f to I1 ∈  T/I.

If we restrict ourselves to functors R: Δ → Sets such that R(X) is
a singleton, then there exists no natural transformation φ: R → SF,
since the equation φ(x) = 1 – φ(x) has no solution in ℤ12. However,
it is possible to consider a functor R such that R(X ) = {x1, x2} with
R(f )(x1) = x2 and vice-versa, and a natural transformation φ which
sends x1 to 0 and x2 to 1. Then (R, S, F, φ) is a valid PK-net of form
R and support S.

DEMONSTRATION 3. In addition to groups, the definition of PK-
nets allows one the use of any category C. Thus, PK-nets can describe
networks of musical objects being transformed by the image
morphisms of C through S.

Consider, for example, the set of the twelve pitch-classes ℤ12 (with
the usual semi-tone encoding), and the two functions m, n: ℤ12 → ℤ12

such that m(x) = 3x + 7 and n(x) = 8x + 4. These functions are the
generators of the 8-element monoid studied by Noll (2005).

M = 〈m, n ∣ m3=m, n3=n, m2 n=nm2, mn 2=mn, nm 2=nm 〉

EXAMPLE 4:  DIAGRAM SHOWING THE FUNCTORIAL CONSTRUCTION

UNDERLYING THE DEFINITION OF PK-NETS AS

APPLIED TO DEMONSTRATION 1
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Let Δ be a small category with three elements X, Y, and Z, and only
three non-trivial morphisms f : X → Y, g : Y → Z, and gf : X → Z.
Let F be the functor from Δ to M such that F(f ) = F ( g) = n (and
F(gf ) = n2). Let R be the functor from Δ to Sets, such that R(X),
R(Y ), and R(Z) are singletons, and let φ be the natural
transformation which maps these singletons to {D}, {G 

#}, and {G 
#}

in ℤ12, respectively. Then (R, S, F, φ) is a PK-net of form R and
support S, which expresses the successive transformations of the pitch-
class D by the monoid element m, giving us an example of a PK-net
in a monoid which can be represented in a succinct way with the
diagram in Example 5.

4. HOMOGRAPHIES OF PK-NETS

As stated in the previous section, the category C along with the func-
tor S: C → Sets can be interpreted as the context in which the PK-net
analysis is performed. These contexts can be quite varied (pitch-class
transformations, time-span transformations, etc.), and one therefore
needs a way to pass from one context to another. We will therefore
define in this section the notion of PK-net homography. This will allow
us to define different categories of PK-nets. From now on, we will
restrict ourselves to PK-nets of a given form R. Studying morphisms of
PK-nets where the form is allowed to vary could be considered in a
future, more general, work.

The first notion we define is that of a lax PK-net homography. Let
K = (R, S, F, φ) be a PK-net. We define a functor SF |φ: Δ → Sets as
follows. It associates to an object X of Δ the subset Imφ (X) of SF(X )
image of φ(X):

SF |φ(X) = Imφ (X ) = {φ(X)(a) | a ∈  R(X)}

and associates to d: X → Y in the map SF|φ(d): Imφ(X) → Imφ (Y) such
that SF|φ(d)(a) = SF(d)(a). There is a natural transformation φ|: R → SF|φ
associating to X the map φ|(X): R(X) → SF|φ(X), which is the restriction
of φ(X). We then have the following definition of a lax PK-net
homography.

EXAMPLE 5
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DEFINITION 2. A lax PK-homography (N, ν): K → K' from K
to K' = (R, S', F', φ') consists of a functor N: C → C' and a natural
transformation ν: SF|φ → S'F'|φ' such that F' = NF and φ'| = ν ∘ φ|.
It is called a lax PK-isography if N is an isomorphism and ν is an
equivalence.

This allows us to define a first category LaxHoPKNR of PK-nets
and lax homographies between them.

DEFINITION 3. For a given functor R: Δ → Sets, the category
LaxHoPKNR has for objects the PK-nets of form R, and for
morphisms the lax PK-homographies between them.

The situation simplifies in the case of K-nets, as shown by the
following proposition.

PROPOSITION 1. Let K and K' be two K-nets such that there exists
a functor N with F' = NF. Then there exists a lax PK-homography
(N, ν): K → K'. It is a lax PK-isography if N is an isomorphism.

PROOF. For each object X of Δ, R(X ) is a singleton, and so are
Imφ(X) and Imφ'(X), so that the natural transformation ν is
defined canonically.

There exists a stronger notion of homography, which we simply
refer to as a PK-net homography, and which is defined as follows.

DEFINITION 4. A PK-homography (N, ν): K → K' from K to
K' = (R, S, F, φ) consists of a functor N: C → C' and a natural
transformation v: SF → S'F' such that F' = NF and φ' = ν ∘ φ. A
PK-homography is called a PK-isography if N is an isomorphism
and ν is an equivalence.

This new definition allows us to define a second category HoPKNR

of PK-nets and homographies between them.

DEFINITION 5. For a given functor R: Δ → Sets, the category
HoPKNR has for objects the PK-nets of form R, and for morphisms
the PK-homographies between them. The composition of two PK-
homographies (N, ν) and (N', ν' ) is given by (N', ν' )(N, ν) =
(N'N, ν' ∘ ν).
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As a remark, we can notice that HoPKNR has “many” isomorphisms
as the following example shows. Let K be a PK-net with the following
property: for an object U of C which is not of the form F(X) for some
X in Δ, there is no arrow from U to an object in F(Δ). For such a PK-
net, in which one finds objects U of C not belonging to F(Δ), we have
an isomorphism (IdC, Id): K → K' where K' = (R, S, F, φ) such that S
and S' have the same restriction on F(Δ), and such that S'(U) is
reduced to a singleton for the objects U. In this paper, we will often
consider PK-nets where the functor F is surjective on objects. Note
that this is the usual case in transformational music theory, in particular
if C is a group.

The distinction between PK-homographies and lax PK-homo-
graphies is a subtle one, and may not be apparent at first look. The
following example will help clarify this distinction.

DEMONSTRATION 4. Let K and K' be two K-nets with the same
functors F and S such that:

• the category Δ has two objects X and Y and a unique
morphism d: X → Y,

• C is the 3-element monoid generated by a single element t
and such that t3 = t2,

• the functor F maps d onto t,

• the functor S: C → Sets is associated to the action of C on
the set {A, B, 0} such that t(A) = B, t(B) = 0, t(0) = 0,

• for the K-Net K, Imφ(X) = {A}, Imφ(Y ) = {B}, whereas for
the K-Net K', Imφ'(X) = {B}, Imφ'(Y ) = {0}.

Then

• The PK-nets K and K' are lax PK-isographs but are not PK-
isographs.

• There is a PK-homography (Id, ν): K → K', where ν(X)(A) =
B, ν(X)(B) = 0, ν(X)(0) = 0, and ν(Y ) is the constant
function on 0.

• There is no PK-homography from K' to K.
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When dealing with small musical networks, the categories Δ are
usually finite posets: i.e., small categories such that for any objects X
and Y in Δ there is at most one morphism d: X → Y or d: Y → X
between them. As an illustration, Example 6 presents three categories
Δ2, Δ3, and Δ4, frequently used for the construction of networks.
Observe that Δ2 and Δ3 were used in Demonstrations 2 and 3 in the
previous section. If Δ is a poset with a bottom or top element (which is
the case for Δ3 and Δ4), and if C is a group, then the distinction between
lax PK-isographies and PK-isographies vanishes, as proposition 2 shows.

PROPOSITION 2. Let Δ be a poset with a bottom (or top) element X,
and let C and C' be two groups with units o and o'. Let F: Δ → C,
F': Δ → C', S: C → Sets, and S': C' → Sets be functors. Then

1. Given a map μX: S(o) → S'(o'), there is one and only one
natural transformation μ: SF → S'F' extending μX.

2. Let K = (R, S, F, φ) and K' = (R, S', F', φ') be PK-nets. If
(N, ν) is a lax PK-homography from K to K', then there are
PK-homographies (N, μ): K → K' extending (N, ν). If K
and K' are lax PK-isographs and if S(o) and S'(o') are
isomorphic, then K and K' are also PK-isographs.

 PROOF.

1. If μ: SF → S'F' is a natural transformation, it must satisfy
the following equation for each object Y of Δ, where fXY: X →
Y is the unique arrow in Δ between them:

(A) (B) (C)

EXAMPLE 6: THREE CATEGORIES (A) Δ2, (B) Δ3, AND (C) Δ4 FREQUENTLY

USED FOR THE CONSTRUCTION OF PK-NETS IN MUSICAL ANALYSIS
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μY = S'F'( f XY)μXSF( fXY)–1

Since C and C' are groups, SF ( fXY) and S'F'( fXY) are bijec-
tions, and thus the data of the map μX determines uniquely
the natural transformation μ given by the above equation.

2. Let (N, ν) be a lax PK-homography. Then we have the map
νX: Im(φ) → Im(φ'). We can extend it to a map μX: S(o) →
S'(o') by associating to each element in S(o) not in Im(φ) an
element of S'(o'). Then we extend μX into a natural
transformation: SF → S'F' by the previous result. As φ and φ'
take their values in their images, the equality φ'| = ν ∘ φ'|

extends to the equality φ' = μ ∘ φ', so that (N, μ) is a PK-
homography from K to K'. If (N, ν) is a lax PK-isography,
and if S(o) is isomorphic to S'(o'), then the bijection νX can be
extended into a bijection μX: S(o) → S'(o'). Then, from the
previous result, the different μY are also bijections, and μ is
an equivalence. Thus (N, μ) is a PK-isography.

Since the networks considered in transformational music theory
usually satisfy the conditions of Propositions 1 and 2, we will therefore
only consider the cases of PK-homographies and PK-isographies in the
rest of this paper.

In order to give a musical example of a PK-homography which
allows a change of context for musical analysis, we consider the
following cases.

 DEMONSTRATION 5. Let the category C be the cyclic group G =
ℤ12, generated by an element t of order 12. Consider the action of t
on the set ℤ12 of the twelve pitch-classes given by t⋅x =x +1, ∀ x ∈
ℤ12. This defines a functor S: G → Sets, which corresponds to the
traditional action of ℤ12 by transpositions by semitones. Consider
now the action of t on the set ℤ12 of the twelve pitch-classes given by
t⋅x =  x +5, ∀ x ∈ℤ12. This defines another functor S': G → Sets,
which corresponds to the action of ℤ12 by transpositions by fourths.

Let N be the automorphism of G which sends tp ∈  G to t 5p in G,
∀ p ∈{1, . . . , 12}, and let ν be the identity function on the set ℤ12.
It is easily checked that ν is a natural transformation from S to S'N,
which thus extends to a natural transformation from SF to S'F'.

Let (R, S, F, φ) be the PK-net built on Δ2 (see Example 6a), where
F is the functor from Δ2 to G which sends the non-trivial morphism
f : X → Y of Δ2 to t10 in G, R is the functor from Δ2 to Sets which
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sends the objects of Δ2 to singletons, and φ is the natural transfor-
mation which sends R(X) to {0} ⊂ ℤ12 and R(Y ) to {10} ⊂ ℤ12.
This PK-net describes the transformation of C to Bb by a transpo-
sition of ten semitones.

By the morphism of PK-nets (N, ν ) introduced above, one obtains a
new PK-net (R', S', F', φ'), wherein the functor F' = NF sends f  ∈  Δ2

to t2 ∈  G, and the natural transformation φ' = (Fν ) ∘ φ sends R(X)
to {0} ⊂ ℤ12 and R(Y ) to {10} ⊂ ℤ12. This new PK-net describes
the transformation C to Bb by a transposition of two fourths.

DEMONSTRATION 6. We here give an example of a morphism
between a PK-net of beats and a PK-net of pitches. Example 7 shows
a passage from the final movement of Chopin’s Piano Sonata No. 3,
op. 58 in B minor, wherein the initial six-note motive is raised by
two semitones every half-bar.

Let the category C be the infinite cyclic group G = ℤ, generated by
an element t. Let ℤ be the set of equidistant beats of a given
duration and consider the action of t on this set given by t · x = x + 1,
∀x ∈  ℤ. This action defines a functor S: G → Sets. Let the category
C' be the cyclic group G' = ℤ12, generated by an element t' of order
12. Consider the set U = {ui, i ∈  ℤ12} of the twelve successive trans-
positions of the pitch class set u0 = {10, 11, 0, 3, 4}, and consider the
action of t' on U given by t' · ui = ui+1 (mod 12), ∀i ∈  ℤ12. This
defines a functor S': G' → Sets.

EXAMPLE 7:  A PASSAGE FROM THE FINAL MOVEMENT OF

CHOPIN’S PIANO SONATA NO. 3, OP. 58 IN B MINOR
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Let (R, S, F, φ) be the PK-net wherein:

• Δ defines the order of the ordinal number 4 (whose objects are
labelled Xi),

• F is the functor from Δ to G which sends the non-trivial
morphisms f i, i+1: Xi → Xi+1 of Δ to t in G,

• R is the functor from Δ to Sets which sends the objects Xi of Δ
to singletons {xi}, and

• φ is the natural transformation sending R(Xi) to {i} ⊂ ℤ.

This PK-net describes the successive transformations of the initial
set by translation of one half-bar in time.

Let (R', S', F', φ' ) be the PK-net wherein:

• F' is the functor from to Δ G' sending the non-trivial
morphisms f i, i+1: Xi → Xi+1 of Δ to t'2 in G',

• φ' is the natural transformation which sends R(Xi ) to {u2i} ⊂
U.

This PK-net describes the successive transformations of the initial
set {10, 11, 0, 3, 4} by transpositions of two semitones.

Consider the functor N: G → G' which sends t to t'2, together with
the natural transformation ν : ℤ → U given by ν(x) = u2x (mod 12).
This natural transformation extends to a natural transformation
from SF to S'F'. The morphism of PK-nets (N, ν ) thus describes the
relation between the translation in time and the transposition in
pitch.

The next two sections are devoted to two specific forms of
homographies which are particularly relevant for musical analysis.

5. COMPLETE HOMOGRAPHIES

Demonstrations 5 and 6 introduced a particular class of PK-homogra-
phies (or PK-isographies) in which the natural transformation ν : SF →
S'F' is of the form ṽF, where ṽ is a natural transformation from S to S'N.
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DEFINITION 6. A PK-homography (N, v) between two PK-nets K
and K' is called a complete homography if the natural transforma-
tion ν can be expressed as ν = ṽF, where ṽ is a natural transformation
from S to S'N.

We note that ṽ is not always unique if F is not surjective on objects.
The reason these homographies are called complete is because they do
not depend of the choice of functor F. Indeed, given two objects X
and Y in C, and two elements x ∈  S(X), y ∈  S(Y ) such that y = S(f )(x)
for some morphism f  ∈  C, we have

 ṽ(y) = ṽ(S(f )(x)) = S'N(f )(ṽ(x)),

by definition of the natural transformation ṽ. In other words, whatever
the transformation f in C which relates the elements x and y, their
images by ṽ are related by the image transformation N(f ).

PK-nets and the complete homographies between them form a
category, hereby called CompHoPKNR, which is a subcategory of
HoPKNR.

DEFINITION 7. For a given functor R: Δ → Sets, the category
CompHoPKNR has the PK-nets of form R for objects, and complete
PK-homographies as morphisms between them.

The following proposition describes the structure of the categories
HoPKNR and CompHoPKNR. The proof is available in Annex 1. Note
that the construction of limits or colimits of PK-nets represents a uni-
versal method for grouping interacting PK-nets into a single network.

 PROPOSITION 3. We have the following results regarding the
categories HoPKNR and CompHoPKNR.

1. CompHoPKNR has all small limits and all small connected
colimits, and they are preserved by the insertion functor from
the sub-category CompHoPKNR to HoPKNR.

2. HoPKNR has all small limits and all small connected co-
limits relative to PK-nets in which the functor F is surjective
on objects.

Note that studying the natural transformations ṽ from S to S'N
amounts in fact to studying the morphisms having the functor S as
their domain in the category Diag(Sets) of diagrams in Sets. Let us
recall some results about this category.
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5.1 CATEGORIES OF DIAGRAMS IN SETS

We begin by recalling the definition of the category Diag(Sets).

 DEFINITION 8. The category Diag(Sets) has:

• pairs (C, S) as objects, where C is a small category, and S is a
functor from C to Sets, and

• pairs (N, ṽ) as morphisms between two objects (C1, S1) and
(C2, S2), where N is a functor from C1 to C2, and ṽ is a
natural transformation from S1 to S2N.

This is a complete and co-complete category, which includes a
(complete and co-complete) subcategory GrDiag(Sets) wherein the
categories C are groups.

 DEFINITION 9. The category GrDiag(Sets) has

• pairs (G, S) as objects, where G is a group, and S is a functor
from G to Sets, and

• pairs (N, ṽ) as morphisms between objects (G1,S1) and (G2,S2),
where N is a functor from G1 to G2 (i.e., a group homomor-
phism), and ṽ is a natural transformation from S1 to S1N.

In turn, GrDiag(Sets) includes a subcategory, which is neither
complete nor co-complete, wherein the functors S are representable.
Observe that, from a result of Vuza (1988) and Kolman (2004), a GIS
is known to be equivalent to a simply transitive group action on a set,
which is in turn equivalent to a representable functor from the group
to Sets. The subcategory of GrDiag(Sets) where the functors S are
representable is therefore the category of GIS and GIS morphisms
studied by Noll and Fiore (2011).

Since we are not limited to GIS, we can work more generally in
GrDiag(Sets), or even Diag(Sets). The definition above allows us to
define the automorphism group of an object (C, S) of this category.

DEFINITION 10. Let (C, S) be an object of Diag(Sets). The auto-
morphism group of (C, S) is the set Aut((C, S)) = {(N, ṽ)} of
morphisms from (C, S) to (C, S), where N is an isomorphism and ṽ
an equivalence, equipped with the product given by

(N2, ṽ2)(N1, ṽ1) = (N2N1, (ṽ2 N1) ∘ ṽ1).
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In the case of PK-nets having a functor F which is surjective on
objects, a complete homography is in one-to-one correspondence to a
morphism in Diag(Sets), and a complete isography to an isomorphism
of Diag(Sets). In the particular context of isographies, the question
remains to determine the automorphism groups of objects of
Diag(Sets), or in other words, of functors S: C → Sets.

Before analyzing these groups in detail, it should be remarked that
topoi and their characteristic morphisms form a great source of PK-net
morphisms. It is a well-known result that for any small category C, the
category of functors SetsC is a topos. The category SetsC therefore has
a subobject classifier Ω, and for any subobject A ∈  SetsC of an object
B ∈  SetsC, there exists a characteristic map XA: B → Ω. Topoi have
found applications in music theory; for example, in the work of
Mazzola (2002) and more recently in the work of Noll and Fiore
(2011) and Fiore et al. (2013). In the context of PK-nets, the
characteristic map can be considered as a morphism of PK-nets. Let
(R, S, F, φ) be a PK-net of form R and of support S ∈  SetsC. Let A be
a subobject of S: this defines a characteristic map XA: S → Ω which is
equivalent to a morphism of PK-nets (idC, XA). This morphism thus
defines a new PK-net (R, Ω, F, φ').

5.2 THE AUTOMORPHISM GROUPS OF REPRESENTABLE FUNCTORS

Given the knowledge of two functors S: C → Sets and S': C' → Sets,
and a functor N: C → C', there may not always exist a natural trans-
formation ṽ: S → S'N. The following Proposition gives a sufficient
condition on S for the existence of the natural transformation ṽ. The
proof can be found in Popoff et al. (2015).

PROPOSITION 4. Let S: C → Sets, S': C' → Sets, and N: C → C'
be three functors, where S' has non-empty values. If S is a
representable functor, then there exists at least one natural
transformation ṽ: S → S'N.

An immediate corollary of this result is that, given a PK-net (R, S, F,
φ) where S is a Generalized Interval System (GIS), a functor S': C' →
Sets (which may not necessarily be representable), and a functor N: C
→ C', one can always form a new PK-net (R', S', F' = NF, φ'). Indeed,
a GIS is known to be equivalent to a representable functor from the
group (as a single-object category) to Sets. The previous Proposition
can then be used to form the new PK-net. In fact, if C = G is a group
and S is representable, the following proposition allows us to describe
exactly the structure of the automorphism group Aut((G, S )).
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PROPOSITION 5. Let (G, S) be an object of GrDiag(Sets), where S
is a representable functor from G to Sets. The automorphism group
of (G, S) is isomorphic to G ⋊ Aut(G); i.e., the holomorph of G.

PROOF. Let o be the single object of G. Let N be an automorphism
of G. We want to determine the natural transformation ṽ: S → SN.
Since S is representable, there is a natural isomorphism with a
particular Hom functor H, which defines a bijection X: G → S(o)
between the elements of G and the elements of the set. By the Yoneda
lemma, the natural transformations from H to SN are in bijection
with the elements of the set S(o); i.e., with elements of G (through X).
Given a particular element g0 of G, the natural transformation
ṽ: S → SN is then given by

ṽ(x) = X(M(X−1(x))g0).

Thus the set of morphisms (N, ṽ) from (G, S) to (G, S) is in bijection
with pairs (N, G), where N is an automorphism of G and g is an
element of G. Given two morphisms (N1, ṽ1), and (N2, ṽ2) corre-
sponding to pairs (N1, g1), and (N2, g2), the composition of the
natural transformations is given by

 ṽ2(ṽ1(x)) = X(N2(X−1(X(N1(X−1(x)) g1))) g2),

which is equal to

ṽ2(ṽ1(x)) = X(N2(N1(X−1(x)g1))g2),

in turn equal to

 ṽ2(ṽ1(x)) = X((N2 ∘ N1)(X−1(x))N2(g1)g2),

which corresponds to the natural transformation from (G, S) to (G, S)
corresponding to the pair (N2N1, N2(g1)g2). This last expression is
that of a semidirect product of G by Aut(G).

Notice that in the case where G = T/I, we obtain the affine maps first
discussed by Kolman, and later by Noll and Fiore (2011). As a corollary,
observe that G is a normal subgroup in Aut((G, S)). It is the subgroup of
Aut((G, S)) corresponding to identity isomorphisms of G. In other
words, given two elements x, y ∈  S(o), which are connected by a trans-
formation g of G, their images ṽ(x) and ṽ(y) are also connected by the
same transformation g; i.e., we have the diagram shown in Example 8.
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In the particular case of G = T/I acting on the set of the 24 major
and minor triads, this result is better known in terms of dual groups (in
the sense of Lewin). In this case, the action of the normal subgroup of
Aut((T/I, S)) on the set of triads coincides with that of the PRL group.
In the general case, Aut((T/I, S)) is the group of order 1152 isomorphic
to T/I ⋊ T/M. Given an element (〈kl〉, g) of Aut((T/I, S)), we can cal-
culate explicitly the corresponding natural transformation. This result
is given in Annex 2.

Of course, one could consider G to be the PLR group, acting on the
set of the 24 major and minor triads, in which case the action of the
normal subgroup of the automorphism group Aut((G, S)) would coin-
cide with that of the T/I group. We give an application of this case in
the following demonstration.

DEMONSTRATION 7. Example 9 is a passage from Gesualdo’s five
voice motet Deus refugium et virtu. We are particularly interested
in the chord progressions in the four repeated “Pietatis.” The first one
(A) goes from A major to C minor and then to G major. The
analysis in the context of the PLR group yields the K-net shown in
Example 10a. The second one (B) goes from E major to C minor and
then to D major. The analysis in the context of the PLR group yields
the K-net shown in Example 10b. The third one (C) goes from E
major to G minor and then to D major. The analysis in the context
of the PLR group yields the K-net shown in Example 10c. The last
one (D) goes from B major to G minor and then to A minor. This
last chord stands out against the rest of the progressions: one would
have expected a A major, had everything been symmetric. The
analysis in the context of the PLR group yields the K-net shown in
Example 10d.

The K-nets (A) and (C) are clearly isographic, the isomorphism
being the identity on the PLR group, and so are the K-nets (B) and

EXAMPLE 8
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(D) (omitting the second arrow). As per the discussion above, the
natural transformation of the morphism from (A) to (C) corre-
sponds to an element of the normal subgroup of Aut((PLR, S)). In
other words, it corresponds to an element of the T/I group, which is
here the T7 transposition.

Moreover, the K-nets (A) and (B) are also isographic, and so are
the K-nets (C) and (D). Indeed, consider the automorphism N
which sends the generators L and R to R and RLR respectively. Then
N((RL)6R) = (RL)7R and N((RL)4R) = (RL)5R. The natural
transformation ṽ: S → SN associated with the automorphism N
which describes the transformation from (A) to (C) and from (B) to
(D) is the bijective function on the set of 24 major and minor triads
which sends a major triad nMaj to ṽ(nMaj) = (n + 7)Maj, and a minor
triad nMin to ṽ(nMin) = nMin. We thus obtain the diagram in
Example 11 of PK-nets and isographies between them.
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EXAMPLE 10A

EXAMPLE 10B

EXAMPLE 10C

EXAMPLE 10D

EXAMPLE 11
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5.3 THE AUTOMORPHISM GROUPS OF NON-REPRESENTABLE FUNCTORS

If the functor S: C → Sets is not representable, the situation is a bit
more complex, and there is no answer to the existence of natural
transformations S → SL in the general case. We can, however, work it
out in some special cases.

In a first part, we study the automorphism group of the functor
S: T/I → Sets given by the standard action of the T/I group on the
set of pitch-classes ℤ12. This result has been discussed in Popoff et al.
(2015).

PROPOSITION 6. The automorphism group of (T/I, S), where S is
given by the standard action of the T/I group on the set of pitch-
classes ℤ12, is isomorphic to Aut(T/I) ≃  T/M.

PROOF. The proof has been given in Popoff et al. (2015) in the
general case of dihedral groups. Let L be an automorphism of T/I:
i.e., an element 〈kl 〉  ∈ Aut(T/I). Then, if l is odd, there exists no
natural transformation ν: S → SL. If l is even, there exist exactly
two natural transformations: S → SL, given by ν(x) = kx + l/2 + 6.
The set of all natural transformations equipped with the composition
given above is isomorphic to the T/M group, which (as seen above), is
isomorphic to Aut(T/I).

Let Z = {0, 6} be the additive subgroup of order 2 of the cyclic
group ℤ12. The elements of Aut((T/I, S)) can be bijectively identified
with pairs (〈kl〉, z), where k ∈  {1, 5, 7, 11}, l is even, and z ∈  Z. Thus
Aut((T/I, S)) can be described as an extension of ℤ2 by ℤ6 ⋊ D4,
which involves a non-trivial 2-cocycle η from (ℤ6 ⋊ D4) × (ℤ6 ⋊ D4) to
ℤ2. More precisely, given two elements 〈kl〉 and 〈k'l'〉 of ℤ6 ⋊ D4, we
have

 η(〈k'l'〉, 〈kl〉) = (k'(l/2) + l'/2) – (k'l + l')/2.

We now give an application to isographic networks. Consider the
following K-net (R, S, F, φ), along with the isomorphism N = 〈T2〉; i.e.,
the isomorphism N: T/I → T/I such that N(Tp) = Tp, and N(Ip) = Ip+2.
(See Example 12.)

By Proposition 6, there exists two natural transformations from S to
SN, given by the functions ṽ1(x) = x + 1 and ṽ2(x) = x + 7, for x ∈  ℤ12.
By the PK-net morphisms (N, ṽ1) and (N, ṽ2) applied to (R, S, F, φ),
two new PK-nets are obtained, which are represented in Example 13.
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As (N, ṽ1) and (N, ṽ2) are complete isographies, for any other choice
of transformations between the original pitch-classes, these PK-nets
remain isographic to the initial one. For example, the pitch-class G#
can also be transformed into F by the T9 transformation, which is the
case for the pitch-classes A and F#, or Eb and C.

In a more general case, we could also consider the automorphism
group of the functor S: T/M → Sets given by the standard action of
the T/M group on the set of pitch-classes ℤ12.

PROPOSITION 7. The automorphism group (T/M, S), where S is
given by the standard action of the T/M group on the set of pitch-
classes ℤ12, is isomorphic to T/M.

PROOF. The automorphism group of the group T/M is isomorphic
to ℤ2 × (ℤ12 ⋊ Aut(ℤ12)), with elements (z, 〈kl〉) (not to be confused
with elements of Aut(T/I, S)). Let L be the element (1ℤ2, 〈kl〉). For a
natural transformation: S → SL, we must check the following condi-
tions, for all p ∈  ℤ12:

• Tkp · ν(x) = ν(Tp · x),

• Ikp+l · ν(x) = ν(Ip · x),

• Mkp+4l · ν(x) = ν(Mp · x),

EXAMPLE 12

EXAMPLE 13

G♯ B♭

F A

T2

I7I1

T4

G♯ B♭

F A

T2

I7I1

T4

A B

F♯ B♭

T2

I9I3

T4

E♭ F

C E

T2

I9I3

T4

ν̃1(x) = x+ 1

N = ⟨T2⟩
ν̃2(x) = x+ 7

N = ⟨T2⟩
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The first condition imposes ν(x) = kx + ν(0). The second condition
imposes ν(0) = l – ν(0), while the third one imposes ν(0) = 4l + 5ν(0).
One notes that ν(0) = l – ν(0) is sufficient to have ν(0) = 4l + 5ν(0).
Therefore, the natural transformation exists iff ν(0) = l/2 or ν(0) =
l/2 + 6. The natural transformations associated with (1ℤ2, 〈kl〉) are
therefore of the form ν(x) = kx + l/2 or ν(x) = kx + l/2 + 6. The
subgroup of Aut((T/M, S)) consisting of elements ((1ℤ2, 〈kl〉), ν) is
thus isomorphic to T/M.

Let L be the element (z, 〈 10 〉 ). For a natural transformation
ν: S → SL, we must check the following conditions, for all p ∈  ℤ12:

• Tp · ν(x) = ν(Tp · x),

• Ip · ν(x) = ν(Ip · x),

• Mp+6 · ν(x) = ν(Mp · x),

The first condition imposes ν(x) = x + ν(0). The second condition
imposes ν(0) = –ν(0), while the third condition imposes 4ν(0) + 6 = 0.
This has no solution in ℤ12, and therefore there exists no natural
transformation associated with the automorphism (z, 〈10〉) of T/M.

Thus, Aut((T/M, S)) is isomorphic to T/M, and its elements consist
of pairs ((1ℤ2, 〈kl〉), ν), with ν(x) = kx + l/2 or ν(x) = kx + l/2 + 6.

6 LOCAL HOMOGRAPHIES

However, complete isographies do not cover all cases of isographies.
Consider for example the two K-nets of Example 14. Clearly, they are
isographic by the 〈T1〉 isography. As complete isographies only cover the
isographies 〈kl〉 where l is even, there is no complete isography which
can describe a transformation of the first K-net into the second.

EXAMPLE 14

G♯ B♭

F A

T2

I7I1

T4

B C♯

E♭ G

T2

I8I2

T4
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Such a transformation can yet be described by a local isography. This
notion, along with the more general notion of local homography, is
defined below.

DEFINITION 11. A PK-homography (N, ν) between two PK-nets K
and K' of identical form R, is called a local PK-homography if they
have the same support S and if there is a natural transformation
v̂: F → F' = NF such that ν = Sv̂. It is a local PK-isography if N is
an isomorphism and ν is an equivalence.

A local homography attributes to each object X of Δ a morphism of
C = C' which describes the local transformation v̂X at this node. Notice
that there can be several natural transformations v̂ giving the same
v̂ = Sv̂: for instance if C is a group and its action via S is not free.1 For a
given form R, we can define a subcategory of HoPKNR of PK-nets
and local homographies between them; its isomorphisms are the local
PK-isographies.

DEFINITION 12. For a given functor R: Δ → Sets, the category
LocHoPKNR has for objects the PK-nets of form R, and for
morphisms the local PK-homographies between them.

We illustrate more clearly the concept of local isography on the the
two PK-nets of Example 14. These PK-nets are built on the category
Δ4, along with the functor R which sends each object of Δ4 to a
singleton, and the functor S: T/I → Sets. The functor F is such that
F(fWX) = T2, F(fXZ) = I7, F(fWY) = I1, and F(fYZ) = T4, while the functor
F' is such that F'(fWX) = T2, F'(fXZ) = I8, F'(fWY) = I2, and F'(fYZ) = T4.
Let N = 〈T1〉 be the isomorphism of the T/I group which sends Tp to
Tp, and Ip to Ip+1. We are looking for a natural transformation v̂ from F
to F' = NF. Since C is a group, for any object U of Δ, the component
v̂U of v̂ is an element of T/I. Consider the natural transformation v̂
such that v̂W = T3, v̂X = T3, v̂Y = T10, and v̂Z = T10. One can quickly
verify that it is indeed a natural transformation: for instance, Example
15, which amounts, in more simple terms, to the equation 2 – (x + 3)
= 11 – x = 10 + (1 – x), for all x in ℤ12. Then (N, Sv̂) is the PK-
isography, illustrated in Example 16, that describes the transformation
of the first network into the second.
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The next two propositions study the particular case where Δ is a
poset with a bottom element and C is a group acting freely via S.

PROPOSITION 8. Let K = (R, S, F, φ) be a PK-net where Δ is a poset
with a bottom element X and C is a group acting freely via S. Then:

1. Given a group homomorphism N: C → C, there is an injection
from the set HN of local PK-homographies (N, ν): K → K'
= (R, S, NF, φ') to C, mapping (N, ν) on v̂X.

2. If F' = F, then the set H of local PK-isographies (IdC, ν) with
domain K is in bijection with G.

EXAMPLE 15

EXAMPLE 16

F(W) F(Y)

F’(W) F’(Y)

I1

ν̂Y = T10ν̂W = T3

I2

G♯ B♭

F A

T2

I7I1

T4

B C♯

E♭ G

T2

I8I2

T4

T3 T3

T10 T10
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PROOF.

1. Let (N, ν) be a PK-homography, and let o be the single object
of C. From Proposition 2, it follows that ν is uniquely
determined by its restriction νX: S(o) → S(o), where X is the
bottom element of Δ. Since the action of C is free, there is at
most one element g in C such that S(g) = νX, hence a unique
natural transformation v̂: F → NF such that v̂X = G. Thus by
mapping (N, ν) on the element g of the group C, we define an
injective map HN → C.

2. Let us suppose that F' = F. For each g of C, we can define a
natural transformation v̂(g): F → F by v̂(g)X = g and v̂(g)Y

= F(f)gF(f)–1 for each object Y of Δ with f: X → Y. Then (IdC,
Sv̂) is a local PK-homography from K to K' = (R, S, F, φ'),
where φ' = Sv̂ ∘ φ. The injective map introduced above, which
is associated to HN is a bijection in the case of N = IdC.

PROPOSITION 9. Let K = (R, S, F, φ) be a PK-net where Δ is a poset
with a bottom element X and C is a group acting freely via S. The
group C operates on the set HN of local PK-homographies (N, ν):
K → K' = (R, S, NF, φ') by g(N, ν) = (N, µg), where μg = Sμ̂, and
μ̂X = gv̂X.

PROOF. Let (N, ν): K → K' be a local PK-homography and v̂:
F → F' = NF be the natural transformation such that ν = Sv̂. For each
g in C we can define another natural transformation μ̂ from F to F'
by μ̂X = gv̂X, and μ̂Y = NF(f)gv̂XF(f)–1 for any morphism f: X → Y in
Δ. Then we have a local PK-homography (N, µg): K → K' = (R, S,
F', φ') by taking µg = Sμ̂ and φ' = µg ∘ φ. The map (g, (N, ν)) ↦ (N,
µg) defines an action of the group C on HN.

The above results are valid for any group. We are now going to
study some applications in the specific case where G is the T/I group.

6.1 〈T0〉- AND 〈T1〉-LOCAL ISOGRAPHIES

Among all possible local isographies, those corresponding to N = 〈T0〉
and N = 〈T1〉 are of particular importance. Indeed, from the results of
Section 5.3, we have seen that complete isographies with G = T/I are
only possible if the isomorphism N = 〈kl〉 is such that l is even. If one
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now considers isomorphisms of the form N = 〈k2p+1〉, then there exists
no automorphism of the functor S: T/I → Sets which would yield a
complete isography. However, we have

N = 〈k2p+1〉 = N2N1 = 〈11〉〈k2p〉.

Thus, we may consider the successive isographic transformations of a
PK-net by a complete isography corresponding to N1, followed by a
local 〈T0 〉  isography corresponding to N2. The way these isographies
may be composed is summed-up in Example 17.2

If one considers isomorphisms of the form N = 〈k2p〉 , we have seen
that automorphisms of the functor S: T/I → Sets exist. The associated
natural transformation is a linear function of the form v̂(x) = kx + p or
v̂(x) = kx + p + 6. However, not all PK-net isographies can be described
with such a linear mapping, as we saw Example 14. Nevertheless, as in
the previous case, we may decompose an isomorphism N = 〈k2p〉 as

N = 〈k2p〉 = N2N1 = 〈10〉〈k2p〉.

Then, we may consider the successive transformations of a PK-net by a
complete isography corresponding to N1, followed by a local 〈T0〉 iso-
graphy corresponding to N2. Consider for example the two K-nets
illustrated in Example 18.

These K-nets are 〈T2〉-isographic, but it can quickly be checked that
none of the complete isographies presented in the previous section can
describe the transformation of the first K-net into the second. However,
the desired transformation may be described as the composition of a
complete isography, followed by a local one, as shown in Example 19.

EXAMPLE 17

∆ T/I Sets

∆ T/I T/I Sets

∆ T/I T/I T/I Sets

F S

F N1 S

ν̃1

F N1 N2 S

ν̂2
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Obviously, one can also transform Example 18’s first PK-net directly
by using an appropriate local 〈T2〉-isography. The choice of one trans-
formation over the other to describe the transformation of PK-nets
depends on the musical context of the analysis.

In conclusion, local isogaphies corresponding to the isomorphisms
〈T0 〉  and 〈T1 〉  are of particular interest to us. We now give a few
applications to post-tonal music.

DEMONSTRATION 8. A particularly symmetric example of 〈 T0 〉
transformations can be found in Webern’s Three Little Pieces for
Cello and Piano, Op. 11/2, at bars 4–5, represented in Example 20.
Each three-note segment can be considered as a K-net, according to
the diagrams shown in Example 21.

These K-nets are built on the category Δ3, and since they are all
〈T0〉-isographic, the functor F is identical for all three K-nets, with
F(fXY) = I8, F(fYZ) = I9, and F(fXZ) = T1. We consider the natural
transformation v̂: F → F such that v̂X = T4, v̂Y = T8, and v̂Z = T4.
Applying repeatedly the local isography (IdT/I, Sv̂) on the first PK-net,
we thus get the next 〈T0〉-isographic networks, as shown in Example 22.

EXAMPLE 18

EXAMPLE 19

G♯ B♭

F A

T2

I7I1

T4

B C♯

E G♯

T2

I9I3

T4

G♯ B♭

F A

T2

I7I1

T4

B C♯

E G♯

T2

I9I3

T4

E♭ F

C E

T2

I9I3

T4

N2 = ⟨T0⟩N1 = ⟨T2⟩
ν̃1(x) = x+ 7

T8 T8

T4 T4
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EXAMPLE 20:  WEBERN, OP. 11/2, BARS 4–5

EXAMPLE 21

EXAMPLE 22
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As the chords {A, B, Bb}, {C#, G, D}, and {F, Eb, F#} do not belong
to the same set class, Demonstration 8 demonstrates the advantage of
local isographies for describing the transformations of these networks,
over more traditional analyses of pitch class sets using the T/I or the
PLR group, which are restricted to members of the same set class.

DEMONSTRATION 9. An example of 〈T1 〉 -isographic networks is
given at the end of Schoenberg’s Op. 14/2. The chords on the right
hand in bars 66 to 68 (see Example 23) are described by the 〈T1 〉 -
isographic networks shown in Example 24.

We consider the same category Δ3 as in the previous Demonstration
8, and the natural transformation v̂: F → NF, with N = 〈T1〉, such
that v̂X = T1, v̂Y = T0, and v̂Z = T1. Then, by applying repeatedly the
local isography (N, Sv̂) on the first PK-net, we get the next 〈T1 〉 -
isographic networks, as shown in Example 25.

EXAMPLE 23:  SCHOENBERG, OP. 14/2, BARS 66–71

EXAMPLE 24
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I3

T8
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I4
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E
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I5

T8

F

F
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I10
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7 CONSTRUCTION OF HIGHER ORDER PK-HOMOGRAPHIES AND PK-NETS

7.1 TRANSFORMATIONS OF PK-NET TRANSFORMATIONS

Following Lewin (2004), hyper-isographies have also become
standard objects in K-net theory, enabling the music analyst to describe
transformations of networks of K-nets at different levels of recursion.
Informally speaking, these hyper-isographies may be viewed in cate-
gorical terms as morphisms in a higher category; i.e., morphisms of
morphisms. We present here a framework for hyper-homographies
based on the notion of double categories, the definition of which we
recall below.

DEFINITION 13. A double category is a triple (D, ∘, !) satisfying

• D is a set, whose elements are called squares,

• the pair (D, ∘) is a category, the law ∘ being called the
horizontal composition,

• the pair (D, !) is a category, the law ! being called the
vertical composition,

• the two laws ∘ and ! satisfy the distributivity axiom

(δ ∘ γ) ! (β ∘ α) = (δ ! β) ∘ (γ ! α),

corresponding to the diagram shown in Example 26, iff the four
composites (δ ∘ γ), (β ∘ α), (δ ! β), and (γ ! α) are defined.

EXAMPLE 25

D

F

B♭

I7

I3

T8

E♭

F

B

I8

I4

T8

T1

T0

T1

E

F

C

I9

I5

T8

T1

T0

T1

F

F

C♯

I10

I6

T8

T1

T0

T1

F♯

F

D

I11

I7

T8

T1

T0

T1

G

F

E♭

I0

I8

T8

T1

T0

T1
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It is a straightforward result that, for a given 1-category C, we
obtain a double category Sq(C) whose squares are the commutative
squares in C. Applying this result to our case, the 1-category
HoPKNR gives rise to a double category Sq(HoPKNR) as described
in Definition 14.

DEFINITION 14. The double category Sq(HoPKNR) has its squares
defined by four PK-homographies,

• (N, ν): K1 → K2,
• (N', ν'): K'1 → K'2,
• (M, μ): K1 → K'1,
• (M', μ'): K2 → K'2,

such that we have the commutative diagram shown in Example 27;
i.e., we have (M', μ')(N, ν) = (N', ν')(M, μ).

EXAMPLE 26

β α

δ γ

EXAMPLE 27

K1 K ′
1

K2 K ′
2

(M,µ)

(N ′, ν′)(N, ν)

(M ′, µ′)
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Example 27 is presented more explicitly in Example 28. It is easy to
see that the Gesualdo example (Demonstration 7) can be understood
as a special square in which we have M = M' and μ = μ'.

The vertical 1-category Sq(C) can also be viewed as the category of
presheaves CΔ2: its objects encode the data of two objects of C and a
morphism between them, and the morphisms of CΔ2 identify to the
commutative squares of C. The composition is the vertical composition
of squares. Observe that an object of CΔ2 is a special case of a diagram
in the category C. Thus the objects of HoPKNRΔ2 are simply the data
of two PK-nets of form R and a morphism between them, and a
morphism of HoPKNRΔ2 is a commutative square as defined above.
This construction may be further generalized by replacing Δ2 with any
small category Γ and forming the category of presheaves HoPKNRΓ,
or in other words the category of Γ-diagrams in HoPKNR and
morphisms between them.

The square construction can also be iterated, leading to n-fold
categories of hyper-homographies.

EXAMPLE 28:  A SQUARE IN THE DOUBLE CATEGORY SQ(HOPKNR)

(M,µ)

(M ′, µ′)

∆

C1

Sets

∆

C1

C2

Sets
F

S1

F

N

S2
ν

∆

C′
1

Sets

∆

C′
1

C′
2

Sets
F ′

S′
1

F ′

N ′

S′
2

ν′
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7.2 RECURRENT CONSTRUCTION OF PK-NETS OF INCREASING ORDERS

In Section 3 we alluded to the notion of a PK-net (R, S, F, φ) in any
category H, meaning that the functors R and S take their values in H
rather than in Sets. A K-net in H is a PK-net in which R is a constant
functor on an object of H.

PROPOSITION 10. To a PK-net in H is associated a functor Φ
from  Δ to Sq(H) whose restriction to objects reduces to the natural
transformation φ.

PROOF. Given the PK-net (R, S, F, φ) in H, we construct a functor
Φ from Δ to the (vertical) 1-category Sq(H) as follows: it maps the
object X of Δ on φ(X) and a morphism d: X → Y on the commutative
square (R(d), φ(X), φ(Y), SF(d)) such that SF(d)φ(X) = φ(Y)R(d).

This result can be used in the construction of “higher order” PK-
nets, or PKn+1-nets, taking their values in categories deduced from Sets
by n iterations of the Diag operation. Let us describe the first step of
the construction, namely what is a PK-net in Diag(Sets), which we call
PK2-net, or PK-net of PK-nets. This last name is justified by its
following description. Let K = (R, S, F, φ) be a PK2-net, so that R and
S are functors to Diag(Sets). Such a functor S: C → Diag(Sets) has
been called a distructure presheaf on C (Ehresmann 2011). It associates
to each morphism c of C a morphism of Diag(Sets), hence a PK-net
(in Sets) S(c) = (Rc, Sc, Fc, φc). Applying the Proposition 10, we see
that a PK2-net corresponds to the following data:

• a functor F: Δ → C,

• a distructure R on Δ, and a distructure S on C,

• a functor from to Sq(Diag(Sets)) which associates to a mor-
phism d: X → Y of Δ a commutative square of PK-nets, con-
necting the PK-nets R(X) to SF(Y).

8 COMPUTATIONAL ASPECTS

Thanks to their strong computational character, the concepts we have
introduced and discussed in this paper are suitable for being integrated
into some programming languages devoted to computer-aided music
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analysis. In a previous issue of Perspectives of New Music, we have pre-
sented the main functions of the Math Tool environment in
OpenMusic visual programming language, with focus on tiling canons
constructions and the underlying algebraic combinatorics (Agon et al.
2011). K-net and PK-net theory represents an alternative approach to
classical group-based paradigmatic classification of musical chords, the
notion of isography being weaker than the action-based equivalence of
the different set-theoretical catalogues. In order to illustrate the imple-
mentation of K-nets and PK-nets in OpenMusic, let us firstly come
back to Webern’s Three Little Pieces for Cello and Piano, Op. 11/2 dis-
cussed previously. The following figure (Example 29) shows the three
trichords in bars 4–5 and the associated computer-aided analysis of the
PK-nets. The three K-nets described previously, together with the 〈T0〉
isographic relations are one of the possible ways of representing the
combinatorial potential of these musical structures. There are in fact
many other possible configurations with associated isographic relations,
and the music analyst can now choose which solution is the more suit-
able for a given music-analytical purpose. Example 29 shows a different
〈T0〉 isographic relation among the same three trichords. The 〈T0〉 iso-
graphy is factorized as a product of a complete 〈T0〉 isography followed
by a local isography.

We now consider the special case of the PLR group acting on major
and minor triads, as introduced in section 5.2. We are interested in
exploring some combinatorial aspects of complete and local homo-
graphies between various instances of major and minor chords. In
particular, let us take a generating cell of the Tonnetz obtained by
applying to the C major chord the RLPRLP series of neo-Riemannian
transformations, as shown in Example 30.

Is it possible to associate to the P, L, and R operators a series of
complete isographies? Example 31 shows that this is actually the case
and depicts the unique complete isographies between the chords in
this cell.

The previous results show that one can associate to the Tonnetz
seen as an hexagonal lattice of the plane a second-order PK-net where
the nodes are specific instances of K-nets which have been selected
within the catalogue of possible K-nets and in such a way that the
corresponding isographies are all complete. In other words, we have
found a new GIS corresponding to a PK-net-based transitive action on
the family of all major and minor chords. OpenMusic enables one to
directly visualize these isographies in a score, as shown in Example 32.

Although these complete isographies are unique, since the action is
simply transitive, they can still be decomposed as a complete isography
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followed by a local 〈T0〉 one. Open-Music can readily give the local and
complete components of the isography, by selecting the isographies
corresponding to the same natural transformation (which is, in this
case, ν(x) = –x + 1). The result is shown in Example 33.

EXAMPLE 29: A COMPUTER-AIDED K-NETS ANALYSIS OF TWO BARS OF

WEBERN’S THREE LITTLE PIECES FOR CELLO AND PIANO, OP. 11/2,
IN OPENMUSIC
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EXAMPLE 30: THE GENERATING CYCLE OF THE TONNETZ

EXAMPLE 31: THE SERIES OF COMPLETE ISOGRAPHIES CORRESPONDING TO

THE P, L, AND R OPERATORS USED TO GENERATE THE TONNETZ
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Triadic chord progressions can therefore be associated to a series of
complete isographies, as Example 34 shows in the case of the Neo-
Riemannian celebrated harmonic progression found in Beethoven’s
Ninth Symphony (second movement). Note that the symmetric
character of the harmonic progression, generated by applying
alternatively the R and L operators, is well captured by the regularity
of the underlying complete isographies.

9 CONCLUSIONS

Following the preliminary results presented in a recent article (Popoff
et al. 2015), we have summarized in this study the main theoretical con-
struction underlying our generalized framework of Klumpenhouwer
Networks based on category theory. In particular, we have generalized
the notion of isography between K-nets thanks to the new concept of
homography between PK-nets. Example 35 sums-up the different cate-
gories and functors we have studied in this paper, and illustrated by
many musical examples. All the functors restrict to the identity on
objects.

In Section 7 we have raised the problem of constructing hyper-
homographies between PK-nets. Another problem which we intend to
study in the future is the study of PK-nets taking their values in a
category H other than Sets; in particular for H being the category
Diag(Sets), we have indicated how the construction leads to “PK-nets
of PK-nets,” and its iteration would lead to a whole hierarchy of PK-
nets of increasing orders.

Starting from some pedagogical examples, we have shown some
computational aspects of the interplay between local and complete
homographies for future computer-aided PK-nets analysis. These
computational models are currently integrated in existing program-
ming languages for computer-aided music theory and analysis, such as
the MathTools environment in OpenMusic (Agon et al. 2011). The
computational approach enables the music analyst to dramatically
reduce the time necessary to calculate the possible isographic relations
between different chords in a given musical excerpt. It is hoped that
the concepts introduced in this paper, as well as the computational
tools which were developed in application, will prove to be useful
analytic tools for music theorists in the future.
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EXAMPLE 35:  THE DIFFERENT CATEGORIES AND FUNCTORS

STUDIED IN THIS PAPER

PKNR

CompHoPKNR

HoPKNR

LocHoPKNR

LaxHoPKNR

(N, ν̃) → (N, ν̃F )

(N, ν) → (N, ν|)
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AN N E X E S

ANNEX 1: LIMITS AND COLIMITS IN THE CATEGORIES AND 
SUBCATEGORIES OF PK-NETS

We first consider the case of the category PKNR defined in Popoff et
al. (2015). We recall that it has for objects the PK-nets of form R, and
for morphisms from K = (R, S, F, φ) to K' = (R', S', F', φ') the pairs
(N, ṽ), where N is a functor from C to C' such that F' = NF, and ṽ is a
natural transformation from S to S'N such that φ' = (ṽ, F ). There is a
functor J from PKNR to HoPKNR which is the identity on objects
and which associates to the morphism (N, ṽ): K → K' of PKNR the
complete homography (N, ṽF): K → K', so that the image of J is the
sub-category CompHoPKNR of HoPKNR. The functor J is not injec-
tive since two natural transformations ṽ and ṽ' from S to S'N may have
the same composite ṽF = ṽF with F. Thus CompHoPKNR is a quo-
tient category of PKNR with the same objects. However the restriction
of J is injective on Q , where Q is the full subcategory of PKNR whose
objects are PK-nets in which F is surjective on objects (which is gener-
ally the case in musical applications). The following proposition is
indicated in Popoff et al. (2015) but without proof.

PROPOSITION 11. The category PKNR has all small limits and all
small connected colimits.

• We first construct explicitly the limits in PKNR.

Let P: I → PKNR be a functor. For an object i of I we write its
image Pi = (Ri, Si, Fi, φi) and for h: i → j, we write P(h) = (P h, p h):
Pi → Pi. We are going to prove that P has a limit lim P = (R, S, F, φ).

Let C be the limit of the functor P': I → Cat associating Ph to h,
and let pri: C → Ci be the projection of this limit. Thus an object of
C is a family (ei )i∈∣I∣ of objects of the Ci such that ej = Ph(ei) for each
h: i → j in Δ, and the analog for the morphisms ( f i )i ∈∣I ∣. The Fi

define a cone from Δ to P' which factorizes by F: Δ → C, so that F(X)
= (F i (X ))i∈∣I∣.

• We now construct the appropriate functor S: C → Sets.

Let e = (ei )i∈∣I∣ be an object of C. We define a functor Ve: I → Sets
such that Ve(i) = Si(ei), and such that for h: i → j we have



48 Perspectives of New Music

Ve(h) = ph(ei): Si(ei) → SjPh(ei) = Sj(ej).

Then S(e) is the limit of Ve. Thus S: C → Sets is defined as follows:

S(e) = lim Ve = {(s i )i ∈∣I∣ ∣ s i ∈ S i (ei ) , s j = ph (ei ) (s i )}i∈∣I ∣,

and

S ( f ): S(e )→ S (e' ): (s i )i∈∣I ∣ ↦ (S i ( f i ) ( s i ))i∈∣I ∣,

for f =( f i )i ∣I ∣ : e → e' .

• We now construct the appropriate natural transformation φ by
the construction of its components (φi)X: R(X) → SF(X) for an
object X of Δ.

The maps (φi)X: R(X) → SiFi(X) define a cone from R(X) to VF(X)

which factors through the limit SF(X) by

 φX: R(X) → SF(X): a → ((φi)X(a))i ∈∣I ∣.

The i-th projection of lim P = (R, S, F, πi) to Pi is given by (pri, πi)
where pri: C → Ci: (fi)i ∈∣I ∣ ↦ fi and πi(e): S(e) → Si(ei): (si)i ∈∣I ∣ ↦ si.

Finally, to verify the universal property, let K' be a PK-net vertex
of a cone ((L i , λi ): K ' → P i )i∈∣I ∣ with basis P. We must uniquely
factor this cone through K via (L, λ): K' → K. We define L: C' → C:
e' ↦ (L i (e' ))i ∈∣I ∣ and λ(e'): S'(e') → SL(e'): s' ↦ (λi(e')(s'))i ∈∣I ∣.

• We now construct explicitly the connected colimits in PKNR.

Let P: I → PKNR be a functor, where I is connected: i.e., any two
objects in I are connected by a zig-zag of morphisms. Let C' be the
colimit of the functor P': I → Cat, and let vi: Ci → C' be the corre-
sponding injections. The category C' is the quotient of the category sum
of the family (C i)i ∈∣I ∣ by the equivalence E generated by ei ∼ ej if there
exists h: Ci → Cj with Ph(ei) = ej. An object e' of C' will be an equiv-
alence class of an object ei of Ci for E, and similarly for morphisms.

Since I is connected, the composites viFi: Δ → C' must have the
same value F' for each i, and this defines the functor F': Δ → C': X
↦ viFi(X).

Let e' be an object of C'. Let Ie' be the full sub-category of I having
for objects the I such that e' = vi(ei) for some ei in Ci. We define a



From K-Nets to PK-Nets: A Categorical Approach 49

functor V'e': Ie' → Sets associating Si(ei) to the object i of Ie', and
associating ph(ei): Si(ei) → Sj(ej) to h: i → j in Ie'. Then S'(e') =
colim V'e'. Let v'i be the canonical map from Si(ei) to the colimit
S'(e'). We thus obtain the functor S': C' → Sets.

Finally, let X be an object of Δ. We define φ'X:R(X) → S'F(X) as
φ'X(a) = v'i((φi)X(a)) for i in IF'(X). This construction does not extend
to the case where I is not connected.

Let us consider the above defined functor J from PKNR to HoPKNR
which is the identity on objects, and which associates to a morphism
(N, ν) the complete homography (N, ṽF).

PROPOSITION 12. The functor J preserves the limits and the
connected colimits.

• We take the notation introduced in Proposition 11 and consider
the composite functor JP: I → HoPKNR, which is the identity on
objects, and maps the morphism (Ph, ph) on the complete
homography (Ph, phF): Pi → Pj. We are going to prove that K =
J(K) is also the limit of JP in HoPKNR. The homography
projection on Pi will be (pri, πiF): K → Pi. What remains to
prove is the universal condition when we give a cone (Li, μi)i ∈∣I ∣
from a PK-net K" to JP, in which the homographies (Li, μi) are
not necessarily complete; that is, the natural transformations are
of the most general form μi: S"F" → SiFi. However, now we only
need a homography (L, μ): K" → K, and it is defined in the same
manner as above. More precisely, for an object X of Δ, we define
μ(X): S"F"(X) → SF(X): s' ↦ (μi(X)(s'))i ∈∣I ∣.

• To prove that the colimit K' is also colimit of JP in HoPKNR, we
have essentially to prove that the universal property still extends
to a cone in HoPKNR, and the proof is analog to the case of
limits.

We finally address the general question of limits and connected
colimits in CompHoPKNR and HoPKNR.

PROPOSITION 13. The categories CompHoPKNR and HoPKNR
have all small limits and all small connected colimits of PK-nets in
which the functor F is surjective on objects.

• Let P: I → HoPKNR be a functor: we are going to prove that P
has a colimit in HoPKNR. We keep the same notations as above,
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with the exception that P(h) is now any homography, denoted by
(Ph, qh), where qh: SiFi → SjFj. We will construct the limit K of P
in HoPKNR.

The construction of C and F is the same as above. The construction
of S must be modified because the natural transformation qh only
gives indications for objects of the form Fi(X), and an object ei of Ci

may be the image by F of several objects X of Δ.
Let e = (ei)i ∈∣I ∣ be an object of C of the form e = F(X) = (Fi(X))i ∈∣I ∣

for at least one object X of Δ. We consider the functor VX: I → Sets
such that VX(i) = SiFi(X), and VX(h) = qh(X): SiFi(X) → SjFj(X) for
h: i → j. If we denote by SX(e) the limit of VX, we have

SX(e) = {(si)i ∈∣I ∣ | si ∈  SiFi(X) and sj = qh(X)(sI)} (1)

Now we define S(e) as the union of the sets SX(e) for the different
X of Δ sent on e by F. It consists of the families (si)i ∈∣I ∣ satisfying the
condition (1) for a X such that e = F(X). We thus define a functor S:
C → Sets, since we have supposed that F is surjective on objects.

The remainder of the proof is easily adapted from the preceding
proposition. Let us note that condition of surjectivity on objects for
the Pi is sufficient, but not necessary. For instance, products always
exist as well as limits of functors of the form JP', where P' is a
functor to PKNR.

• Let P: I → HoPKNR be a functor such that I is connected. We
are going to prove that P has a colimit in HoPKNR. The
construction of the colimit in HoPKNR is analog to that given
in PKNR except for the construction of S'. Indeed, an object e' of
C' can be the image by F of several objects X, Y, etc. of Δ. For
each such X we construct a functor V'X: Ie' → Sets associating
SiFi(X) to the object i of Ie' and associating qh(X): SiFi(X) →
SjFj(X) to h: i → j in Ie'. Let S'X(e') = colim V'X. Then S'(e') is
the union of the S'X(e') for the different X with F(X) = e'.
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ANNEX 2: AUTOMORPHISMS OF ((T/I, S))

Section 5 has shown that Aut((T/I, S)) is the group of order 1152 iso-
morphic to T/I ⋊ T/M. For a given automorphism N = 〈kl〉 of T/I, we
have seen that the elements of (N, ṽ) of Aut((T/I, S)) are in bijection
with elements (〈kl〉, g) of T/I ⋊ T/M. Starting from an element (〈kl〉, g)
of T/I ⋊ T/M, we are thus going to calculate explicitly the corre-
sponding element (N, ṽ) of Aut((T/I, S)).

We label the major (resp. minor) chords by nMaj (resp. nMin), where
n is the root pitch class of the chord. Recall that the action of the
elements T1 and I0 of T/I on the chords is given by

•  T1 · nMaj = (n + 1)Maj, and T1 · nMin = (n + 1)Min, and

•  I0 · nMaj = (5 – n)Min, and I0 · nMin = (5 – n)Maj.

This action, which defines the functor S, is simply transitive. By identi-
fying one particular chord to the identity element of the group T/I, it
allows us to define a bijection X between the elements of T/I and the
elements of the set of major and minor chords. We arbitrarily choose
the identity element to be identified with the C major chord, in which
case X identifies a major chord nMaj with the element Tn ∈  T/I, and a
minor chord nMin with the element In–5 ∈  T/I. Let N = 〈kl〉 be an auto-
morphism of T/I, and let g be an element of T/I. We study the natural
transformation associated with an element ( 〈kl 〉 , G) of Aut((T/I, S)).
Recall that, given an element x from the set of the major and minor tri-
ads, we have

 ṽ(x) = X(N(X–1(x)) g).

 Depending on the element g, we distinguish two cases.

• Case g = Tr

– A chord nMaj is uniquely identified with the element Tn ∈
T/I; i.e., we have X–1(nMaj) = Tn. We then have 〈kl〉(Tn) = Tkn,
and thus

N(X–1(nMaj))g = TknTr = Tkn+r.

Since X(Tkn+r)= (kn+r)Maj, the natural transformation therefore
sends the major chord nMaj to the major chord (kn+r)Maj.
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– A chord nMin is uniquely identified with the element In–5 ∈
T/I; i.e., we have X–1(nMin) = In–5. We then have 〈kl〉(In–5) =
Ikn–5k+l, and thus

N(X–1(nMin))g = Ik(n–5)+lTr = Ik(n–5)+l– r.

Since X(Ik(n–5)+l–r) = (k(n – 5) + l – r + 5)Min, the natural trans-
formation therefore sends the minor chord nMin to the major
chord (k(n – 5) + l – r + 5)Min.

• Case g = Ir

– Similarly, we have N(X–1(nMaj))g = TknIr = Ikn+r. Since
X(Ikn+r) = (kn + r + 5)Min, the natural transformation therefore
sends the major chord nMaj to the minor chord (kn + r + 5)Min.

– Likewise, we have N(X–1(nMin))g = Ik(n–5)+lIr = Tk(n–5)+l–r.
Since X(Tk(n–5)+l– r) = (k(n – 5) + l – r)Maj, the natural trans-
formation therefore sends the minor chord nMin to the major
chord (k(n – 5) + l – r)Maj.

As we saw in Section 5, the normal subgroup of Aut((T/I, S ))
consisting of all elements of the form (〈T0〉, G ) is isomorphic to T/I.
Its action is that of the PRL group, where the element (〈T0〉, I11) cor-
responds to the L operation, and the element (〈T0〉, I4) corresponds to
the R operation.
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ANNEX 3: GLOSSARY OF CATEGORY THEORY TERMS

We give below the definition of the main category theory terms used
throughout the article.

Automorphism group of an object X of a category K: it is the
sub-group of K consisting of the isomorphisms g: X → X of K
having X for their domain and codomain.

Category: a category K is defined as a graph equipped with an
internal (partial) composition law which associates to each pair of
two consecutive arrows f: X → X' and g: X' → X", a composite
g ∘ f: X → X". This composition satisfies the following conditions:
(i) it is associative: h ∘ (g ∘ f) = (h ∘ g) ∘ f if the composites are
defined; (ii) each object X has an identity arrow idX: X → X such
that f ∘ idX = f and idX' ∘ f = f. The set of objects of K is denoted
by |K|, and an arrow f: X → X' is also called a morphism of K with
domain X and codomain X'. If no confusion is possible, an object
X is identified to its identity morphism idX. For a general theory
of categories, we refer to Mac Lane’s 1971 book.

Category action: an action of a category K on a set M consists in
the following data: (i) a map p: M → |K|; (ii) a composition map
k: K ! M → M: (f, s) ↦ f(s) such that: K ! M = {(f, s) | p(s) =
dom(f)}, p(f(s)) = codom(f) , (f' ∘ f)s = f '(f(s)) and p(s)s = s. This
action is equivalent to the data of a functor R: K → Sets which
associates to an object X of K the set R(X) = {s | p(s) = X} and
such that R(f)(s) = f(s) for f: X → X'. If the category K is a group,
we obtain the usual notion of a group action.

Colimit: let P: I → K be a functor. A colimit of P, if it exists, is an
object cP of K satisfying the following condition: there is a cone
(ci) from P to cP such that each cone (fi) from P to any object X
of K binds into a unique morphism f: cP → X satisfying the equa-
tions fi = ci ∘ f for each object i of I. The functor P may have no
colimit in K; if it has a colimit, this colimit is unique (up to an iso-
morphism).

Cocomplete category: a category K is said to be cocomplete if
each functor from a small category I to K admits a colimit.
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Complete category: a category K is said to be complete if each
functor from a small category I to K admits a limit.

Complete PK-homography: cf. Section 5, Definition 6.

Cone from P to X in a category K: it is a natural transformation
from the functor P: I → K to the functor from I to K constant on
the object X of K. It reduces to a family (fi) of morphisms fi: P(i)
→ X for each object i of I such that fj ∘ P(x) = fi for each mor-
phism x: i → j of I.

Diagram in a category K: it is a functor P: I → K from a small
category I to K.

Form (of a PK-net): cf. Section 3, Definition 1.

Functor: a functor F from a category K to a category K' is a map
which associates to each object X of K an object F(X) of K', to
each morphism f: X → X' of K a morphism F(f): F(X) → F(X') of
K, and which preserves composition, that is F(f' ∘ f) = F(f') ∘ F(f)
if f': X' → X''. Such a functor F: K → K' is also called a covariant
functor to distinguish it from a contravariant functor G from K to
K' which is defined as a (covariant) functor G from the opposite
category Kop of K to K'. A contravariant functor is also called a
presheaf on K with values in K'. To avoid ambiguities, we only
consider covariant functors in this text, contrarily to Mazzola
who, using many presheaves, uses both covariant and contravari-
ant functors.

Graph: a graph K (or more precisely a directed multi-graph) con-
sists of a set O(K) of objects X (its vertices), and a set of oriented
edges between them, represented by arrows f: X → X'; we call X
the source of f, and X' its target. There can be several “parallel”
arrows from X to X'.

Groupoid: a groupoid is a category in which each morphism is an
isomorphism. A group is a groupoid with only one object. In any
category C, the set of its isomorphisms defines a groupoid.

Isomorphism in a category K: a morphism f: X → X' of K is an
isomorphism if there is a morphism f –1: X' → X in K, called the
inverse of f, such that f ∘ f –1 and f –1 ∘ f are identities.
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Lax PK-homography: cf. Section 4, Definition 2

Limit of a functor P: I → K: it is a colimit of the opposite func-
tor from Iop to Kop.

Monoid: it is a category with a unique object, namely its unit.

Morphism of a category: cf. the definition of a category above.

Natural transformation: let S: K → K' and S': K → K' be func-
tors. A natural transformation from S to S' is a map from |K| to K'
which associates to an object X of K a morphism φ(X): S(X) →
S'(X) such that we have φ(X')S(f) = S'(f)φ(X) for each morphism
f: X → X' of K. The natural transformation is an equivalence from
K to K' if φ(X) is a bijection for each object X of K.

Opposite category: each category K admits an opposite category
Kop with the same objects and obtained by inverting the direction
of its arrows.

PK-homography: cf. Section 4, Definition 4.

PK-net: abbreviation for Poly-Klumpenhouwer-network: cf. Sec-
tion 3, Definition 1.

Presheaf P of sets on a category C: it is a functor from the oppo-
site category Cop of C to the category Sets (cf. the definitions of
Functor and of Sets).

Representable functor: it is a functor H: K → Sets which is
equivalent to a functor Hom(X, –): K → Sets for some object X
of K, where Hom(X, X') is the set of morphisms from X to X'.

Restriction of a functor F: K → K': it is a functor F': C → C'
such that C is a sub-category of K, C' is a sub-category of K', and
F'(c) = F(c) for each morphism c of C'.

Sets: it is the category of sets which has for objects the (small) sets
E, for morphisms from E to E' the maps from E to E', with the
usual composition of maps: i.e., the composite of f: E → E' with
f': E' → E'' is the map f'f: E → E'' which sends an element e of E
to f'(f(e)) in E''. This category raises set theory problems to avoid
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the paradox of “the set of all sets.” One solution is to make a dis-
tinction between “proper class” and “set” (as in the Von Neu-
mann–Bernays–Gödel set theory). Another solution, which we
adopt, is to work within the Zermelo–Fraenkel set theory with a
non-trivial Grothendieck universe U. We take U for the set of
objects of Sets, and a set belonging to U is called a small set.

Small category: it is a category such that the set of its morphisms
is a small set.

Small colimit (or small limit): it is the colimit of a functor P: I
→ C where I is a small category.

Sub-category of a category K: it is a category C whose objects
and morphisms are respectively objects and morphisms of K, and
which is closed by composition in K—if morphisms c and c' of C
have a composite c'c in K, then c'c is also in C.

Support (of a PK-net): cf. Section 3, Definition 1.

Top and bottom elements of posets: in a partially ordered set (or
poset), a top element, if it exists, is the greatest element for the
order; and the bottom element is the smallest element, if it exists.
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NO T E S

1. Recall that a group action G × S → S on a set S is free if, given an
element x in S and a group element g in G such that g · x = x, then
g is the identity element.

2. So that this diagram, and the subsequent composition of natural
transformations, would be easy to understand, we have represented
here the identity functors on ∆, on T/I, and on Sets as dashed
arrowless lines.



58 Perspectives of New Music

RE F E R E N C E S

Agon C., and M. Andreatta. 2011. “Modeling and Implementing
Tiling Rhythmic Canons in OpenMusic Visual Programming
Language.” Perspectives of New Music 49/2: 33–64.

Andreatta, M., A. Ehresmann, R. Guitart, and G. Mazzola. 2013.
“Towards a Categorical Theory of Creativity.” Proceedings MCM
2013, McGill University, Montreal, June 12–14, 2013. Lecture
Notes in Computer Science, LNAI, Springer, pp. 19–37.

Ehresmann, A. 2011. “Des espèces de structures locales aux
distructures et systèmes guidables. Category Theory Yesterday
Today (and Tomorrow ?): A Colloquium in Honour of Jean
Benabou.” ENS Paris 2011. Online slides: http://ehres.pagesperso-
orange.fr.

Ehresmann, Ch. 1957. “Gattungen von lokalen Strukturen.” Jahres-
bericht der Deutschen Math. Vereinigung 60: 49–77.

Fiore, Th. M., and Th. Noll. 2011. “Commuting Groups and The
Topos of Triads.” Proceedings MCM 2011, pp. 69–83.

Fiore, Th. M., Th. Noll, and R. Satyendra. 2013. “Morphisms of
generalized interval systems and PR-groups.” Journal of Mathematics
and Music 7/1: 3–27.

Hook, Julian. 2007. “Cross-Type Transformations and the Path
Consistency Condition” Music Theory Spectrum 29/1: 1–39.

Kan, D. M. 1958. “Adjoint Functors.” Transactions of the American
Mathematical Society 87/2: 294–329.

Klumpenhouwer, H. 1991. “A Generalized Model of Voice-Leading
for Atonal Music.” PhD Dissertation, Harvard University.

Klumpenhouwer, H. 1998. The Inner and Outer Automorphisms of
Pitch-Class Inversion and Transposition: Some Implications for
Analysis with Klumpenhouwer Networks.” Intégral 12: 25–52.

Kolman, O. 2004. “Transfer Principles for Generalized Interval
Systems.” Perspectives of New Music 42/1: 150–189.

Lavelle, S. “Some Formalizations in Musical Set Theory.” Unpublished
paper. Available at: http://www.increpare.com/docs/lewin.pdf.



From K-Nets to PK-Nets: A Categorical Approach 59

Lewin, David. 1982. “Transformational Techniques in Atonal and
Other Music Theories.” Perspectives of New Music 21/1–2: 312–371.

———. 1987. Generalized Music Intervals and Transformations. New
Haven: Yale University Press.

———. 1990. “Klumpenhouwer Networks and Some Isographies That
Involve Them.” Music Theory Spectrum 12/1: 83–120.

———. 1994. “A Tutorial on Klumpenhouwer Networks, Using the
Chorale in Schoenberg’s Opus 11, No. 2.” Journal of Music Theory
38/1: 79–101.

Mac Lane, Saunders. 1971. Categories for the Working Mathematician.
Springer.

Mazzola, G. 1985. Gruppen und Kategorien in der Musik: Entwurf
einer mathematischen Musiktheorie. Berlin: Heldermann.

———. 1990. Geometrie der Töne. Basel: Birkhauser.

———. 2002. “The Topos of Music. Geometric Logic of Concepts,
Theory, and Performance.” Basel: Birkhauser.

Mazzola, G., and M. Andreatta. 2006. “From a Categorical Point of
View: K-nets as Limit Denotators.” Perspectives of New Music 44/2:
88–113.

Nolan, C. 2007. “Thoughts on Klumpenhouwer Networks and
Mathematical Models: The Synergy of Sets and Graphs.” Music
Theory Online 13/3.

Noll, Th. 2005 “The Topos of Triads.” In Colloquium on Mathe-
matical Music Theory, H. Fripertinger and R. Reich (eds.), 103–135.
Grazer Math. Ber.

Popoff, A. “Towards A Categorical Approach of Transformational
Music Theory.” Submitted.

Popoff, A., M. Andreatta, and A. Ehresmann. 2015. “A Categorical
Generalization of Klumpenhouwer Networks.” In Proceedings of the
MCM 2015 Conference, Collins et al. (eds), 303–314. LNCS 9110.
Springer.

Vuza, D. 1988. “Some Mathematical Aspects of David Lewin’s Book
Generalized Musical Intervals and Transformations.” Perspectives of
New Music 26/1: 258–287.


